Validation of Two Operative Google Earth Engine Applications to Generate 10 m Land Surface Temperature Maps at Daily to Weekly Temporal Resolutions
Abstract
1. Introduction
2. Methodology
2.1. GEE Generator Applications of 10 m DLST Maps
2.1.1. Daily Ten-ST-GEE
2.1.2. LST-Downscaling-GEE
2.2. Study Sites and Data
3. Results
3.1. Assessment of Downscaled LST Maps
3.2. Quantitative Validation Against In Situ Measurements
4. Discussion
4.1. Comparison with Previous Studies
4.2. Discussion on Model Performance and Variability
4.3. Challenges and Future Perspectives in High-Spatiotemporal LST Generation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The 2022 GCOS Implementation Plan GCOS-244 GOOS-272; Global Climate Observing System: Geneva, Switzerland, 2022.
- Weng, Q. Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat Thermal Imagery in Monitoring Evapotranspiration and Managing Water Resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Mokhtari, A.; Noory, H.; Pourshakouri, F.; Haghighatmehr, P.; Afrasiabian, Y.; Razavi, M.; Fereydooni, F.; Sadeghi Naeni, A. Calculating Potential Evapotranspiration and Single Crop Coefficient Based on Energy Balance Equation Using Landsat 8 and Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2019, 154, 231–245. [Google Scholar] [CrossRef]
- Trigo, I.F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I. Comparison of Model Land Skin Temperature with Remotely Sensed Estimates and Assessment of Surface-Atmosphere Coupling. J. Geophys. Res. Atmos. 2015, 120, 12096–12111. [Google Scholar] [CrossRef]
- The State of Food and Agriculture 2014 (SOFA). 2014. Available online: https://www.fao.org/documents/card/en?details=839a2f5e-5c1e-48b7-8370-9681c4f62906 (accessed on 7 November 2023).
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Peng, J.; Nieto, H.; Neumann Andersen, M.; Kørup, K.; Larsen, R.; Morel, J.; Parsons, D.; Zhou, Z.; Manevski, K. Accurate Estimates of Land Surface Energy Fluxes and Irrigation Requirements from UAV-Based Thermal and Multispectral Sensors. ISPRS J. Photogramm. Remote Sens. 2023, 198, 238–254. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Wang, J.; Schmitz, O.; Lu, M.; Karssenberg, D. Thermal Unmixing Based Downscaling for Fine Resolution Diurnal Land Surface Temperature Analysis. ISPRS J. Photogramm. Remote Sens. 2020, 161, 76–89. [Google Scholar] [CrossRef]
- Zakšek, K.; Schroedter-Homscheidt, M. Parameterization of Air Temperature in High Temporal and Spatial Resolution from a Combination of the SEVIRI and MODIS Instruments. ISPRS J. Photogramm. Remote Sens. 2009, 64, 414–421. [Google Scholar] [CrossRef]
- Bonafoni, S.; Anniballe, R.; Gioli, B.; Toscano, P. Downscaling Landsat Land Surface Temperature over the Urban Area of Florence. Eur. J. Remote Sens. 2016, 49, 553–569. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.; Mattar, C.; Merlin, O.; Durán-Alarcón, C.; Santamaría-Artigas, A.; Fuster, R. An Operational Method for the Disaggregation of Land Surface Temperature to Estimate Actual Evapotranspiration in the Arid Region of Chile. ISPRS J. Photogramm. Remote Sens. 2017, 128, 170–181. [Google Scholar] [CrossRef]
- Lagouarde, J.P.; Bhattacharya, B.K.; Crébassol, P.; Gamet, P.; Babu, S.S.; Boulet, G.; Briottet, X.; Buddhiraju, K.M.; Cherchali, S.; Dadou, I.; et al. The Indian-French Trishna Mission: Earth Observation in the Thermal Infrared with High Spatio-Temporal Resolution. In Proceedings of the 2018 International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 4078–4081. [Google Scholar] [CrossRef]
- Koetz, B.; Baschek, B.; Bastiaanssen, W.; Berger, M.; Blommaert, J.; Alamanac, A.B.; Barat, I.; Fabrizia Buongiorno, M.; D’andrimont, R.; Bello, U.D.; et al. ESA UNCLASSIFIED-For ESA Official Use Only Title Copernicus High Spatio-Temporal Resolution Land Surface Temperature Mission: Mission Requirements Document Issue Number 3 Revision Number 0. 2021. Available online: https://sentiwiki.copernicus.eu/__attachments/1678167/ESA-EOPSM-HSTR-MRD-3276%20-%20Copernicus%20High%20Spatio-Temporal%20Resolution%20Land%20Surface%20Temperature%20Mission%202021%20-%203.0.pdf?inst-v=5f22af6a-d79a-4a5b-a820-1fdb4aabe8f4 (accessed on 9 July 2025).
- Lee, C.M.; Glenn, N.F.; Stavros, E.N.; Luvall, J.; Yuen, K.; Hain, C.; Schollaert Uz, S. Systematic Integration of Applications into the Surface Biology and Geology (SBG) Earth Mission Architecture Study. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006720. [Google Scholar] [CrossRef]
- Li, Z.-L.; Liu, X.; Zhao, E.; Si, M.; Gao, C.; Wu, H.; Ren, H.; Duan, S.-B.; Tang, R.; Tang, B.-H.; et al. Reflections on Developments and Opportunities of Thermal Infrared Remote Sensing. Innov. Geosci. 2024, 2, 100104. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Galve, J.M.; González-Piqueras, J.; López-Urrea, R.; Niclòs, R.; Calera, A. Monitoring 10-m LST from the Combination MODIS/Sentinel-2, Validation in a High Contrast Semi-Arid Agroecosystem. Remote Sens. 2020, 12, 1453. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Galve, J.M.; Nieto, H.; Guzinski, R. Assessment of High-Resolution LST Derived from the Synergy of Sentinel-2 and Sentinel-3 in Agricultural Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 916–928. [Google Scholar] [CrossRef]
- Guzinski, R.; Nieto, H.; Ramo Sánchez, R.; Sánchez, J.M.; Jomaa, I.; Zitouna-Chebbi, R.; Roupsard, O.; López-Urrea, R. Improving Field-Scale Crop Actual Evapotranspiration Monitoring with Sentinel-3, Sentinel-2, and Landsat Data Fusion. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103587. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, S.; Li, M.; Zhan, W.; Xu, Z.; Xu, T. Quantification of the Scale Effect in Downscaling Remotely Sensed Land Surface Temperature. Remote Sens. 2016, 8, 975. [Google Scholar] [CrossRef]
- Mhawej, M.; Abunnasr, Y. Daily Ten-ST-GEE: An Open Access and Fully Automated 10-m LST Downscaling System. Comput. Geosci. 2022, 168, 105220. [Google Scholar] [CrossRef]
- Onačillová, K.; Gallay, M.; Paluba, D.; Péliová, A.; Tokarčík, O.; Laubertová, D. Combining Landsat 8 and Sentinel-2 Data in Google Earth Engine to Derive Higher Resolution Land Surface Temperature Maps in Urban Environment. Remote Sens. 2022, 14, 4076. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Good, E.J.; Ghent, D.J.; Bulgin, C.E.; Remedios, J.J. A Spatiotemporal Analysis of the Relationship between Near-Surface Air Temperature and Satellite Land Surface Temperatures Using 17 Years of Data from the ATSR Series. J. Geophys. Res. Atmos. 2017, 122, 9185–9210. [Google Scholar] [CrossRef]
- Rouse, J.W. Monitoring the Vernal Advancement and Retrogradation of Natural Vegetation; NASA: Washington, DC, USA, 1973.
- Townshend, J.R.G.; Justice, C.O. Analysis of the Dynamics of African Vegetation Using the Normalized Difference Vegetation Index. Int. J. Remote Sens. 1986, 7, 1435–1445. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Sòria, G.; Ninyerola, M.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Valor, E.; Niclòs, R. Comparison between Different Sources of Atmospheric Profiles for Land Surface Temperature Retrieval from Single Channel Thermal Infrared Data. Remote Sens. Environ. 2012, 117, 199–210. [Google Scholar] [CrossRef]
- Niclòs, R.; Pérez-Planells, L.; Coll, C.; Valiente, J.A.; Valor, E. Evaluation of the S-NPP VIIRS Land Surface Temperature Product Using Ground Data Acquired by an Autonomous System at a Rice Paddy. ISPRS J. Photogramm. Remote Sens. 2018, 135, 1–12. [Google Scholar] [CrossRef]
- Niclòs, R.; Puchades, J.; Coll, C.; Barberà, M.J.; Pérez-Planells, L.; Valiente, J.A.; Sánchez, J.M. Evaluation of Landsat-8 TIRS Data Recalibrations and Land Surface Temperature Split-Window Algorithms over a Homogeneous Crop Area with Different Phenological Land Covers. ISPRS J. Photogramm. Remote Sens. 2021, 174, 237–253. [Google Scholar] [CrossRef]
- Theocharous, E.; Fox, N.P.; Barker-Snook, I.; Niclòs, R.; Garcia Santos, V.; Minnett, P.J.; Göttsche, F.M.; Poutier, L.; Morgan, N.; Nightingale, T.; et al. The 2016 CEOS Infrared Radiometer Comparison: Part II: Laboratory Comparison of Radiation Thermometers. J. Atmos. Ocean. Technol. 2019, 36, 1079–1092. [Google Scholar] [CrossRef]
- Coll, C.; Niclòs, R.; Puchades, J.; García-Santos, V.; Galve, J.M.; Pérez-Planells, L.; Valor, E.; Theocharous, E. Laboratory Calibration and Field Measurement of Land Surface Temperature and Emissivity Using Thermal Infrared Multiband Radiometers. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 227–239. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Steven Cothern, J.; Hook, S.; Kahle, A.B. A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Rubio, E.; Caselles, V.; Coll, C.; Valour, E.; Sospedra, F. Thermal–Infrared Emissivities of Natural Surfaces: Improvements on the Experimental Set-up and New Measurements. Int. J. Remote Sens. 2003, 24, 5379–5390. [Google Scholar] [CrossRef]
- Garcia-Santos, V.; Valor, E.; Caselles, V.; Mira, M.; Galve, J.M.; Coll, C. Evaluation of Different Methods to Retrieve the Hemispherical Downwelling Irradiance in the Thermal Infrared Region for Field Measurements. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2155–2165. [Google Scholar] [CrossRef]
- Moreno, J.; Alonso, L.; Fernàndez, G.; Fortea, J.; Gandía, S.; Guanter, L.; García, J.; Martí, J.; Melia, J.; De Coca, F.; et al. The SPECTRA Barrax Campaign (SPARC): Overview and First Results from CHRIS Data. Eur. Space Agency (Spec. Publ.) ESA SP 2004, 578, 30–39. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Gómez, M.; Ortiz, A.B.; Romaguera, M.; Zaragoza, M.; Julien, Y.; Cuenca, J.; Atitar, M.; et al. Thermal Remote Sensing in the Framework of the SEN2FLEX Project: Field Measurements, Airborne Data and Applications. Int. J. Remote Sens. 2008, 29, 4961–4991. [Google Scholar] [CrossRef]
- Galve, J.M.; Sánchez, J.M.; García-Santos, V.; González-Piqueras, J.; Calera, A.; Villodre, J. Assessment of Land Surface Temperature Estimates from Landsat 8-TIRS in A High-Contrast Semiarid Agroecosystem. Algorithms Intercomparison. Remote Sens. 2022, 14, 1843. [Google Scholar] [CrossRef]
- Fox, N. Fiducial Reference Measurements for Validation of Surface Temperature from Satellites (FRM4STS) D-180 FRM4STS Final Report; NPL: New Delhi, India, 2019. [Google Scholar]
- Pu, R.; Bonafoni, S. Reducing Scaling Effect on Downscaled Land Surface Temperature Maps in Heterogenous Urban Environments. Remote Sens. 2021, 13, 5044. [Google Scholar] [CrossRef]
- Bisquert, M.; Sánchez, J.M.; Caselles, V. Evaluation of Disaggregation Methods for Downscaling MODIS Land Surface Temperature to Landsat Spatial Resolution in Barrax Test Site. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1430–1438. [Google Scholar] [CrossRef]
- Puchades-Yago, J.; Calera-Belmonte, A.; Galve, J.M.; Sánchez-Tomás, J.M.; González-Piquera, J. Calibración Cruzada Entre Landsat-8 y Sentinel-2 Para Configurar Una Constelación Multisensor. In Proceedings of the Teledetección para una Agricultura Sostenible en la era del Big Data.Actas del XIX Congreso de la Asociación Española de Teledetección, Pamplona, Spain, 29 June–1 July 2022; Available online: http://www.aet.org.es/?q=congresos:Pamplona (accessed on 9 July 2025).
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Coll, C.; Galve, J.M.; Sánchez, J.M.; Caselles, V. Validation of Landsat-7/ETM+ Thermal-Band Calibration and Atmospheric Correction with Ground-Based Measurements. IEEE Trans. Geosci. Remote Sens. 2010, 48, 547–555. [Google Scholar] [CrossRef]
- Niclòs, R.; Perelló, M.; Puchades, J.; Coll, C.; Valor, E. Evaluating Landsat-9 TIRS-2 Calibrations and Land Surface Temperature Retrievals against Ground Measurements Using Multi-Instrument Spatial and Temporal Sampling along Transects. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103576. [Google Scholar] [CrossRef]
- Galve, J.M.; Sánchez, J.M.; Coll, C.; Villodre, J. A New Single-Band Pixel-by-Pixel Atmospheric Correction Method to Improve the Accuracy in Remote Sensing Estimates of LST. Application to Landsat 7-ETM+. Remote Sens. 2018, 10, 826. [Google Scholar] [CrossRef]
- García-Santos, V.; Coll, C.; Valor, E.; Niclòs, R.; Caselles, V. Analyzing the Anisotropy of Thermal Infrared Emissivity over Arid Regions Using a New MODIS Land Surface Temperature and Emissivity Product (MOD21). Remote Sens. Environ. 2015, 169, 212–221. [Google Scholar] [CrossRef]
- García-Santos, V.; Valor, E.; Caselles, V.; Coll, C.; Burgos, M.Á. Effect of Soil Moisture on the Angular Variation of Thermal Infrared Emissivity of Inorganic Soils. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1091–1095. [Google Scholar] [CrossRef]
Key Characteristic | Daily Ten-ST-GEE | LST-Downscaling-GEE |
---|---|---|
General Methodology Type | Data Fusion/Statistical Approach | Disaggregation/Multiple Linear Regression |
Primary LST Source (Coarse Resolution) | MODIS LST (1 km) | Landsat 8-TIRS LST (30 m) |
High-Resolution Data Source | Sentinel-2 MSI (Optical bands) | Sentinel-2 MSI (Optical bands) |
Key Algorithm/Model | Robust Least Squares (RLS) | Multiple Linear Regression (MLR) |
Main Predictor Variables (from HR source) | Optical bands (R, G, B, NIR, SWIR1, SWIR2) | Spectral indices (NDVI, NDBI, NDWI) |
Spatial Resolution of Output | 10 m | 10 m |
Temporal Resolution of Output | Daily | 5-daily or weekly |
Residual Correction Applied? | Not explicitly mentioned as core to the method in [22] | Yes, with Gaussian kernel convolution |
GEE Implementation | Yes, open-source and fully automated | Yes, user-friendly online application |
Crop ID | Crop Type | Latitude (°) | Longitude (°) | Date (Year: Month/Day) |
---|---|---|---|---|
A | Vineyard | 39.0598 | −2.1009 | 2018: 6/15, 7/17, 7/24, 8/2 |
2019: 7/11 | ||||
B | Poppy | 39.0592 | −2.0989 | 2018: 6/15, 6/22, 7/24 |
2019: 7/11 | ||||
C | Garlic | 39.0592 | −2.0958 | 2018: 6/15, 6/22 |
2019: 7/11 | ||||
D | Garlic Pivot | 39.0529 | −2.0872 | 2018: 6/15, 6/22 |
E | Bare Soil | 39.0545 | −2.083 | 2018: 6/15, 6/22, 7/17, 7/24, 8/2 |
F | Barley (rainfed) | 39.0426 | −2.0877 | 2018: 6/15, 6/22, 7/17, 7/24 |
G | Barley (irrigation) | 39.045 | −2.0814 | 2018: 6/15, 7/8, 7/17 |
H | Almonds | 39.0429 | −2.0895 | 2018: 6/15, 7/8, 7/17, 7/24, 8/2, 8/25, 10/5, 10/12 |
2019: 7/11, 8/28 | ||||
I | Wheat | 39.0561 | −2.0774 | 2018: 6/22, 7/17, 7/24 |
J | Bare Soil | 39.0402 | −2.0849 | 2018: 6/22 |
K | Rice field | 39.2729 | −0.3185 | 2018: 3/27, 9/20 |
2021: 12/8 | ||||
2022: 2/3, 2/10, 5/17, 8/21, 9/6 | ||||
2023: 1/12, 1/21, 1/28 | ||||
L | Rice field | 39.2681 | −0.3092 | 2018: 5/7, 6/15, 7/10, 7/17 |
2019: 1/16, 1/21, 1/25, 2/22, 2/26 | ||||
2022: 8/5, 4/24, 5/1, 5/10, 5/26, 7/4, 7/13 | ||||
M | Rice field | 39.264 | −0.3045 | 2022: 8/5, 8/14 |
N | Rice field | 39.2689 | −0.3072 | 2023: 4/2, 4/18, 5/13, 5/20 |
Daily Ten-ST-GEE | LST-Downscaling-GEE | |||||
---|---|---|---|---|---|---|
Valencia | Las Tiesas | Total | Valencia | Las Tiesas | Total | |
R2 | 0.92 | 0.42 | 0.74 | 0.88 | 0.93 | 0.94 |
MBE (K) | 1.1 | 3.6 | 2.8 | 0.8 | −2.3 | −1.0 |
MAE (K) | 1.6 | 5.3 | 4.5 | 3.3 | 2.5 | 2.8 |
RMSE (K) | 2.0 | 6.5 | 5.8 | 4.1 | 3.1 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Santos, V.; Buil, A.; Sánchez, J.M.; Coll, C.; Niclòs, R.; Puchades, J.; Perelló, M.; Pérez-Planells, L.; Galve, J.M.; Valor, E. Validation of Two Operative Google Earth Engine Applications to Generate 10 m Land Surface Temperature Maps at Daily to Weekly Temporal Resolutions. Remote Sens. 2025, 17, 2387. https://doi.org/10.3390/rs17142387
Garcia-Santos V, Buil A, Sánchez JM, Coll C, Niclòs R, Puchades J, Perelló M, Pérez-Planells L, Galve JM, Valor E. Validation of Two Operative Google Earth Engine Applications to Generate 10 m Land Surface Temperature Maps at Daily to Weekly Temporal Resolutions. Remote Sensing. 2025; 17(14):2387. https://doi.org/10.3390/rs17142387
Chicago/Turabian StyleGarcia-Santos, Vicente, Alejandro Buil, Juan Manuel Sánchez, César Coll, Raquel Niclòs, Jesús Puchades, Martí Perelló, Lluís Pérez-Planells, Joan Miquel Galve, and Enric Valor. 2025. "Validation of Two Operative Google Earth Engine Applications to Generate 10 m Land Surface Temperature Maps at Daily to Weekly Temporal Resolutions" Remote Sensing 17, no. 14: 2387. https://doi.org/10.3390/rs17142387
APA StyleGarcia-Santos, V., Buil, A., Sánchez, J. M., Coll, C., Niclòs, R., Puchades, J., Perelló, M., Pérez-Planells, L., Galve, J. M., & Valor, E. (2025). Validation of Two Operative Google Earth Engine Applications to Generate 10 m Land Surface Temperature Maps at Daily to Weekly Temporal Resolutions. Remote Sensing, 17(14), 2387. https://doi.org/10.3390/rs17142387