Downscaling of Urban Land Surface Temperatures Using Geospatial Machine Learning with Landsat 8/9 and Sentinel-2 Imagery
Abstract
1. Introduction and Previous Work
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Data
2.2.2. Ground-Based Measurements
2.3. Methods
2.3.1. Satellite Imagery Band Naming
2.3.2. LST from Landsat 8/9 and Data Processing
2.3.3. Temperature Predictors from Sentinel-2
2.3.4. Random Forest Regression
2.3.5. Error Estimation Using Kriging
2.3.6. GeoML Downscaling
2.3.7. HUTS Downscaling
2.3.8. Validation Method
3. Results and Validation
3.1. Results
3.1.1. Multi-Collinearity Among Predictors
3.1.2. Random Forest Modelling
3.1.3. Kriging of the Residual
3.2. Validation of the Downscaled LST Data
3.2.1. Field-Based Scene Validation
3.2.2. Field-Based Validation per Land Cover Class
3.2.3. Image-Based Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, R.B.; Grover, A. Remote Sensing of Urban Microclimate with Special Reference to Urban Heat Island Using Landsat Thermal Data; IGiPZ PAN: Warszawa, Poland, 2014; Volume 87, pp. 555–568. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Complete Urban Surface Temperatures. J. Appl. Meteorol. 1997, 36, 1117–1132. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Alavipanah, S.K. Satellite-derived land surface temperature spatial sharpening: A comprehensive review on current status and perspectives. Eur. J. Remote Sens. 2022, 55, 644–664. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Nevado, E.G.; Beckers, B. Measure of surface temperatures in cities: From Satellite to Ground-based remote sensing. In Urban Physics Joint Laboratory; Université de Pau et des Pays de l’Adour: Pau, France, 2021; Volume 2. [Google Scholar]
- Shandas, V.; Voelkel, J.; Williams, J.; Hoffman, J. Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat. Climate 2019, 7, 5. [Google Scholar] [CrossRef]
- Abunnasr, Y.; Mhawej, M. Towards a combined Landsat-8 and Sentinel-2 for 10-m land surface temperature products: The Google Earth Engine monthly Ten-ST-GEE system. Environ. Model. Softw. 2022, 155, 105456. [Google Scholar] [CrossRef]
- Hu, Y.X.; Tang, R.L.; Jiang, X.G.; Li, Z.L.; Jiang, Y.Z.; Liu, M.; Gao, C.X.; Zhou, X.M. A physical method for downscaling land surface temperatures using surface energy balance theory. Remote Sens. Environ. 2023, 286, 20. [Google Scholar] [CrossRef]
- Liu, D.; Pu, R. Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval. Sensors 2008, 8, 2695–2706. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X. An enhanced physical method for downscaling thermal infrared radiance. IEEE Geosci. Remote Sens. Lett. 2012, 9, 690–694. [Google Scholar] [CrossRef]
- Bala, R.; Prasad, R.; Yadav, V.P. Thermal sharpening of MODIS land surface temperature using statistical downscaling technique in urban areas. Theor. Appl. Climatol. 2020, 141, 935–946. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Kiranoudis, C.T.; Weng, Q. Downscaling geostationary land surface temperature imagery for urban analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1253–1257. [Google Scholar] [CrossRef]
- Pu, R.L.; Bonafoni, S. Reducing Scaling Effect on Downscaled Land Surface Temperature Maps in Heterogenous Urban Environments. Remote Sens. 2021, 13, 5044. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; Van de Voorde, T.; Batelaan, O. Evaluation of the DisTrad thermal sharpening methodology for urban areas. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 163–172. [Google Scholar] [CrossRef]
- Bechtel, B.; Zaksek, K.; Hoshyaripour, G. Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany. Remote Sens. 2012, 4, 3184–3200. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; Batelaan, O. Improved DisTrad for downscaling thermal MODIS imagery over urban areas. Remote Sens. 2017, 9, 1243. [Google Scholar] [CrossRef]
- Dominguez, A.; Kleissl, J.; Luvall, J.C.; Rickman, D.L. High-resolution urban thermal sharpener (HUTS). Remote Sens. Environ. 2011, 115, 1772–1780. [Google Scholar] [CrossRef]
- Pang, B.; Yue, J.; Zhao, G.; Xu, Z. Statistical Downscaling of Temperature with the Random Forest Model. Adv. Meteorol. 2017, 2017, 7265178. [Google Scholar] [CrossRef]
- Lezama Valdes, L.-M.; Katurji, M.; Meyer, H. A Machine Learning Based Downscaling Approach to Produce High Spatio-Temporal Resolution Land Surface Temperature of the Antarctic Dry Valleys from MODIS Data. Remote Sens. 2021, 13, 4673. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Njuki, S.M.; Mannaerts, C.M.; Su, Z. An Improved Approach for Downscaling Coarse-Resolution Thermal Data by Minimizing the Spatial Averaging Biases in Random Forest. Remote Sens. 2020, 12, 3507. [Google Scholar] [CrossRef]
- Xu, S.; Cheng, J.; Zhang, Q. A Random Forest-Based Data Fusion Method for Obtaining All-Weather Land Surface Temperature with High Spatial Resolution. Remote Sens. 2021, 13, 2211. [Google Scholar] [CrossRef]
- Wang, N.; Tian, J.; Su, S.; Tian, Q. A Downscaling Method Based on MODIS Product for Hourly ERA5 Reanalysis of Land Surface Temperature. Remote Sens. 2023, 15, 4441. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [Google Scholar] [CrossRef]
- Wang, Q.; Rodriguez-Galiano, V.; Atkinson, P.M. Geostatistical Solutions For Downscaling Remotely Sensed Land Surface Temperature. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 913–917. [Google Scholar] [CrossRef]
- Pereira, O.J.; Melfi, A.J.; Montes, C.R.; Lucas, Y. Downscaling of ASTER Thermal Images Based on Geographically Weighted Regression Kriging. Remote Sens. 2018, 10, 633. [Google Scholar] [CrossRef]
- Rodríguez-Galiano, V.F.; Pardo-Igúzquiza, E.; Chica-Olmo, M.; Rigol-Sánchez, J.P. Increasing the spatial resolution of thermal infrared images using cokriging. Procedia Environ. Sci. 2011, 3, 117–122. [Google Scholar] [CrossRef]
- Williams, S.; Nitschke, M.; Weinstein, P.; Pisaniello, D.L.; Parton, K.A.; Bi, P. The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008. Environ. Int. 2012, 40, 33–38. [Google Scholar] [CrossRef]
- Helmholz, P.; Bulatov, D.; Kottler, B.; Burton, P.; Mancini, F.; May, M.; Strauß, E.; Hecht, M. Quantifying the impact of urban infill on the urban heat island effect—A case study for an alternative medium density model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 43–50. [Google Scholar] [CrossRef]
- Hulley, G.C.; Göttsche, F.M.; Rivera, G.; Hook, S.J.; Freepartner, R.J.; Martin, M.A.; Cawse-Nicholson, K.; Johnson, W.R. Validation and Quality Assessment of the ECOSTRESS Level-2 Land Surface Temperature and Emissivity Product. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5000523. [Google Scholar] [CrossRef]
- Anderson, M.C.; Yang, Y.; Xue, J.; Knipper, K.R.; Yang, Y.; Gao, F.; Hain, C.R.; Kustas, W.P.; Cawse-Nicholson, K.; Hulley, G.; et al. Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sens. Environ. 2021, 252, 112189. [Google Scholar] [CrossRef]
- Gorokhovich, Y.; Cawse-Nicholson, K.; Papadopoulos, N.; Oikonomou, D. Use of ECOSTRESS data for measurements of the surface water temperature: Significance of data filtering in accuracy assessment. Remote Sens. Appl. Soc. Environ. 2022, 26, 100739. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Oxfordshire, UK, 1988; p. 567. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Bonafoni, S.; Sekertekin, A. Albedo Retrieval From Sentinel-2 by New Narrow-to-Broadband Conversion Coefficients. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1618–1622. [Google Scholar] [CrossRef]
- Purevdorj, T.S.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Warren, D.L.; Matzke, N.J.; Cardillo, M.; Baumgartner, J.B.; Beaumont, L.J.; Turelli, M.; Glor, R.E.; Huron, N.A.; Simões, M.; Iglesias, T.L.; et al. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 2021, 44, 504–511. [Google Scholar] [CrossRef]
- Kutner, M.; Nachtsheim, C.; Neter, J.; Li, W. Inferences in regression and correlation analysis. In Applied Linear Statistical Models (International Edition); McGraw Hill: New York, NY, USA, 2005; pp. 40–99. [Google Scholar]
- Wang, K.; Zheng, X.; Wang, G.; Liu, D.; Cui, N. A Multi-Model Ensemble Approach for Gold Mineral Prospectivity Mapping: A Case Study on the Beishan Region, Western China. Minerals 2020, 10, 1126. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Warnke, S.; Bulatov, D. Variable Selection For Road Segmentation In Aerial Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 297–304. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Garg, R.D. A comparison of different regression models for downscaling Landsat and MODIS land surface temperature images over heterogeneous landscape. Adv. Space Res. 2014, 54, 655–669. [Google Scholar] [CrossRef]
- Nie, J.; Wu, J.; Yang, X.; Liu, M.; Zhang, J.; Zhou, L. Downscaling land surface temperature based on relationship between surface temperature and vegetation index. Shengtai Xuebao Acta Ecol. Sin. 2011, 31, 4961–4969. [Google Scholar]
- Naira, C.; Robert, L.; Ramata, M.; Marouane, T. Surface soil moisture status over the Mackenzie River Basin using a Temperature/Vegetation index. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007; IEEE: Piscataway, NJ, USA, 2007; p. 1846. [Google Scholar]
- Bonafoni, S.; Anniballe, R.; Gioli, B.; Toscano, P. Downscaling Landsat Land Surface Temperature over the urban area of Florence. Eur. J. Remote Sens. 2016, 49, 553–569. [Google Scholar] [CrossRef]
- Lillo-Saavedra, M.; García-Pedrero, A.; Merino, G.; Gonzalo-Martín, C. TS2uRF: A New Method for Sharpening Thermal Infrared Satellite Imagery. Remote Sens. 2018, 10, 249. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression. Remote Sens. 2017, 9, 789. [Google Scholar] [CrossRef]
- Zawadzka, J.; Corstanje, R.; Harris, J.; Truckell, I. Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data. Int. J. Digit. Earth 2020, 13, 899–914. [Google Scholar] [CrossRef]
- Pu, R.; Bonafoni, S. Thermal infrared remote sensing data downscaling investigations: An overview on current status and perspectives. Remote Sens. Appl. Soc. Environ. 2023, 29, 100921. [Google Scholar] [CrossRef]
Landsat 8/9 | Cloud [%] | Air Temp Min/Max [°C] | Sentinel-2 | Cloud [%] |
---|---|---|---|---|
12 December 2023 (L8) | 0.04 | 17.2/34.6 | 12 December 2023 | 0.00 |
13 December 2023 (L9) | 0.01 | 17.3/30.4 | 12 December 2023 | 0.00 |
20 December 2023 (L9) | 5.00 | 19.2/37.1 | 22 December 2023 | 6.21 |
05 January 2024 (L9) | 0.12 | 16.2/30.9 | 06 January 2024 | 0.00 |
06 January 2024 (L8) | 0.01 | 17.7/33.4 | 06 January 2024 | 0.00 |
13 January 2024 (L8) | 4.01 | 23.2/40.7 | 11 January 2024 | 6.00 |
21 January 2024 (L9) | 0.12 | 19.0/30.3 | 21 January 2024 | 4.94 |
Land Cover Class | Sample Count | Min Ts [°C] | Max Ts [°C] | Av Ts [°C] |
---|---|---|---|---|
Asphalt | 98 | 35.60 | 50.70 | 43.59 |
Grass | 74 | 28.30 | 39.10 | 34.55 |
Colorbond roof | 57 | 35.00 | 54.80 | 44.60 |
Tile roof | 97 | 36.00 | 51.30 | 43.13 |
Unirrigated grass | 31 | 36.10 | 53.20 | 43.02 |
NDVI | Albedo | NDBI | NDWI | |
---|---|---|---|---|
NDVI | 1.000 | 0.222 | −0.348 | −0.912 |
Albedo | 0.222 | 1.000 | 0.114 | −0.383 |
NDBI | −0.348 | 0.114 | 1.000 | 0.109 |
NDWI | −0.912 | −0.383 | 0.109 | 1.000 |
Model | LST-30 m | HUTS-10 m | GeoML-10 m | ||||||
---|---|---|---|---|---|---|---|---|---|
Land Cover Class | r | RMSE [°C] | MAE [°C] | r | RMSE [°C] | MAE [°C] | r | RMSE [°C] | MAE [°C] |
Entire image | 0.814 | 3.030 | 2.490 | 0.834 | 2.966 | 2.487 | 0.850 | 2.708 | 2.197 |
Asphalt | 0.487 | 2.841 | 2.287 | 0.490 | 2.92 | 2.487 | 0.586 | 2.521 | 2.037 |
Grass | 0.485 | 3.445 | 2.873 | 0.582 | 3.230 | 2.769 | 0.572 | 2.305 | 1.713 |
Colorbond roof | 0.840 | 2.599 | 2.120 | 0.845 | 2.580 | 2.081 | 0.840 | 2.837 | 2.375 |
Tile roof | 0.494 | 3.076 | 2.581 | 0.536 | 2.994 | 2.478 | 0.517 | 3.016 | 2.507 |
Unirrigated grass | 0.777 | 3.135 | 2.608 | 0.789 | 3.074 | 2.645 | 0.795 | 2.908 | 2.565 |
Original LST | Enhanced LST | |
---|---|---|
r | 0.928 | 0.937 |
RMSE [°C] | 1.736 | 1.719 |
MAE [°C] | 1.245 | 1.237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriambololonaharisoamalala, R.R.; Helmholz, P.; Bulatov, D.; Ivanova, I.; Song, Y.; Soon, S.; Jones, E. Downscaling of Urban Land Surface Temperatures Using Geospatial Machine Learning with Landsat 8/9 and Sentinel-2 Imagery. Remote Sens. 2025, 17, 2392. https://doi.org/10.3390/rs17142392
Andriambololonaharisoamalala RR, Helmholz P, Bulatov D, Ivanova I, Song Y, Soon S, Jones E. Downscaling of Urban Land Surface Temperatures Using Geospatial Machine Learning with Landsat 8/9 and Sentinel-2 Imagery. Remote Sensing. 2025; 17(14):2392. https://doi.org/10.3390/rs17142392
Chicago/Turabian StyleAndriambololonaharisoamalala, Ratovoson Robert, Petra Helmholz, Dimitri Bulatov, Ivana Ivanova, Yongze Song, Susannah Soon, and Eriita Jones. 2025. "Downscaling of Urban Land Surface Temperatures Using Geospatial Machine Learning with Landsat 8/9 and Sentinel-2 Imagery" Remote Sensing 17, no. 14: 2392. https://doi.org/10.3390/rs17142392
APA StyleAndriambololonaharisoamalala, R. R., Helmholz, P., Bulatov, D., Ivanova, I., Song, Y., Soon, S., & Jones, E. (2025). Downscaling of Urban Land Surface Temperatures Using Geospatial Machine Learning with Landsat 8/9 and Sentinel-2 Imagery. Remote Sensing, 17(14), 2392. https://doi.org/10.3390/rs17142392