Unveiling Drivers and Projecting Future Risks of Desertification Vulnerability in the Mongolian Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Vulnerability Assessment of Desertification Based on the MEDALUS Model
2.3.1. Soil Quality Index (SQI)
2.3.2. Vegetation Quality Index (VQI)
2.3.3. Climate Quality Index (CQI)
2.3.4. Management Quality Index (MQI)
2.3.5. Desertification Vulnerability Index (DVI)
2.4. Coefficient of Variation
2.5. Pearson Correlation Analysis
2.6. Driven Interpretation and Prediction Based on XGBoost and SHAP Models
2.6.1. Construction of the XGBoost Model
2.6.2. SHAP for Feature Importance Analysis
2.6.3. Projection of Desertification Vulnerability in 2030
3. Results
3.1. Spatiotemporal Evaluation of Desertification Vulnerability Sub-Indices
3.2. Spatiotemporal Evolution Analysis of Desertification Vulnerability in the Mongolian Plateau
3.2.1. Spatiotemporal Distribution Characteristics of Desertification Vulnerability
3.2.2. Transition Patterns of Desertification Vulnerability
3.3. Analysis of Driving Factors of Desertification Vulnerability
3.3.1. Correlation Among Driving Factors
3.3.2. Identification of Key Drivers and SHAP-Based Interpretation
3.4. Projection of Desertification Vulnerability Based on Climate and Soil Interactions
4. Discussion
4.1. Ecological Interpretation of Driving Mechanisms
4.2. Future Vulnerability Trends and Policy Implications
4.3. Limitations and Future Directions
5. Conclusions
- (1)
- Spatiotemporal Variation in Vulnerability: From 2000 to 2020, desertification was more pronounced in the southern and western regions, with lower vulnerability in the north and east. While extreme vulnerability areas showed a slight reduction, high vulnerability zones expanded, underscoring the need for targeted control efforts. Positive trends were observed in Inner Mongolia, while Mongolia continued to face significant vulnerability.
- (2)
- Dominant Drivers: Climate factors—particularly temperature, wind speed, and precipitation—emerged as the most significant drivers, followed by soil characteristics and vegetation (NDVI). Human activities also increasingly influence vulnerability, emphasizing the importance of enhanced climate adaptation, soil management, and sustainable land-use practices.
- (3)
- Projected Risks: Future projections indicate that desertification vulnerability in the Mongolian Plateau will increase significantly under high-emission scenarios, such as SSP3-7.0 and SSP5-8.5, with high vulnerability areas expanding notably. In contrast, lower-emission pathways like SSP1-2.6 and SSP2-4.5 can mitigate some desertification impacts, though high vulnerability regions will persist. The results emphasize the critical need for effective climate mitigation and adaptation strategies to address the escalating desertification risks, particularly in the southern and western regions, where the threat of land degradation remains highest.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef]
- Ahmed, Z.; Gui, D.; Abd-Elmabod, S.K.; Murtaza, G.; Ali, S. An overview of global desertification control efforts: Key challenges and overarching solutions. Soil. Use Manag. 2024, 40, e13154. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Boldgiv, B.; Chang, J.; Ciais, P.; Davaanyam, E.; Batbold, A.; Bat-Oyun, T.; Stenseth, N.C. Risk and vulnerability of Mongolian grasslands under climate change. Environ. Res. Lett. 2021, 16, 034035. [Google Scholar] [CrossRef]
- Chen, J.; John, R.; Zhang, Y.; Shao, C.; Brown, D.G.; Batkhishig, O.; Amarjargal, A.; Ouyang, Z.; Dong, G.; Wang, D. Divergences of two coupled human and natural systems on the Mongolian Plateau. Bioscience 2015, 65, 559–570. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, J.; Yue, P.; Zhang, L.; Wang, S.; Wang, R. On the land-atmosphere interaction in the summer monsoon transition zone in East Asia. Theor. Appl. Climatol. 2020, 141, 1165–1180. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Huang, G.; Zeng, G. Changes of the transitional climate zone in East Asia: Past and future. Clim. Dyn. 2017, 49, 1463–1477. [Google Scholar] [CrossRef]
- Guo, J.; Shen, B.; Li, H.; Wang, Y.; Tuvshintogtokh, I.; Niu, J.; Potter, M.A.; Li, F.Y. Past dynamics and future prediction of the impacts of land use cover change and climate change on landscape ecological risk across the Mongolian plateau. J. Environ. Manag. 2024, 355, 120365. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, H.; Geng, X.; Fang, J. Three-decadal destabilization of vegetation activity on the Mongolian Plateau. Environ. Res. Lett. 2021, 16, 034049. [Google Scholar] [CrossRef]
- Guo, E.; Wang, Y.; Wang, C.; Sun, Z.; Bao, Y.; Mandula, N.; Jirigala, B.; Bao, Y.; Li, H. NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau. Remote Sens. 2021, 13, 688. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, E.; Kang, Y.; Ma, H. Assessment of land desertification and its drivers on the Mongolian plateau using intensity analysis and the geographical detector technique. Remote Sens. 2022, 14, 6365. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S. China-Mongolia-Russia economic corridor and environmental protection cooperation. R-Economy 2017, 3, 161–166. [Google Scholar] [CrossRef]
- Guluzade, R.; Pan, X.; Muhammad, F.; Yang, Y. Comprehensive Error Analysis of CLDAS Soil Moisture Over Arid and Semiarid Regions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4414–4422. [Google Scholar] [CrossRef]
- Yajie, X.; Runping, S.; Anqi, H.; Yujing, L.; Yunyu, W.; Zhaoying, X.; Chunxiang, S.; Shuai, S. Integrated drought monitoring model based on MODIS and CLDAS. Nanjing Xinxi Gongcheng Daxue Xuebao 2024, 16, 394–404. [Google Scholar]
- Yan, J.; Ling, X.; Qun, Z.; Wei-kun, L.; Shuai, S. Agricultural Drought Monitoring in Yunnan Based on CLDAS Soil Relative Moisture. Chin. J. Agrometeorol. 2024, 45, 79. [Google Scholar]
- Baskan, O. Analysis of spatial and temporal changes of RUSLE-K soil erodibility factor in semi-arid areas in two different periods by conditional simulation. Arch. Agron. Soil. Sci. 2022, 68, 1698–1710. [Google Scholar] [CrossRef]
- Tian, L.; Qiu, S.; Peng, J.; Hu, Y.; Jia, J.; Mao, Q. Desertification sensitivity evaluation in Inner Mongolia Autonomous Region based on PSR framework. Prog. Geogr. 2018, 37, 1682–1692. [Google Scholar]
- Chen, Y.; Ma, L.; Wang, X.; Liu, T.; Qiao, Z. Spatiotemporal patterns of desertification sensitivity and influencing factors across the Western Inner Mongolia Plateau, China. Ecol. Inform. 2025, 89, 103190. [Google Scholar] [CrossRef]
- Vieira, R.M.d.S.P.; Sestini, M.F.; Tomasella, J.; Marchezini, V.; Pereira, G.R.; Barbosa, A.A.; Santos, F.C.; Rodriguez, D.A.; do Nascimento, F.R.; Santana, M.O. Characterizing spatio-temporal patterns of social vulnerability to droughts, degradation and desertification in the Brazilian northeast. Environ. Sustain. Indic. 2020, 5, 100016. [Google Scholar] [CrossRef]
- Chen, X.; Wang, N.; Peng, S.; Meng, N.; Lv, H. Analysis of spatiotemporal dynamics of land desertification in Qilian Mountain National Park based on google earth engine. ISPRS Int. J. Geo-Inf. 2024, 13, 117. [Google Scholar] [CrossRef]
- Kosmas, C.; Kirkby, M.; Geeson, N. ‘The Medalus Project—Mediterranean Desertification and Land Use′. Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; European Commission—Office for Official Publications of the European Communities: Luxembourg, 1999; Volume 18882.
- Bouabid, R.; Rouchdi, M.; Badraoui, M.; Diab, A.; Louafi, S. Assessment of land desertification based on the MEDALUS approach and elaboration of an action plan: The case study of the Souss River Basin, Morocco. In Land Degradation and Desertification: Assessment, Mitigation and Remediation; Springer: Dordrecht, The Netherlands, 2010; pp. 131–145. [Google Scholar]
- Ogbue, C.; Igboeli, E.; Ajaero, C.; Ochege, F.U.; Yahaya, I.I.; Yeneayehu, F.; You, Y.; Wang, Y. Remote sensing analysis of desert sensitive areas using MEDALUS model and GIS in the Niger River Basin. Ecol. Indic. 2024, 158, 111404. [Google Scholar] [CrossRef]
- Engelen, G. Desertification and Land Degradation in Mediterranean Areas: From Science to Integrated Policy Making; Nota di Lavoro: 2001. Available online: https://www.econstor.eu/handle/10419/155178 (accessed on 9 July 2025).
- Temerdek-Ivan, K.; Benedek, J.; Török, I.; Holobâcă, I.H.; Alexe, M. Determination of Land Degradation in Romania at a Local Scale Using Advanced Analytical Techniques. Land. Degrad. Dev. 2025, 36, 1614–1627. [Google Scholar] [CrossRef]
- Sun, D.; Wu, X.; Wen, H.; Ma, X.; Zhang, F.; Ji, Q.; Zhang, J. Ecological security pattern based on XGBoost-MCR model: A case study of the three gorges reservoir region. J. Clean. Prod. 2024, 470, 143252. [Google Scholar] [CrossRef]
- Lao, Y.; He, X.; Chen, J.; Liang, Y. Revealing spatio-temporal characteristics of ecological resistance surfaces: A regional study case based on coupled algorithms AutoEncoder-XGBoost. Ecol. Front. 2025, 45, 422–432. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, Z.; Cheng, Y.; Borjigin, S.; Quan, Z. Grassland biomass spatiotemporal patterns and response to climate change in eastern Inner Mongolia based on XGBoost model estimates. Ecol. Indic. 2024, 158, 111554. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Ikram, R.M.A.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Guan, X.; Meng, Y.; Xu, H. Urban flood depth prediction and visualization based on the XGBoost-SHAP model. Water Resour. Manag. 2025, 39, 1353–1375. [Google Scholar] [CrossRef]
- Frifra, A.; Maanan, M.; Maanan, M.; Rhinane, H. Harnessing LSTM and XGBoost algorithms for storm prediction. Sci. Rep. 2024, 14, 11381. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Yang, J.; Yang, C.; Wang, W.; Wang, X.; Li, H. Research on prediction of PPV in open-pit mine used RUN-XGBoost model. Heliyon 2024, 10, e28246. [Google Scholar] [CrossRef]
- Rao, Y.; Zhou, M.; Ou, G.; Dai, D.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Ou-Yang, Z.-T.; Xiao, J.; Becker, R.; Samanta, A.; Ganguly, S.; Yuan, W.; Batkhishig, O. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ. Res. Lett. 2013, 8, 035033. [Google Scholar] [CrossRef]
- Xie, Q.; Jia, X.; Chen, X.; Qian, Q. Combined effects of ocean-land processes on spring precipitation variability in Mongolian Plateau. Atmos. Res. 2025, 313, 107765. [Google Scholar] [CrossRef]
- Gao, S.; Huang, S.; Singh, V.P.; Deng, X.; Duan, L.; Leng, G.; Guo, W.; Li, Y.; Zhang, L.; Han, Z. Dynamic response of vegetation to meteorological drought and driving mechanisms in Mongolian Plateau. J. Hydrol. 2025, 650, 132541. [Google Scholar] [CrossRef]
- Dorj, O.; Enkhbold, M.; Lkhamyanjin, S.; Mijiddorj, K.; Nosmoo, A.; Puntsagnamil, M.; Sainjargal, U. Mongolia: Country features, the main causes of desertification and remediation efforts. In Combating Desertification in Asia, Africa and the Middle East; Springer: Dordrecht, The Netherlands, 2013; pp. 217–229. [Google Scholar]
- D’Ettorre, U.S.; Liso, I.S.; Parisi, V.; Parise, M. Desertification Assessment Using the Modified Mediterranean Desertification and Land Use Model in a Karst Plateau. Geosciences 2024, 14, 320. [Google Scholar] [CrossRef]
- Gad, A.; Mansour, R. Index integrating soil, vegetation, climate and management qualities to evaluate desertification in the Northwestern coast, Egypt. Int. J. Environ. Eng. Dev. 2023, 1, 250–265. [Google Scholar] [CrossRef]
- Xu, D.; You, X.; Xia, C. Assessing the spatial-temporal pattern and evolution of areas sensitive to land desertification in North China. Ecol. Indic. 2019, 97, 150–158. [Google Scholar] [CrossRef]
- Salih, A.; Hassaballa, A.A. Quantitative assessment of land sensitivity to desertification in Central Sudan: An application of remote sensing-based MEDALUS model. In Applications of Space Techniques on the Natural Hazards in the MENA Region; Springer: Berlin/Heidelberg, Germany, 2022; pp. 419–446. [Google Scholar]
- Maity, S.S.; Shaw, R.P.; Maity, R. Climate change may cause oasification or desertification both: An analysis based on the spatio-temporal change in aridity across India. Theor. Appl. Climatol. 2024, 155, 1167–1184. [Google Scholar] [CrossRef]
- Salvati, L.; Sabbi, A.; Smiraglia, D.; Zitti, M. Does forest expansion mitigate the risk of desertification? Exploring soil degradation and land-use changes in a Mediterranean country. Int. For. Rev. 2014, 16, 485–496. [Google Scholar] [CrossRef]
- Jalilibal, Z.; Amiri, A.; Castagliola, P.; Khoo, M.B. Monitoring the coefficient of variation: A literature review. Comput. Ind. Eng. 2021, 161, 107600. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, H.; Sun, L.; Liu, W.; Wang, C.; Wu, Z.; Lv, T. Identifying regional eco-environment quality and its influencing factors: A case study of an ecological civilization pilot zone in China. J. Clean. Prod. 2024, 435, 140308. [Google Scholar] [CrossRef]
- Li, H.; Dong, L.; Su, W.; Liu, Y.; Tang, Z.; Liao, X.; Long, J.; Zhang, X.; Sun, X.; Zhang, H. Multiple patterns of EEG parameters and their role in the prediction of patients with prolonged disorders of consciousness. Front. Neurosci. 2025, 19, 1492225. [Google Scholar] [CrossRef] [PubMed]
- Bhoopathi, S.; Kumar, N.; Pal, M. Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India. Appl. Comput. Geosci. 2024, 24, 100204. [Google Scholar] [CrossRef]
- Wang, H.; Liang, Q.; Hancock, J.T.; Khoshgoftaar, T.M. Feature selection strategies: A comparative analysis of SHAP-value and importance-based methods. J. Big Data 2024, 11, 44. [Google Scholar] [CrossRef]
- Yamaguchi, K. Feature importance analysis in global manufacturing industry. Int. J. Trade Econ. Financ. 2022, 13, 28–35. [Google Scholar]
- Guo, X.; Chen, R.; Thomas, D.S.; Li, Q.; Xia, Z.; Pan, Z. Divergent processes and trends of desertification in Inner Mongolia and Mongolia. Land. Degrad. Dev. 2021, 32, 3684–3697. [Google Scholar] [CrossRef]
- Perşoiu, A.; Ionita, M.; Weiss, H. Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event–a hypothesis. Clim. Past. 2019, 15, 781–793. [Google Scholar] [CrossRef]
- Alzahrani, A.J.; Alghamdi, A.G.; Ibrahim, H.M. Assessment of Soil Loss Due to Wind Erosion and Dust Deposition: Implications for Sustainable Management in Arid Regions. Appl. Sci. 2024, 14, 10822. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Chen, Y.; Xiang, Y.; Liu, Y.; Kayumba, P.M.; Li, X. Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios. Environ. Res. Lett. 2021, 16, 114004. [Google Scholar] [CrossRef]
- Sun, C.; Feng, X.; Fu, B.; Ma, S. Desertification vulnerability under accelerated dryland expansion. Land. Degrad. Dev. 2023, 34, 1991–2004. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land. Degrad. Dev. 2018, 29, 3841–3851. [Google Scholar] [CrossRef]
- Li, T. Sustainable Development and Management of Ecosystem in Arid and Semi-Arid Areas: A Focus on the Qinghai-Tibet Plateau and Inner Mongolian Grasslands. Ph.D. Thesis, Griffith University, Brisbane, Australia, 2024. [Google Scholar]
- Amissah-Arthur, A.; Mougenot, B.; Loireau, M. Assessing farmland dynamics and land degradation on Sahelian landscapes using remotely sensed and socioeconomic data. Int. J. Geogr. Inf. Sci. 2000, 14, 583–599. [Google Scholar] [CrossRef]
- Jiang, Z.; Ni, X.; Xing, M. A study on spatial and temporal dynamic changes of desertification in northern China from 2000 to 2020. Remote Sens. 2023, 15, 1368. [Google Scholar] [CrossRef]
Data Type | Data Source | Description | Resolution | Website |
---|---|---|---|---|
Digital Elevation Model (DEM) | Shuttle Radar Topography Mission (SRTM) Dataset | Elevation data for the Mongolian Plateau | 30 m | https://earthexplorer.usgs.gov/ (accessed on 2 March 2025) |
Slope Information | Generated via ArcGIS 10.2 | Slope data derived from DEM | 30 m | N/A |
Meteorological Variables | European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-Land | Temperature, precipitation, and wind speed data | 31 km | https://www.ecmwf.int/en/era5-land (accessed on 6 March 2025) |
Climate Projections | WorldClim | Climate projections for future scenarios | 30 s (~1 km) | https://worldclim.org/ (accessed on 13 March 2025) |
Vegetation Index (NDVI) | MOD09A1 Product (Google Earth Engine) | NDVI computation for vegetation coverage | 500 m | https://earthengine.google.com/ (accessed on 17 March 2025) |
Soil Index (NDSI) | MOD09A1 Product (Google Earth Engine) | NDSI computation for soil conditions | 500 m | https://earthengine.google.com/ (accessed on 21 March 2025) |
Land Cover Classification | Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1 v061 Dataset | Land cover classification data | 500 m | https://lpdaac.usgs.gov/ (accessed on 5 March 2025) |
Soil Characteristics | Harmonized World Soil Database (HWSD) v1.2 (Food and Agriculture Organization of the United Nations) | Soil property data including sand content, organic matter, and texture | 1 km | http://www.fao.org/geonetwork/srv/en/main.home (accessed on 10 March 2025) |
Demographic Data | WorldPop | Population density data | 100 m | https://www.worldpop.org/ (accessed on 18 March 2025) |
Spatial Boundary | Ministry of Natural Resources of China | Spatial boundary delineation of the research area | 30 m | http://bzdt.ch.mnr.gov.cn/ (accessed on 23 March 2025) |
Digital Elevation Model (DEM) | Shuttle Radar Topography Mission (SRTM) Dataset | Elevation data for the Mongolian Plateau | 30 m | https://earthexplorer.usgs.gov/ (accessed on 4 March 2025) |
Slope Information | Generated via ArcGIS 10.2 | Slope data derived from DEM | 30 m | N/A |
Meteorological Variables | European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-Land | Temperature, precipitation, and wind speed data | 31 km | https://www.ecmwf.int/en/era5-land (accessed on 7 March 2025) |
Climate Projections | WorldClim | Climate projections for future scenarios | 30 s (~1 km) | https://worldclim.org/ (accessed on 12 March 2025) |
Vegetation Index (NDVI) | MOD09A1 Product (Google Earth Engine) | NDVI computation for vegetation coverage | 500 m | https://earthengine.google.com/ (accessed on 19 March 2025) |
Soil Index (NDSI) | MOD09A1 Product (Google Earth Engine) | NDSI computation for soil conditions | 500 m | https://earthengine.google.com/ (accessed on 25 March 2025) |
Land Cover Classification | Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1 v061 Dataset | Land cover classification data | 500 m | https://lpdaac.usgs.gov/ (accessed on 14 March 2025) |
Soil Characteristics | Harmonized World Soil Database (HWSD) v1.2 (Food and Agriculture Organization of the United Nations) | Soil property data including sand content, organic matter, and texture | 1 km | http://www.fao.org/geonetwork/srv/en/main.home (accessed on 9 March 2025) |
Demographic Data | WorldPop | Population density data | 100 m | https://www.worldpop.org/ (accessed on 16 March 2025) |
Spatial Boundary | Ministry of Natural Resources of China | Spatial boundary delineation of the research area | 30 m | http://bzdt.ch.mnr.gov.cn/ (accessed on 27 March 2025) |
Indicator | Grade | Description | Weight | ||||
---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |||
NDSI | 1 | <−0.18 | <−0.15 | <−0.19 | <−0.16 | <−0.15 | 1.00 |
2 | −0.18~−0.08 | −0.15~−0.06 | −0.19~−0.09 | −0.16~−0.07 | −0.15~−0.06 | 2.00 | |
3 | −0.08~−0.01 | −0.06~−0.01 | −0.09~−0.01 | −0.07~0.00 | −0.06~−0.01 | 3.00 | |
4 | >−0.01 | >0.01 | >−0.01 | >0.00 | >0.01 | 4.00 | |
Sand (%) | 1 | <25 | 1.00 | ||||
2 | 25~40 | 2.00 | |||||
3 | 40~65 | 3.00 | |||||
4 | >65 | 4.00 | |||||
Slope (°) | 1 | <5 | 1.00 | ||||
2 | 5~15 | 2.00 | |||||
3 | 15~30 | 3.00 | |||||
4 | >30 | 4.00 | |||||
OM (%) | 1 | >3 | 1.00 | ||||
2 | 2~3 | 2.00 | |||||
3 | 1~2 | 3.00 | |||||
4 | <1 | 4.00 |
Indicator | Grade | Description | Weight | ||||
---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |||
NDVI | 1 | <−0.13 | <−0.13 | <−0.13 | <−0.14 | <−0.15 | 1.00 |
2 | 0.13~0.23 | 0.13~0.23 | 0.13~0.22 | 0.14~0.25 | 0.15~0.26 | 2.00 | |
3 | 0.23~0.36 | 0.23~0.34 | 0.22~0.34 | 0.25~0.39 | 0.26~0.39 | 3.00 | |
4 | >0.36 | >0.34 | >0.34 | >0.39 | >0.39 | 4.00 | |
Invasion Protection | 1 | Coniferous Forest, Alpine Vegetation, Others | 1.00 | ||||
2 | Farmland, Grassland, Meadow | 2.00 | |||||
3 | Shrubland | 3.00 | |||||
4 | Desert | 4.00 | |||||
Drought Resistance | 1 | Coniferous Forest, Others | 1.00 | ||||
2 | Farmland, Alpine Vegetation, Shrubland | 2.00 | |||||
3 | Grassland, Meadow | 3.00 | |||||
4 | Desert | 4.00 |
Indicator | Grade | Description | Weight | ||||
---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |||
Precipitation (mm) | 1 | <75.42 | <72.72 | <76.02 | <85.41 | <84.47 | 1.00 |
2 | 75.42~138.86 | 72.72~146.66 | 76.02~130.80 | 85.41~150.74 | 84.47~161.68 | 2.00 | |
3 | 138.86~205.83 | 146.66~227.64 | 130.80~194.96 | 150.74~223.32 | 161.68~240.87 | 3.00 | |
4 | >205.83 | >227.64 | >194.96 | >223.32 | >240.87 | 4.00 | |
Temperature (°C) | 1 | <−2.22 | <−1.95 | <−2.63 | <−2.04 | <−1.75 | 1.00 |
2 | −2.22~1.99 | −1.95~2.31 | −2.63~1.90 | −2.04~1.91 | −1.75~2.18 | 2.00 | |
3 | 1.99~5.94 | 2.31~6.13 | 1.90~6.17 | 1.91~5.95 | 2.18~6.12 | 3.00 | |
4 | >5.94 | >6.13 | >6.17 | >5.95 | >6.12 | 4.00 | |
Wind Speed (m/s) | 1 | <2.21 | <2.86 | <3.47 | <4.73 | <2.21 | 1.00 |
2 | 1.00~2.11 | 2.11~2.81 | 2.81~3.44 | 3.44~4.58 | 1.00~2.11 | 2.00 | |
3 | 1.16~2.31 | 2.31~3.02 | 3.02~3.70 | 3.70~5.12 | 1.16~2.31 | 3.00 | |
4 | >1.08 | >2.15 | >2.79 | >3.44 | >1.08 | 4.00 |
Indicator | Grade | Description | Weight |
---|---|---|---|
Population Density (persons·km−2) | 1 | <2 | 1.00 |
2 | 2–5 | 1.60 | |
3 | 5–10 | 2.20 | |
4 | 10–20 | 2.80 | |
5 | 20–40 | 3.20 | |
6 | >40 | 4.00 | |
Land Use Intensity | 1 | Forest, Shrubland, Wetland, Bare Land | 1.00 |
2 | Grassland, Water Bodies | 2.50 | |
3 | Built-up Land, Farmland | 4.00 |
Scenario | Low | Moderate | High | Very High |
---|---|---|---|---|
2020 | 202,984.92 | 648,072.18 | 844,236.86 | 1,00,9801.68 |
2030 SSP1-2.6 | 182,363.69 | 510,806.02 | 813,161.59 | 1,202,990.63 |
2030 SSP2-4.5 | 189,153.36 | 498,963.81 | 814,290.73 | 1,211,657.27 |
2030 SSP3-7.0 | 196,470.53 | 530,552.21 | 796,415.13 | 1,190,627.28 |
2030 SSP5-8.5 | 145,623.17 | 445,377.27 | 881,623.97 | 1,241,440.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Avirmed, B.; Bayanmunkh, G.; Liu, Y.; Wang, Y.; Yang, X.; Zhang, Y.; Yu, Q. Unveiling Drivers and Projecting Future Risks of Desertification Vulnerability in the Mongolian Plateau. Remote Sens. 2025, 17, 2389. https://doi.org/10.3390/rs17142389
Li M, Avirmed B, Bayanmunkh G, Liu Y, Wang Y, Yang X, Zhang Y, Yu Q. Unveiling Drivers and Projecting Future Risks of Desertification Vulnerability in the Mongolian Plateau. Remote Sensing. 2025; 17(14):2389. https://doi.org/10.3390/rs17142389
Chicago/Turabian StyleLi, Maolin, Buyanbaatar Avirmed, Ganbold Bayanmunkh, Yilin Liu, Yu Wang, Xinyu Yang, Yu Zhang, and Qiang Yu. 2025. "Unveiling Drivers and Projecting Future Risks of Desertification Vulnerability in the Mongolian Plateau" Remote Sensing 17, no. 14: 2389. https://doi.org/10.3390/rs17142389
APA StyleLi, M., Avirmed, B., Bayanmunkh, G., Liu, Y., Wang, Y., Yang, X., Zhang, Y., & Yu, Q. (2025). Unveiling Drivers and Projecting Future Risks of Desertification Vulnerability in the Mongolian Plateau. Remote Sensing, 17(14), 2389. https://doi.org/10.3390/rs17142389