How Three Decades of Forestation Has Impacted Forest Fragmentation in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methodology
2.2.1. Metrics for Forest Cover and Forest Fragmentation
2.2.2. Random Forest
2.2.3. Environmental Data
3. Results
3.1. Forest Changes During 1986–2018
3.2. Spatiotemporal Dynamics of Forest Fragmentation
3.3. Driving Factors of Changes in Forest Fragmentation
3.4. Local Climate Cooling Effects Associated with Forest Fragmentation Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FFI | forest fragmentation index |
ED | edge density |
PD | patch density |
MPA | mean patch area |
FC | forest coverage |
RF | Random Forest |
SM | soil moisture |
T | annual mean temperature |
AI | global aridity index |
CF | coarse fragment content |
ET0 | potential evapotranspiration |
BTSLT | silt content |
TND | soil nitrogen density |
BD | soil bulk density |
P | annual accumulated precipitation |
TPD | soil phosphorus density |
FCC | forest cover change |
HFI | human footprint index |
References
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Environmental Change. Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Crouzeilles, R.; Maurenza, D.; Prieto, P.V.; Barros, F.S.M.; Jakovac, C.; Ferreira, M.S.; Chazdon, R.L.; Lindenmayer, D.B.; Brancalion, P.H.S.; Ceccon, E.; et al. Associations between socio-environmental factors and landscape-scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conserv. Lett. 2020, 14, e12768. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Wu, C.; Yu, M. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef]
- Shao, L.; Liu, Z.; Li, H.; Zhang, Y.; Dong, M.; Guo, X.; Zhang, H.; Huang, B.; Ni, R.; Li, G.; et al. The impact of global dimming on crop yields is determined by the source–sink imbalance of carbon during grain filling. Glob. Change Biol. 2021, 27, 689–708. [Google Scholar] [CrossRef]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Muller, M.S.; Rodig, E.; Wiegand, T.; Huth, A. Global patterns of tropical forest fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Noordwijk, M.v.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Change 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, W.; Ciais, P.; Santoro, M.; Cartus, O.; Peng, S.; Yin, Y.; Yue, C.; Yang, H.; Yu, L.; et al. Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. 2021, 14, 479–483. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef]
- Zhu, L.; Li, W.; Ciais, P.; He, J.; Cescatti, A.; Santoro, M.; Tanaka, K.; Cartus, O.; Zhao, Z.; Xu, Y.; et al. Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation. Nat. Geosci. 2023, 16, 244–249. [Google Scholar] [CrossRef]
- Atikah, S.N.; Yahya, M.S.; Ong, K.W.; Sanusi, R.; Norhisham, A.R.; Azhar, B. Continuous forests and non-IBA forest patches provide a safe haven for the tropical bird community in highly fragmented urban landscapes. Biodivers. Conserv. 2025, 34, 971–986. [Google Scholar] [CrossRef]
- Maseko, M.S.T.; Zungu, M.M.; Ehlers Smith, D.A.; Ehlers Smith, Y.C.; Downs, C.T. Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosyst. 2020, 23, 533–542. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Han, L.; Chen, K.; Wang, Z.; Yang, Q. Importance of Patches in Maintaining Forest Landscape Connectivity: A Case Study of Barluk, Xinjiang, China. Forests 2025, 16, 74. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Isbell, F.; Arce-Plata, M.I.; Di Marco, M.; Harfoot, M.; Johnson, J.; Lerman, S.B.; Miller, B.W.; Morelli, T.L.; Mori, A.S.; et al. Biodiversity loss reduces global terrestrial carbon storage. Nat. Commun. 2024, 15, 4354. [Google Scholar] [CrossRef]
- Teo, H.C.; Lamba, A.; Ng, S.J.W.; Nguyen, A.T.; Dwiputra, A.; Lim, A.J.Y.; Nguyen, M.N.; Tor-ngern, P.; Zeng, Y.; Dewi, S.; et al. Reduction of deforestation by agroforestry in high carbon stock forests of Southeast Asia. Nat. Sustain. 2025, 8, 358–362. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Li, X.; Tao, H.; Wang, J.; Zhang, B.; Liu, Z.; Liu, Z.; Li, J. Integrated Evaluation of the Ecological Security Pattern in Central Beijing Using InVEST, MSPA, and Multifactor Indices. Land 2025, 14, 205. [Google Scholar] [CrossRef]
- Piquer-Rodríguez, M.; Torella, S.; Gavier-Pizarro, G.; Volante, J.; Somma, D.; Ginzburg, R.; Kuemmerle, T. Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landsc. Ecol. 2015, 30, 817–833. [Google Scholar] [CrossRef]
- Lin, J.; Huang, C.; Wen, Y.; Liu, X. An assessment framework for improving protected areas based on morphological spatial pattern analysis and graph-based indicators. Ecol. Indic. 2021, 130, 108138. [Google Scholar] [CrossRef]
- Brandt, M.; Yue, Y.; Wigneron, J.-P.; Tong, X.; Tian, F.; Jepsen, M.; Xiao, X.; Verger, A.; Mialon, A.; Al-Yaari, A.; et al. Satellite-Observed Major Greening and Biomass Increase in South China Karst During Recent Decade. Earth Future 2018, 6, 1017–1028. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.P.; Xiao, X.; Song, X.P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Xu, M.; Ciais, P.; Tao, S.; Shen, H.; Chang, J.; Li, W.; Deng, L.; He, J.; Leng, Y.; et al. Contributions of ecological restoration policies to China’s land carbon balance. Nat. Commun. 2024, 15, 9708. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Zhang, X.; Fensholt, R.; Ciais, P.; Wang, K.; Liu, S.; Zhang, W.; Mao, C.; et al. Reforestation policies around 2000 in southern China led to forest densification and expansion in the 2010s. Commun. Earth Environ. 2023, 4, 260. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef]
- Chen, M.; Sun, Y.; Yang, B.; Jiang, J. MSPA-based green space morphological pattern and its spatiotemporal influence on land surface temperature. Heliyon 2024, 10, e31363. [Google Scholar] [CrossRef]
- Wang, Y.; Brandt, M.; Zhao, M.; Xing, K.; Wang, L.; Tong, X.; Xue, F.; Kang, M.; Jiang, Y.; Fensholt, R. Do Afforestation Projects Increase Core Forests? Evidence from the Chinese Loess Plateau. Ecol. Indic. 2020, 117, 106558. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef]
- Williams, B.A.; Venter, O.; Allan, J.R.; Atkinson, S.C.; Rehbein, J.A.; Ward, M.; Di Marco, M.; Grantham, H.S.; Ervin, J.; Goetz, S.J.; et al. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Yang, R.; Dong, X.; Xu, S.; Wang, K.; Li, X.; Xiao, W.; Ye, Y. Fragmentation of Key Biodiversity Areas Highlights Attention to Human Disturbance Patterns. Biol. Conserv. 2024, 290, 110428. [Google Scholar] [CrossRef]
- Shouzhang, P. 1-km Monthly Precipitation Dataset for China (1901–2023); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2024. [Google Scholar] [CrossRef]
- Shouzhang, P. 1-km Monthly Mean Temperature Dataset for China (1901–2023); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2024. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G. Basic Soil Property Dataset of High-Resolution China Soil Information Grids (2010–2018); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2021. [Google Scholar] [CrossRef]
- Li, Q.; Shi, G.; Shangguan, W.; Nourani, V.; Li, J.; Li, L.; Huang, F.; Zhang, Y.; Wang, C.; Wang, D.; et al. A 1 km daily soil moisture dataset over China based on in-situ measurement (2000–2022). Earth Syst. Sci. Data 2024, 14, 5267–5286. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Pickell, P.D.; Bolton, D.K. Impact of time on interpretations of forest fragmentation: Three-decades of fragmentation dynamics over Canada. Remote Sens. Environ. 2019, 222, 65–77. [Google Scholar] [CrossRef]
- Novick, K.A.; Katul, G.G. The Duality of Reforestation Impacts on Surface and Air Temperature. J. Geophys. Res. Biogeosciences 2020, 125, e2019JG005543. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, F.; Wang, G. Effects of Spatial Pattern of Forest Vegetation on Urban Cooling in a Compact Megacity. Forests 2019, 10, 282. [Google Scholar] [CrossRef]
- Alibakhshi, S.; Cook-Patton, S.C.; Davin, E.; Maeda, E.E.; Araújo, M.B.; Heinlein, D.; Heiskanen, J.; Pellikka, P.; Crowther, T.W. Natural forest regeneration is projected to reduce local temperatures. Commun. Earth Environ. 2024, 5, 577. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.-L.; Wu, H.; Liu, X.; Lian, X.; Si, M.; Li, J.; Zhou, C.; Tang, R.; Duan, S.; et al. Observed different impacts of potential tree restoration on local surface and air temperature. Nat. Commun. 2025, 16, 2335. [Google Scholar] [CrossRef]
- Yin, Y.; Li, S.; Xing, X.; Zhou, X.; Kang, Y.; Hu, Q.; Li, Y. Cooling Benefits of Urban Tree Canopy: A Systematic Review. Sustainability 2024, 16, 4955. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, Y.; Ge, Y.; Hu, X.; Weng, A.; Wen, L.; Zhou, Y.; Li, B. Insights into forest vegetation changes and landscape fragmentation in Southeastern China: From a perspective of spatial coupling and machine learning. Ecol. Indic. 2024, 166, 112479. [Google Scholar] [CrossRef]
- Zhen, S.; Zhao, Q.; Liu, S.; Wu, Z.; Lin, S.; Li, J.; Hu, X. Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study. Forests 2023, 14, 1135. [Google Scholar] [CrossRef]
Explanatory Variables | Data | Resolution and Period | Data Sources | |
---|---|---|---|---|
Climate | Annual Accumulated Precipitation (PRE) | 1-km monthly precipitation dataset for China [33] | 1 km (1901–2023) | https://data.tpdc.ac.cn (accessed on 5 October 2023) |
Annual Mean Temperature (TEM) | 1-km monthly mean temperature dataset for China [34] | 1 km (1901–2023) | https://data.tpdc.ac.cn (accessed on 5 October 2023) | |
Global Aridity Index (AI) Potential Evapotranspiration (ET0) | Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3 [35] | 1 km (1970–2000) | https://doi.org/10.6084/m9.figshare.7504448.v5 (accessed on 5 October 2024) | |
Soil | Soil Nitrogen Density (TND) Soil Phosphorus Density (TPD) Silt Content (btslt) Soil Thickness (thickness) Soil Bulk Density (BD) Coarse Fragment Content(CF) | Basic soil property dataset of high-resolution China Soil Information Grids [36] | 250 m (2010–2018) | https://data.tpdc.ac.cn/zh-hans/data/e1ccd22c-348f-41a2-ab46-dd1a8ac0c955 (accessed on 5 October 2023) |
Soil Type (soiltype) | Spatial distribution data of soil types in China | 1 km | https://www.resdc.cn/ (accessed on 5 October 2024) | |
Soil Moisture (SM) | A 1 km daily soil moisture dataset over China based on in-situ measurement [37] | 1 km (2000–2022) | https://data.tpdc.ac.cn/ (accessed on 5 October 2024) | |
Topography | Slope (slope) Aspect (aspect) | Derived from ASTER GDEM v3 | 30 m (2019) | https://search.earthdata.nasa.gov/ (accessed on 5 October 2024) |
Human | Human Footprint Index (HFI) | Record of annual terrestrial Human Footprint dataset from 2000 to 2018 [30]. | 1 km | https://doi.org/10.6084/m9.figshare.16571064 (accessed on 5 October 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, C.; Tong, X.; Brandt, M.; Yue, Y.; Zhang, W.; Lu, J.; Huang, K.; Wang, K. How Three Decades of Forestation Has Impacted Forest Fragmentation in Southern China. Remote Sens. 2025, 17, 1922. https://doi.org/10.3390/rs17111922
Mao C, Tong X, Brandt M, Yue Y, Zhang W, Lu J, Huang K, Wang K. How Three Decades of Forestation Has Impacted Forest Fragmentation in Southern China. Remote Sensing. 2025; 17(11):1922. https://doi.org/10.3390/rs17111922
Chicago/Turabian StyleMao, Chen, Xiaowei Tong, Martin Brandt, Yuemin Yue, Wenmin Zhang, Jun Lu, Ke Huang, and Kelin Wang. 2025. "How Three Decades of Forestation Has Impacted Forest Fragmentation in Southern China" Remote Sensing 17, no. 11: 1922. https://doi.org/10.3390/rs17111922
APA StyleMao, C., Tong, X., Brandt, M., Yue, Y., Zhang, W., Lu, J., Huang, K., & Wang, K. (2025). How Three Decades of Forestation Has Impacted Forest Fragmentation in Southern China. Remote Sensing, 17(11), 1922. https://doi.org/10.3390/rs17111922