Human Activities Dominantly Driven the Greening of China During 2001 to 2020
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Surface Reflectance
2.2.2. Climate Data
2.2.3. Human Footprint
3. Methods
3.1. kNDVI Retrieval
3.2. Trend Analysis and Significance Test
3.3. Partial Correlation Analysis
3.4. Residual Trend Analysis
3.5. Hurst Exponent
4. Results
4.1. Validation of kNDVIpre in Reserves
4.2. Spatio-Temporal Changes of Vegetation
4.3. Correlation Between kNDVI and Climatic and Anthropogenic Factors
4.4. Relative Contribution of Climate Change and Human Activities to Vegetation Dynamics
4.5. Future Trends in Vegetation Coverage
5. Discussion
5.1. Changes in Forests and Driving Force
5.2. Changes in Croplands and Driving Force
5.3. Limitations of the Current Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.L.; Shan, M.; Pei, X.R.; Zhang, X.K.; Yang, Y.L. Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River basin, China. Phys. Chem. Earth 2020, 115, 102834. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Z.; Chen, X.; Li, J.; Zhang, Q.; Zheng, X. Global greening mainly contributed by climate change at more than twice the historical rate during the 21st century. Glob. Change Biol. 2025, 31, e70126. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Cong, N.; Luo, M.; Qiu, T.; Rong, L.; Ren, P.; Xiao, J. Contribution of climatic change and human activities to vegetation dynamics over Southwest China during 2000–2020. Remote Sens. 2024, 16, 3361. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Song, X. Identifying the main factors influencing significant global vegetation changes. Forests 2023, 14, 1607. [Google Scholar] [CrossRef]
- Yan, Z.; Ding, Y.; Zhai, P.; Song, L.; Cao, L.; Li, Z. Re-assessing climatic warming in China since 1900. J. Meteorol. Res. 2020, 34, 243–251. [Google Scholar] [CrossRef]
- Liu, H.; Liu, F.; Yuan, H.; Zheng, L.; Zhang, Y. Assessing the relative role of climate and human activities on vegetation cover changes in the up–down stream of Danjiangkou, China. J. Plant Ecol. 2022, 15, 180–195. [Google Scholar] [CrossRef]
- Gao, X.; Huang, X.; Lo, K.; Dang, Q.; Wen, R. Vegetation responses to climate change in the Qilian Mountain nature reserve, Northwest China. Glob. Ecol. Conserv. 2021, 28, e01698. [Google Scholar] [CrossRef]
- Chen, Q.; Niu, B.; Hu, Y.; Luo, T.; Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 2020, 714, 136787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X. An innovative index for separating the effects of temperature and precipitation on global vegetation change. iScience 2023, 26, 106972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, J.; Wang, W.; Ma, P.; Lu, G.; Liu, X.; Yu, H.; Fang, F. Climatic warming and humidification in the arid region of Northwest China: Multi-scale characteristics and impacts on ecological vegetation. J. Meteorol. Res. 2021, 35, 113–127. [Google Scholar] [CrossRef]
- Gao, C.; Ren, X.; Fan, L.; He, H.; Zhang, L.; Zhang, X.; Li, Y.; Zeng, N.; Chen, X. Assessing the vegetation dynamics and its influencing factors in Central Asia from 2001 to 2020. Remote Sens. 2023, 15, 4670. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, X.; Song, M.; Liu, Y.; Shi, X.; Lei, Y.; Nie, T. Study on the development trend of social-ecological systems and the drivers of sustainable development—A case study of the Loess Plateau in China. Ecol. Indic. 2023, 156, 111172. [Google Scholar] [CrossRef]
- Ma, S.; Deng, G.; Wang, L.-J.; Hu, H.; Fang, X.; Jiang, J. Telecoupling between urban expansion and forest ecosystem service loss through cultivated land displacement: A case study of Zhejiang Province, China. J. Environ. Manag. 2024, 357, 120695. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.J.; Yan, L. Trends in urban vegetation growth in China from 2000 to 2022. Land 2024, 13, 1015. [Google Scholar] [CrossRef]
- Tian, Q.; Lu, J.; Chen, X. A novel comprehensive agricultural drought index reflecting time lag of soil moisture to meteorology: A case study in the Yangtze River basin. Catena 2022, 209, 105804. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Li, J.; Meng, C.; Cai, Y. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Yin, C.; Tan, Z.; Liu, X.; Li, S.; Ma, X.; Zhang, X. Landslide susceptibility assessment considering time-varying of dynamic factors. Nat. Hazards Rev. 2024, 25, 05024004. [Google Scholar] [CrossRef]
- Tesfaye, A.A.; Awoke, B.G. Evaluation of the saturation property of vegetation indices derived from Sentinel-2 in mixed crop-forest ecosystem. Spat. Inf. Res. 2021, 29, 109–121. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Álvarez, J.L.; Martínez-Ramón, M.; Muñoz-Marí, J.; Camps-Valls, G. Digital Signal Processing with Kernel Methods; Wiley: Hoboken, NJ, USA, 2018; pp. i–xxvi. [Google Scholar]
- Wang, Q.; Moreno-Martínez, Á.; Muñoz-Marí, J.; Campos-Taberner, M.; Camps-Valls, G. Estimation of vegetation traits with kernel NDVI. ISPRS J. Photogramm. Remote Sens. 2023, 195, 408–417. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, X.; Ruan, W.; Zheng, M.; Gen, K.; Li, X.; Deng, H.; Chen, Y.; Liu, M. Quantifying the direct and indirect effects of terrain, climate and human activity on the spatial pattern of kNDVI-based vegetation growth: A case study from the Minjiang River Basin, Southeast China. Ecol. Inform. 2024, 80, 102493. [Google Scholar] [CrossRef]
- Shen, M.; Wang, S.; Jiang, N.; Sun, J.; Cao, R.; Ling, X.; Fang, B.; Zhang, L.; Zhang, L.; Xu, X.; et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Niu, Z.; He, H.; Yu, P.; Sitch, S.; Zhao, Y.; Wang, Y.; Jain, A.K.; Vuichard, N.; Si, B. Climate change and CO2 fertilization have played important roles in the recent decadal vegetation greening trend on the Chinese Loess Plateau. Remote Sens. 2023, 15, 1233. [Google Scholar] [CrossRef]
- He, C.; Yan, F.; Wang, Y.; Lu, Q. Spatiotemporal variation in vegetation growth status and its response to climate in the Three-River Headwaters Region, China. Remote Sens. 2022, 14, 5041. [Google Scholar] [CrossRef]
- Feng, X.; Tian, J.; Wang, Y.; Wu, J.; Liu, J.; Ya, Q.; Li, Z. Spatiotemporal variation and climatic driving factors of vegetation coverage in the Yellow River Basin from 2001 to 2020 based on kNDVI. Forests 2023, 14, 620. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, H.; Hartmann, R.; Yue, Y. Physical Geography of China and the U.S.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Pandit, J.; Sharma, A.K. A comprehensive review of climate change’s imprint on ecosystems. J. Water Clim. Change 2023, 14, 4273–4284. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, J.; Liu, M.; Xue, Z.; Bagherzadeh, A.; Liu, M. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Chen, T.; Xia, J.; Zou, L. Quantifying the influences of natural factors and human activities on NDVI change in the Hanjing River Basin, China. Remote Sens. 2020, 12, 3780. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, N.; Shen, M.; Guo, L. Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecol. Indic. 2020, 112, 106161. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Bashir, B.; Cao, C.; Naeem, S.; Joharestani, M.Z.; Bo, X.; Afzal, H.; Jamal, K.; Mumtaz, F. Spatio-temporal vegetation dynamic and persistence under climatic and anthropogenic factors. Remote Sens. 2020, 12, 2612. [Google Scholar] [CrossRef]
- Li, C.; Jia, X.; Zhu, R.; Mei, X.; Wang, D.; Zhang, X. Seasonal spatiotemporal changes in the NDVI and its driving forces in Wuliangsu Lake Basin, Northern China from 1990 to 2020. Remote Sens. 2023, 15, 2965. [Google Scholar] [CrossRef]
- Tong, S.; Bao, G.; Bao, Y.; Huang, X. Monitoring of long-term vegetation dynamics and responses to droughts of various timescales in Inner Mongolia. Ecosphere 2023, 14, e4415. [Google Scholar] [CrossRef]
- Yang, Q.; Jiang, C.; Ding, T. Impacts of extreme-high-temperature events on vegetation in North China. Remote Sens. 2023, 15, 4542. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, L.; Liu, T.; Huang, X.; Sun, G. The synergistic effect between precipitation and temperature for the NDVI in Northern China from 2000 to 2018. Appl. Sci. 2023, 13, 8425. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; Pan, C.; Yan, Y.; Jiao, J.; Zhou, Y.; Wang, X.; Zhou, G. Estimating the effects of natural and anthropogenic activities on vegetation cover: Analysis of Zhejiang Province, China, from 2000 to 2022. Remote Sens. 2025, 17, 1433. [Google Scholar] [CrossRef]
- Song, W.; Feng, Y.; Wang, Z. Ecological restoration programs dominate vegetation greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Shen, R.; Jia, G.; Xu, X. Reforestation enhanced landscape connectivity for thermal buffering in China. Environ. Res. Lett. 2022, 17, 014056. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.; Zhang, X.; Fiedler, S.; Gao, Q.; Zhou, Y.; Cao, W.; Hassan, W.; Mărgărint, M.C.; Tarolli, P.; et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai–Tibetan Plateau. J. Environ. Manag. 2021, 281, 111875. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, X.; Wu, Y.; Sivakumar, B.; Liu, S. Enhanced dependence of China’s vegetation activity on soil moisture under drier climate conditions. J. Geophys. Res. Biogeosci. 2023, 128, e2022JG007300. [Google Scholar] [CrossRef]
Data Name | Spatial Resolution | Temporal Period | Source |
---|---|---|---|
Surface Reflectance | 500 m | 2001–now (Daily) | Terra + Aqua MODIS Land Surface Bidirectional Reflectance Factor (BRF) (https://lpdaac.usgs.gov/products/mcd19a1v061/) (accessed on 12 July 2025) |
Temperature | 1 km | 1901–2023 (Monthly) | National Earth System Science Data Center (http://www.geodata.cn) (accessed on 12 July 2025) |
precipitation | 1 km | 1901–2023 (Monthly) | National Earth System Science Data Center (http://www.geodata.cn) (accessed on 12 July 2025) |
Land Cover | 500 m | 2001–now (Yearly) | Terra + Aqua MODIS Land Cover (https://lpdaac.usgs.gov/products/mcd12q1v061/) (accessed on 12 July 2025) |
Human Footprint | 1 km | 2000–2020 (Yearly) | Human Footprint data (https://www.x-mol.com/groups/li_xuecao/news/48145) (accessed on 12 July 2025) |
Cropping Intensity | 250 m | 2001–2019 (Yearly) | Global Cropping Intensity data (https://data.apps.fao.org/) (accessed on 12 July 2025) |
Tree cover fraction | 250 m | 2000–2020 (Yearly) | Terra MODIS VCF Vegetation Continuous Fields (VCF) (https://lpdaac.usgs.gov/products/mod44bv061/) (accessed on 12 July 2025) |
Trend | Scenarios | Relative Contributions | ||
---|---|---|---|---|
Trend | Trend | Climate | Human | |
Increasing change | >0 | >0 | ||
>0 | <0 | 100 | 0 | |
<0 | >0 | 0 | 100 | |
Decreasing change | <0 | <0 | ||
<0 | >0 | 100 | 0 | |
>0 | <0 | 0 | 100 |
Nature Reserve | RMSE | Bias | R2 | Pearson’s r |
---|---|---|---|---|
Hoh Xil National Nature Reserve | 0.004 | −5.53 × 10−11 | 0.901 | 0.949 |
Three river sources | 0.016 | −3.43 × 10−10 | 0.873 | 0.934 |
Altun Mountains, Xinjiang | 0.007 | 2.26 × 10−10 | 0.850 | 0.922 |
Selincuo Wetland | 0.005 | 5.12 × 10−12 | 0.945 | 0.972 |
Yarlung Zangbo River, Tibet | 0.007 | −4.97 × 10−11 | 0.938 | 0.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Tian, Z.; Chen, Y.; Bai, T.; Song, Z.; Sun, K. Human Activities Dominantly Driven the Greening of China During 2001 to 2020. Remote Sens. 2025, 17, 2446. https://doi.org/10.3390/rs17142446
Chang X, Tian Z, Chen Y, Bai T, Song Z, Sun K. Human Activities Dominantly Driven the Greening of China During 2001 to 2020. Remote Sensing. 2025; 17(14):2446. https://doi.org/10.3390/rs17142446
Chicago/Turabian StyleChang, Xueli, Zhangzhi Tian, Yepei Chen, Ting Bai, Zhina Song, and Kaimin Sun. 2025. "Human Activities Dominantly Driven the Greening of China During 2001 to 2020" Remote Sensing 17, no. 14: 2446. https://doi.org/10.3390/rs17142446
APA StyleChang, X., Tian, Z., Chen, Y., Bai, T., Song, Z., & Sun, K. (2025). Human Activities Dominantly Driven the Greening of China During 2001 to 2020. Remote Sensing, 17(14), 2446. https://doi.org/10.3390/rs17142446