Evaluating UAV LiDAR and Field Spectroscopy for Estimating Residual Dry Matter Across Conservation Grazing Lands
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Spectral Data
2.4. LiDAR Data
3. Analysis
4. Results
5. Discussion
5.1. Key Findings
- LiDAR-based estimates only perform well in standing vegetation plots.
- Spectral models are essentially non-functional.
5.2. Comparing Analysis Methodologies
5.3. Spectral Data
5.4. LiDAR Data
5.5. Future Work to Increase LiDAR Data’s Scalability
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Dependent Variable | Predictors |
---|---|---|
LiDAR (LR) | RDM (g): n = 72 | ‘chm_max’, ‘chm_range’, ‘chm_mean’, ‘chm_std’, ‘chm_median’, ‘chm_pct90’ |
LiDAR (RF) | RDM (g): n = 72 | ‘chm_max’, ‘chm_range’, ‘chm_mean’, ‘chm_std’, ‘chm_median’, ‘chm_pct90’ |
Spectral (LR) | RDM (g): n = 36 | ‘LCAI’, ‘NDLI’, ‘CAI’ |
Spectral (RF) | RDM (g): n = 36 | ‘LCAI’, ‘NDLI’, ‘CAI’ |
Combined (LR) | RDM (g): n = 36 | ‘chm_max’, ‘chm_range’, ‘chm_mean’, ‘chm_std’, ‘chm_median’, ‘chm_pct90’, ‘LCAI’, ‘NDLI’, ‘CAI’ |
Combined (RF) | RDM (g): n = 36 | ‘chm_max’, ‘chm_range’, ‘chm_mean’, ‘chm_std’, ‘chm_median’, ‘chm_pct90’, ‘LCAI’, ‘NDLI’, ‘CAI’ |
Site Name | Management Zone | Vegetation Structure | Grazing Intensity (Based on RDM Levels Before Fall 2024 Field Campaign) |
---|---|---|---|
CMT Ungrazed | Cojo Coast | Standing | None |
Steve’s Flat | Cojo Coast | Mixed | Med–High |
Jalama Bull | Army Camp | Mixed | Low–Med |
Jalachichi | Jalachichi | Mixed | Med–High |
Jalama Horse | Tinta | Standing | Low–Med |
East Tinta | Tinta | Mixed | Med–High |
Cojo Cow | Cojo Ranch | Laying | Med–High |
Jalama Mare | Army Camp | Laying | Med–High |
Predictor | Model | β | STD Error | t | p-Value |
---|---|---|---|---|---|
(Intercept) | Spectral Only | 54.28 | 3.86 | 14.08 | 0 |
cai | Spectral Only | −18.73 | 6.71 | −2.79 | 0.01 |
lcai | Spectral Only | 9.42 | 5.41 | 1.74 | 0.09 |
ndli | Spectral Only | 13.13 | 5.44 | 2.41 | 0.02 |
(Intercept) | LiDAR Only | 49.11 | 2.34 | 20.99 | 0 |
chm_max | LiDAR Only | −0.21 | 17.55 | −0.01 | 0.99 |
chm_range | LiDAR Only | −25.48 | 21.79 | −1.17 | 0.25 |
chm_mean | LiDAR Only | 57.75 | 49.88 | 1.16 | 0.25 |
chm_std | LiDAR Only | 73.54 | 29.13 | 2.52 | 0.01 |
chm_median | LiDAR Only | 5.3 | 24.13 | 0.22 | 0.83 |
chm_pct90 | LiDAR Only | −70.26 | 35.22 | −1.99 | 0.05 |
(Intercept) | Spectral + LiDAR | 54.28 | 3.44 | 15.8 | 0 |
cai | Spectral + LiDAR | −8.6 | 8.21 | −1.05 | 0.3 |
lcai | Spectral + LiDAR | 8.22 | 5.72 | 1.44 | 0.16 |
ndli | Spectral + LiDAR | 3.88 | 5.62 | 0.69 | 0.5 |
chm_max | Spectral + LiDAR | −56.55 | 31.88 | −1.77 | 0.09 |
chm_range | Spectral + LiDAR | 36.21 | 29.19 | 1.24 | 0.23 |
chm_mean | Spectral + LiDAR | 113.58 | 51.84 | 2.19 | 0.04 |
chm_std | Spectral + LiDAR | 44.96 | 25.91 | 1.74 | 0.09 |
chm_median | Spectral + LiDAR | −40.34 | 25.83 | −1.56 | 0.13 |
chm_pct90 | Spectral + LiDAR | −84.86 | 43.68 | −1.94 | 0.06 |
References
- Allen-Diaz, B.H.; Jackson, R.D. Herbaceous Responses to Livestock Grazing in Californian Oak Woodlands: A Review for Habitat Improvement and Conservation Potential. USDA For. Serv. 2005, 127–144. [Google Scholar]
- Buckley Biggs, N.; Huntsinger, L. Managed Grazing on California Annual Rangelands in the Context of State Climate Policy. Rangel. Ecol. Manag. 2021, 76, 56–68. [Google Scholar] [CrossRef]
- Dass, P.; Houlton, B.Z.; Wang, Y.; Warlind, D. Grasslands May Be More Reliable Carbon Sinks than Forests in California. Environ. Res. Lett. 2018, 13, 074027. [Google Scholar] [CrossRef]
- Ferranto, S.; Huntsinger, L.; Getz, C.; Nakamura, G.; Stewart, W.; Drill, S.; Valachovic, Y.; DeLasaux, M.; Kelly, M. Forest and Rangeland Owners Value Land for Natural Amenities and as Financial Investment. Calif. Agric. 2011, 65, 184–191. [Google Scholar] [CrossRef]
- Huntsinger, L.; Oviedo, J.L. Ecosystem Services Are Social–Ecological Services in a Traditional Pastoral System: The Case of California’s Mediterranean Rangelands. Ecol. Soc. 2014, 19, art8. [Google Scholar] [CrossRef]
- Jantz, P.A.; Preusser, B.F.L.; Fujikawa, J.K.; Kuhn, J.A.; Bersbach, C.J.; Gelbard, J.L.; Davis, F.W. Regulatory Protection and Conservation. In California Grasslands: Ecology and Management; University of California Press: Oakland, CA, USA, 2007; pp. 297–318. [Google Scholar]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.L.; Fry, E.; Johnson, D.; et al. Combatting Global Grassland Degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Okin, G.S.; Duniway, M.C.; Archer, S.R.; Sayre, N.F.; Williamson, J.C.; Herrick, J.E. Desertification, Land Use, and the Transformation of Global Drylands. Front. Ecol. Env. 2015, 13, 28–36. [Google Scholar] [CrossRef]
- Cameron, D.R.; Marty, J.; Holland, R.F. Whither the Rangeland?: Protection and Conversion in California’s Rangeland Ecosystems. PLoS ONE 2014, 9, e103468. [Google Scholar] [CrossRef]
- HilleRisLambers, J.; Yelenik, S.G.; Colman, B.P.; Levine, J.M. California Annual Grass Invaders: The Drivers or Passengers of Change? J. Ecol. 2010, 98, 1147–1156. [Google Scholar] [CrossRef]
- MacDonald, G.; Wall, T.; Enquist, C.A.F.; LeRoy, S.R.; Bradford, J.B.; Breshears, D.D.; Brown, T.; Cayan, D.; Dong, C.; Falk, D.A.; et al. Drivers of California’s Changing Wildfires: A State-of-the-Knowledge Synthesis. Int. J. Wildland Fire 2023, 32, 1039–1058. [Google Scholar] [CrossRef]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate Change and North American Rangelands: Trends, Projections, and Implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Larson-Praplan, S. History of Rangeland Management in California. Rangelands 2014, 36, 11–17. [Google Scholar] [CrossRef]
- Butterfield, H.S.; Tsalyuk, M.; Schloss, C. Remote Sensing Increases the Cost Effectiveness and Long-Term Sustainability of the Nature Conservancy’s Residual Dry Matter Monitoring Program; The Nature Conservancy: San Francisco, CA, USA, 2014; p. 21. [Google Scholar]
- Bartolome, J.W. Guidelines for Residual Dry Matter on Coastal and Foothill Rangelands in California; University of California: Oakland, CA, USA, 2002; Publication 8092. [Google Scholar]
- Guenther, K.; Hayes, G. Monitoring Annual Grassland Residual Dry Matter: A Mulch Manager’s Guide for Monitoring Success, 2nd ed.; Wildland Solutions: Concord, CA, USA, 2008. [Google Scholar]
- Harris, N.R.; Frost, W.E.; McDougald, N.K.; George, M.R.; Nielsen, D.L. Long-term residual dry matter mapping for monitoring California hardwood rangelands. In Proceedings of the Fifth Symposium on Oak Woodlands: Oaks in California’s Challenging Landscape, San Diego, CA, USA, 22–25 October 2001; Standiford, R.B., Ed.; Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: Albany, CA, USA, 2002. Gen. Tech. Rep. PSW-GTR-184. pp. 87–96. [Google Scholar]
- Fusco, E.J.; Finn, J.T.; Balch, J.K.; Nagy, R.C.; Bradley, B.A. Invasive Grasses Increase Fire Occurrence and Frequency across US Ecoregions. Proc. Natl. Acad. Sci. USA 2019, 116, 23594–23599. [Google Scholar] [CrossRef] [PubMed]
- Stechman, J. Fire Hazard Reduction Practices for Annual-Type Grassland. Rangelands 1983, 5, 2. [Google Scholar]
- Hulet, A.; Boyd, C.S.; Davies, K.W.; Svejcar, T.J. Prefire (Preemptive) Management to Decrease Fire-Induced Bunchgrass Mortality and Reduce Reliance on Postfire Seeding. Rangel. Ecol. Manag. 2015, 68, 437–444. [Google Scholar] [CrossRef]
- Larsen, R.E.; Shapero, M.W.K.; Striby, K.; Althouse, L.; Meade, D.E.; Brown, K.; Horney, M.R.; Rao, D.R.; Davy, J.S.; Rigby, C.W.; et al. Forage Quantity and Quality Dynamics Due to Weathering over the Dry Season on California Annual Rangelands. Rangel. Ecol. Manag. 2021, 76, 150–156. [Google Scholar] [CrossRef]
- Bartolome, J.W.; Allen-Diaz, B.H.; Barry, S.; Ford, L.D.; Hammond, M.; Hopkinson, P.; Ratcliff, F.; Spiegal, S.; White, M.D. Grazing for Biodiversity in Californian Mediterranean Grasslands. Rangelands 2014, 36, 36–43. [Google Scholar] [CrossRef]
- Ford, L.D.; Butterfield, H.S.; Van Hoorn, P.A.; Allen, K.B.; Inlander, E.; Schloss, C.; Schuetzenmeister, F.; Tsalyuk, M. Testing a Remote Sensing-Based Interactive System for Monitoring Grazed Conservation Lands. Rangelands 2017, 39, 123–132. [Google Scholar] [CrossRef]
- Tsalyuk, M.; Kelly, M.; Koy, K.; Getz, W.M.; Butterfield, H.S. Monitoring the Impact of Grazing on Rangeland Conservation Easements Using MODIS Vegetation Indices. Rangel. Ecol. Manag. 2015, 68, 173–185. [Google Scholar] [CrossRef]
- Butterfield, H.S.; Malmström, C.M. The Effects of Phenology on Indirect Measures of Aboveground Biomass in Annual Grasses. Int. J. Remote Sens. 2009, 30, 3133–3146. [Google Scholar] [CrossRef]
- Verrelst, J.; Halabuk, A.; Atzberger, C.; Hank, T.; Steinhauser, S.; Berger, K. A Comprehensive Survey on Quantifying Non-Photosynthetic Vegetation Cover and Biomass from Imaging Spectroscopy. Ecol. Indic. 2023, 155, 110911. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Tucker, C.J.; Sellers, P.J. Satellite Remote Sensing of Primary Production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar] [CrossRef]
- Todd, S.W.; Hoffer, R.M.; Milchunas, D.G. Biomass Estimation on Grazed and Ungrazed Rangelands Using Spectral Indices. Int. J. Remote Sens. 1998, 19, 427–438. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Fern, R.R.; Foxley, E.A.; Bruno, A.; Morrison, M.L. Suitability of NDVI and OSAVI as Estimators of Green Biomass and Coverage in a Semi-Arid Rangeland. Ecol. Indic. 2018, 94, 16–21. [Google Scholar] [CrossRef]
- Serbin, G.; Daughtry, C.S.T.; Hunt, E.R.; Reeves, J.B.; Brown, D.J. Effects of Soil Composition and Mineralogy on Remote Sensing of Crop Residue Cover. Remote Sens. Environ. 2009, 113, 224–238. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R.; McMurtrey, J.E. Assessing Crop Residue Cover Using Shortwave Infrared Reflectance. Remote Sens. Environ. 2004, 90, 126–134. [Google Scholar] [CrossRef]
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Plant Litter and Soil Reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Carolyn Watson, M.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote Sensing for Grassland Management in the Arid Southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L.; Daughtry, C.S.T. Cellulose Absorption Index (CAI) to Quantify Mixed Soil-Plant Litter Scenes. Remote Sens. Environ. 2003, 87, 310–325. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E. Remote Sensing the Spatial Distribution of Crop Residues. Agron. J. 2005, 97, 864–871. [Google Scholar] [CrossRef]
- Serrano, L.; Peñuelas, J.; Ustin, S.L. Remote Sensing of Nitrogen and Lignin in Mediterranean Vegetation from AVIRIS Data. Remote Sens. Environ. 2002, 81, 355–364. [Google Scholar] [CrossRef]
- Numata, I.; Roberts, D.; Chadwick, O.; Schimel, J.; Galvao, L.; Soares, J. Evaluation of Hyperspectral Data for Pasture Estimate in the Brazilian Amazon Using Field and Imaging Spectrometers. Remote Sens. Environ. 2008, 112, 1569–1583. [Google Scholar] [CrossRef]
- Roberts, D.A.; Smith, M.O.; Adams, J.B. Green Vegetation, Nonphotosynthetic Vegetation, and Soils in AVIRIS Data. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G. Estimating Aboveground Green Biomass in Desert Steppe Using Band Depth Indices. Biosyst. Eng. 2014, 127, 67–78. [Google Scholar] [CrossRef]
- Pepe, M.; Pompilio, L.; Ranghetti, L.; Nutini, F.; Boschetti, M. Mapping Spatial Distribution of Crop Residues Using PRISMA Satellite Imaging Spectroscopy. Eur. J. Remote Sens. 2022, 56, 2122872. [Google Scholar] [CrossRef]
- Anderson, K.E.; Glenn, N.F.; Spaete, L.P.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K.; Derryberry, D.R. Estimating Vegetation Biomass and Cover across Large Plots in Shrub and Grass Dominated Drylands Using Terrestrial Lidar and Machine Learning. Ecol. Indic. 2018, 84, 793–802. [Google Scholar] [CrossRef]
- Barnetson, J.; Phinn, S.; Scarth, P. Estimating Plant Pasture Biomass and Quality from UAV Imaging across Queensland’s Rangelands. AgriEngineering 2020, 2, 523–543. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; Hütt, C.; Bareth, G.; Gaiser, T. A Review of Estimation Methods for Aboveground Biomass in Grasslands Using UAV. Remote Sens. 2023, 15, 639. [Google Scholar] [CrossRef]
- Retallack, A.; Finlayson, G.; Ostendorf, B.; Clarke, K.; Lewis, M. Remote Sensing for Monitoring Rangeland Condition: Current Status and Development of Methods. Environ. Sustain. Indic. 2023, 19, 100285. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef]
- Bazrafkan, A.; Delavarpour, N.; Oduor, P.G.; Bandillo, N.; Flores, P. An Overview of Using Unmanned Aerial System Mounted Sensors to Measure Plant Above-Ground Biomass. Remote Sens. 2023, 15, 3543. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Jiang, H.; Chianucci, F.; Hu, R.; Song, W.; Qi, J.; Liu, S.; Zhou, J.; Chen, L.; et al. Review of Ground and Aerial Methods for Vegetation Cover Fraction (fCover) and Related Quantities Estimation: Definitions, Advances, Challenges, and Future Perspectives. ISPRS J. Photogramm. Remote Sens. 2023, 199, 133–156. [Google Scholar] [CrossRef]
- Li, Z.; Guo, X. Remote Sensing of Terrestrial Non-Photosynthetic Vegetation Using Hyperspectral, Multispectral, SAR, and LiDAR Data. Prog. Phys. Geogr. Earth Environ. 2016, 40, 276–304. [Google Scholar] [CrossRef]
- Sankey, J.B.; Sankey, T.T.; Li, J.; Ravi, S.; Wang, G.; Caster, J.; Kasprak, A. Quantifying Plant-Soil-Nutrient Dynamics in Rangelands: Fusion of UAV Hyperspectral-LiDAR, UAV Multispectral-Photogrammetry, and Ground-Based LiDAR-Digital Photography in a Shrub-Encroached Desert Grassland. Remote Sens. Environ. 2021, 253, 112223. [Google Scholar] [CrossRef]
- Norton, C.L.; Hartfield, K.; Collins, C.D.H.; Van Leeuwen, W.J.D.; Metz, L.J. Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species. Remote Sens. 2022, 14, 2896. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Q.; Tang, H.; Liu, J.; Wu, W. Conservation Tillage Mapping and Monitoring Using Remote Sensing. Comput. Electron. Agric. 2024, 218, 108705. [Google Scholar] [CrossRef]
- Zheng, B.; Campbell, J.B.; Serbin, G.; Galbraith, J.M. Remote Sensing of Crop Residue and Tillage Practices: Present Capabilities and Future Prospects. Soil Tillage Res. 2014, 138, 26–34. [Google Scholar] [CrossRef]
- Butterfield, H.S.; Reynolds, M.; Gleason, M.G.; Merrifield, M.; Cohen, B.S.; Heady, W.N.; Cameron, D.; Rick, T.; Inlander, E.; Katkowski, M.; et al. Jack and Laura Dangermond Preserve Integrated Resources Management Plan; The Nature Conservancy: Arlington, VA, USA, 2019; p. 112. [Google Scholar]
- Butterfield, H.S.; Katkowski, M.; Cota, J.; Sage, O.; Sage, C.; Easterday, K.; Zeleke, D.; Riege, L.; Gennet, S.; Lin, K.; et al. Jack and Laura Dangermond Preserve Rangeland Management Plan; The Nature Conservancy: Arlington, VA, USA, 2020; p. 54. [Google Scholar]
- Chadwick, K.D.; Davis, F.; Miner, K.R.; Pavlick, R.; Reynolds, M.; Townsend, P.A.; Brodrick, P.G.; Ade, C.; Allen, J.; Anderegg, L.; et al. Unlocking ecological insights from sub-seasonal visible-to-shortwave infrared imaging spectroscopy: The SHIFT campaign. Ecosphere 2025, 16, e70194. [Google Scholar] [CrossRef]
- Queally, N.; Davis, F.W.; Chadwick, K.D.; Ade, C.; Anderegg, L.; Angel, Y.; Baker, B.; Baskaran, L.; Boving, I.; Braghiere, R.K.; et al. SBG High Frequency Time Series (SHIFT) SHIFT: Vegetation Plot Photos, Santa Barbara, CA, USA, 2022. Available online: https://daac.ornl.gov/SHIFT/guides/SHIFT_Plot_Level_Photos.html#:~:text=The%20Surface%20Biology%20and%20Geology,imagery%20across%20the%20study%20area (accessed on 22 January 2025).
- Sousa, D.; Davis, F.W.; Easterday, K.; Reynolds, M.; Riege, L.; Butterfield, H.S.; Katkowski, M. Predictive Ecological Land Classification From Multi-Decadal Satellite Imagery. Front. For. Glob. Change 2022, 5, 867369. [Google Scholar] [CrossRef]
- Genua, L.; Anderson, B.; Bowen, M.; Ives, G.; Liu, O.; Paschos, T.; Butterfield, H.S.; Easterday, K.; Reynolds, M.; Thorne, J.H. Spatial Patterns of Vegetation Change in a Fire-Suppressed Coastal California Landscape. Madroño 2024, 70, 210–224. [Google Scholar] [CrossRef]
- Inlander, E.; Andrews, K.; Chin, J.; Pollock, S.; McFadden, M.; Hardage, S.; Butterfield, H.S.; Rubin, T. Remote Property Monitoring at The Nature Conservancy in California 2020. Available online: https://www.scienceforconservation.org/products/remote-property-monitoring (accessed on 2 July 2025).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Marabel, M.; Alvarez-Taboada, F. Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression. Sensors 2013, 13, 10027–10051. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Language Reference, Version 3.11.5 2023; Python Software Foundation: Wilmington, DE, USA, 2023. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing 2024; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Brovelli, M.A.; Crespi, M.; Fratarcangeli, F.; Giannone, F.; Realini, E. Accuracy Assessment of High Resolution Satellite Imagery Orientation by Leave-One-out Method. ISPRS J. Photogramm. Remote Sens. 2008, 63, 427–440. [Google Scholar] [CrossRef]
- Franklin, J.; Turner, D.L. The Application of a Geometric Optical Canopy Reflectance Model to Semiarid Shrub Vegetation. IEEE Trans. Geosci. Remote Sens. 1992, 30, 293–301. [Google Scholar] [CrossRef]
- Bivand, R. R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geogr. Anal. 2022, 54, 488–518. [Google Scholar] [CrossRef]
- Hastie, T.J.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer series in statistics; 2nd ed.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84858-7. [Google Scholar]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral Saturation in the Remote Sensing of High-Density Vegetation Traits: A Systematic Review of Progress, Challenges, and Prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral Mixture Modeling: A New Analysis of Rock and Soil Types at the Viking Lander 1 Site. J. Geophys. Res. 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Asner, G.P.; Heidebrecht, K.B. Spectral Unmixing of Vegetation, Soil and Dry Carbon Cover in Arid Regions: Comparing Multispectral and Hyperspectral Observations. Int. J. Remote Sens. 2002, 23, 3939–3958. [Google Scholar] [CrossRef]
- Gillespie, A.R. Interpretation of Residual Images: Spectral Mixture Analysis of AVIRIS Images, Owens Valley, California. In Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer(AVIRIS)Workshop, Pasadena, CA, USA, 6–8 May 1986; pp. 243–270. [Google Scholar]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in Deserts: I. A Regional Measure of Abundance from Multispectral Images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Kaveh, N.; Ebrahimi, A.; Asadi, E. Comparative Analysis of Random Forest, Exploratory Regression, and Structural Equation Modeling for Screening Key Environmental Variables in Evaluating Rangeland above-Ground Biomass. Ecol. Inform. 2023, 77, 102251. [Google Scholar] [CrossRef]
- Sanaei, A.; Chahouki, M.A.Z.; Ali, A.; Jafari, M.; Azarnivand, H. Abiotic and Biotic Drivers of Aboveground Biomass in Semi-Steppe Rangelands. Sci. Total Environ. 2018, 615, 895–905. [Google Scholar] [CrossRef]
- Reintsma, K.M.; Szczypinski, M.; Running, S.W.; Coons, S.P.; Dreitz, V.J. Sagebrush Steppe Productivity, Environmental Complexity, and Grazing: Insights From Remote Sensing and Mixed-Effect Modeling. Rangel. Ecol. Manag. 2024, 95, 20–29. [Google Scholar] [CrossRef]
- Enterkine, J.; Hojatimalekshah, A.; Vermillion, M.; Van Der Weide, T.; Arispe, S.A.; Price, W.J.; Hulet, A.; Glenn, N.F. Voxel Volumes and Biomass: Estimating Vegetation Volume and Litter Accumulation of Exotic Annual Grasses Using Automated Ultra-High-Resolution SFM and Advanced Classification Techniques. Ecol. Evol. 2025, 15, e70883. [Google Scholar] [CrossRef]
- Huang, C.; Marsh, S.E.; McClaran, M.P.; Archer, S.R. Postfire Stand Structure in A Semiarid Savanna: Cross-Scale Challenges Estimating Biomass. Ecol. Appl. 2007, 17, 1899–1910. [Google Scholar] [CrossRef]
- Théau, J.; Lauzier-Hudon, É.; Aubé, L.; Devillers, N. Estimation of Forage Biomass and Vegetation Cover in Grasslands Using UAV Imagery. PLoS ONE 2021, 16, e0245784. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Calvo, L.; Enterkine, J.; Price, W.J.; Dinkins, J.B.; Jensen, K.S.; Olsoy, P.J.; Arispe, S.A. Estimating Vegetation and Litter Biomass Fractions in Rangelands Using Structure-from-Motion and LiDAR Datasets from Unmanned Aerial Vehicles. Landsc. Ecol. 2024, 39, 181. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Evans, J.S.; Hudak, A.T. A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1029–1038. [Google Scholar] [CrossRef]
- Klápště, P.; Urban, R.; Moudrý, V. Ground Classification of UAV Image-Based Point Clouds through Different Algorithms: Open Source vs. Commercial Software. In Proceedings of the 6th International Conference on Small Unmanned Aerial Systems for Environmental Research, Split, Croatia, 27–29 June 2018. [Google Scholar]
- Markman, B.; Butterfield, H.S.; Coulter, L.; Franklin, J.; Katkowski, M.; Sousa, D. UAV LiDAR Survey of RDM at Jack and Laura Dangermond Preserve, CA 2024; OpenTopography: San Diego, CA, USA, 2025. [Google Scholar] [CrossRef]
- Markman, B.; Butterfield, S.; Franklin, J.; Coulter, L.; Katkowski, M.; Sousa, D. Estimating Residual Dry Matter with Field Spectroscopy and UAV LiDAR at the Jack and Laura Dangermond Preserve; KNB: Santa Barbara, CA, USA, 2025. [Google Scholar] [CrossRef]
Model | LOOCV R2 | LOOCV MAE | Error’s SD | p-Value | Number of Predictors | Sample Size (N) |
---|---|---|---|---|---|---|
Spectral (LR) | 0.09 | 18.26 | 24.33 | <0.05 | 3 | 36 |
Spectral (RF) | 0.06 | 18.70 | 24.47 | N/A | 3 | 36 |
LiDAR (LR) | 0.37 | 16.68 | 21.29 | <0.05 | 6 | 72 |
LiDAR (RF) | 0.22 | 18.20 | 23.67 | N/A | 6 | 72 |
Combined (LR) | 0.15 | 20.54 | 25.69 | <0.05 | 9 | 36 |
Combined (RF) | 0.07 | 18.45 | 24.44 | N/A | 9 | 36 |
Vegetation Structure | RF R2 After LOOCV | RF MAE After LOOCV | LR R2 After LOOCV | LR MAE After LOOCV | Sites | Sample Size (N) |
---|---|---|---|---|---|---|
Standing | 0.81 | 7.70 | 0.63 | 11.23 | CMT Ungrazed, Jalama Horse | 18 |
Mixed | 0.21 | 18.72 | 0.05 | 22.00 | Jalachichi, Steve’s Flat, Jalama Bull, East Tinta | 36 |
Laying | 0.01 | 17.78 | 0.16 | 26.42 | Cojo Cow, Jalama Mare | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markman, B.; Butterfield, H.S.; Franklin, J.; Coulter, L.; Katkowski, M.; Sousa, D. Evaluating UAV LiDAR and Field Spectroscopy for Estimating Residual Dry Matter Across Conservation Grazing Lands. Remote Sens. 2025, 17, 2352. https://doi.org/10.3390/rs17142352
Markman B, Butterfield HS, Franklin J, Coulter L, Katkowski M, Sousa D. Evaluating UAV LiDAR and Field Spectroscopy for Estimating Residual Dry Matter Across Conservation Grazing Lands. Remote Sensing. 2025; 17(14):2352. https://doi.org/10.3390/rs17142352
Chicago/Turabian StyleMarkman, Bruce, H. Scott Butterfield, Janet Franklin, Lloyd Coulter, Moses Katkowski, and Daniel Sousa. 2025. "Evaluating UAV LiDAR and Field Spectroscopy for Estimating Residual Dry Matter Across Conservation Grazing Lands" Remote Sensing 17, no. 14: 2352. https://doi.org/10.3390/rs17142352
APA StyleMarkman, B., Butterfield, H. S., Franklin, J., Coulter, L., Katkowski, M., & Sousa, D. (2025). Evaluating UAV LiDAR and Field Spectroscopy for Estimating Residual Dry Matter Across Conservation Grazing Lands. Remote Sensing, 17(14), 2352. https://doi.org/10.3390/rs17142352