Long-Term Spatiotemporal Variability and Source Attribution of Aerosols over Xinjiang, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Products
2.2.1. MODIS Data
2.2.2. CALIPSO Profiles
2.2.3. MERRA-2 Data
2.2.4. ECMWF Data
2.2.5. CHAP Data
2.3. Methods
2.3.1. Sen’s Slope and Mann–Kendall Test
2.3.2. Backward Trajectory Analysis
3. Results
3.1. Spatiotemporal Characteristics of Aerosols over Xinjiang
3.1.1. The Spatiotemporal Variation Characteristics of AOD
3.1.2. The Spatial Distribution and Differences in Aerosol Components
3.1.3. The Spatiotemporal Variation Characteristics of PM2.5 and PM10
3.2. Characteristics of Aerosol Transport in Typical Spring and Winter in Xinjiang
4. Discussion
5. Conclusions
- (1)
- The Aerosol Optical Depth (AOD) in Xinjiang exhibits significant spatiotemporal distribution characteristics. In terms of temporal scale, NXJ shows small seasonal fluctuations, with the peak AOD occurring in winter, while SXJ exhibits clear seasonal variation, with the highest AOD in spring and the lowest in winter, and significant interannual variability. However, no clear upward or downward trend is observed overall. Spatially, the AOD in SXJ is generally higher than in NXJ, with high AOD values primarily found in urban areas of NXJ. Overall, dust aerosols are the dominant aerosol type in Xinjiang.
- (2)
- In winter, aerosols in Xinjiang mainly deposit in the near-surface layer, influenced by local and short-distance transport. In contrast, spring shows a distinct characteristic of high-altitude long-range transport. With increasing air mass height, the contribution of local air masses gradually decreases, and the transport distance significantly increases. Backward trajectory analysis shows that pollution air masses in Urumqi mainly originate from local and Central Asia sources, with higher pollution levels in winter compared to spring. In Kashgar, winter pollution air masses mainly come from local, southern Central Asia, and northern Western Asia sources, while in spring, pollution primarily originates from the Taklamakan Desert, with significantly higher pollution levels than in winter.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving Our Fundamental Understanding of the Role of Aerosol−cloud Interactions in the Climate System. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Sun, Y.; Yang, J.; Li, J.; Zhou, Y.; Yang, Y.; Fan, H.; Zhao, X. Observational Evidence and Mechanisms of Aerosol Effects on Precipitation. Sci. Bull. 2024, 69, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Froyd, K.D.; Yu, P.; Schill, G.P.; Brock, C.A.; Kupc, A.; Williamson, C.J.; Jensen, E.J.; Ray, E.; Rosenlof, K.H.; Bian, H.; et al. Dominant Role of Mineral Dust in Cirrus Cloud Formation Revealed by Global-Scale Measurements. Nat. Geosci. 2022, 15, 177–183. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and Boundary-Layer Interactions and Impact on Air Quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- Kok, J.F.; Ridley, D.A.; Zhou, Q.; Miller, R.L.; Zhao, C.; Heald, C.L.; Ward, D.S.; Albani, S.; Haustein, K. Smaller Desert Dust Cooling Effect Estimated from Analysis of Dust Size and Abundance. Nat. Geosci. 2017, 10, 274–278. [Google Scholar] [CrossRef]
- Reid, J.P.; Bertram, A.K.; Topping, D.O.; Laskin, A.; Martin, S.T.; Petters, M.D.; Pope, F.D.; Rovelli, G. The Viscosity of Atmospherically Relevant Organic Particles. Nat. Commun. 2018, 9, 956. [Google Scholar] [CrossRef]
- Mahowald, N.M.; Hamilton, D.S.; Mackey, K.R.M.; Moore, J.K.; Baker, A.R.; Scanza, R.A.; Zhang, Y. Aerosol Trace Metal Leaching and Impacts on Marine Microorganisms. Nat. Commun. 2018, 9, 2614. [Google Scholar] [CrossRef]
- Pedde, M.; Larson, T.V.; D’Souza, J.; Szpiro, A.A.; Kloog, I.; Lisabeth, L.D.; Jacobs, D.; Sheppard, L.; Allison, M.; Kaufman, J.D.; et al. Coarse Particulate Matter and Markers of Inflammation and Coagulation in the Multi-Ethnic Study of Atherosclerosis (MESA) Population: A Repeat Measures Analysis. Environ. Health Perspect. 2024, 132, 027009. [Google Scholar] [CrossRef]
- Li, R.; Wiedinmyer, C.; Hannigan, M.P. Contrast and Correlations between Coarse and Fine Particulate Matter in the United States. Sci. Total Environ. 2013, 456–457, 346–358. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert Dust Hazards: A Global Review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Todd, M.C.; Cavazos-Guerra, C. Dust Aerosol Emission over the Sahara during Summertime from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Observations. Atmos. Environ. 2016, 128, 147–157. [Google Scholar] [CrossRef]
- Isaza, A.; Kay, M.; Evans, J.P.; Bremner, S.; Prasad, A. Validation of Australian Atmospheric Aerosols from Reanalysis Data and CMIP6 Simulations. Atmos. Res. 2021, 264, 105856. [Google Scholar] [CrossRef]
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian Dust Transported One Full Circuit around the Globe. Nat. Geosci. 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Huang, J.; Wang, T.; Wang, W.; Li, Z.; Yan, H. Climate Effects of Dust Aerosols over East Asian Arid and Semiarid Regions. J. Geophys. Res. Atmos. 2014, 119, 11398–11416. [Google Scholar] [CrossRef]
- Li, C.; Krotkov, N.A.; Dickerson, R.R.; Li, Z.; Yang, K.; Chin, M. Transport and Evolution of a Pollution Plume from Northern China: A Satellite-Based Case Study. J. Geophys. Res. Atmos. 2010, 115, D7. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Q.; Wang, R.; Xiao, K.; Cha, P. Distribution, Source and Transport of the Aerosols over Central Asia. Atmos. Environ. 2019, 210, 120–131. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, Y.; Shao, T.; Tang, Y. Transport of Asian Aerosols to the Pacific Ocean. Atmos. Res. 2020, 234, 104735. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Wang, Z.; Ding, K.; Gao, J.; Chai, F.; Fu, C. Amplified Transboundary Transport of Haze by Aerosol–Boundary Layer Interaction in China. Nat. Geosci. 2020, 13, 428–434. [Google Scholar] [CrossRef]
- Pi, H.; Sharratt, B.; Lei, J. Atmospheric Dust Events in Central Asia: Relationship to Wind, Soil Type, and Land Use. J. Geophys. Res. Atmos. 2017, 122, 6652–6671. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Shen, Y.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of Historical and Projected Future Climatic and Hydrological Changes in Mountainous Semiarid Xinjiang (Northwestern China), Central Asia. CATENA 2020, 187, 104343. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Yan, H.; Yi, Y.; Chen, B.; Zhang, L.; Ayers, J.K. Dust Aerosol Effect on Semi-Arid Climate over Northwest China Detected from A-Train Satellite Measurements. Atmos. Chem. Phys. 2010, 10, 6863–6872. [Google Scholar] [CrossRef]
- Deng, X.; Xie, C.; Liu, D.; Wang, Y. Comparisons of Aerosol Types and Optical Characters over Shouxian Area China Observed from Ground- and Space-Based Systems. Opt. Express 2024, 32, 27081–27098. [Google Scholar] [CrossRef]
- Xu, M.; Ding, J.; Liu, J.; Liu, F.; Jin, X.; Qu, Y. Vertical Distribution and Transport of Aerosols during a Dust Event in Xinjiang, Northwest China. J. Meteorol. Res. 2023, 37, 387–403. [Google Scholar] [CrossRef]
- Ou, Y.; Li, Z.; Chen, C.; Zhang, Y.; Li, K.; Shi, Z.; Dong, J.; Xu, H.; Peng, Z.; Xie, Y.; et al. Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data. Remote Sens. 2022, 14, 821. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, H.; Fan, S.; Xu, W.; Fang, R.; Liu, B.; Gong, W. The Covariability between Temperature Inversions and Aerosol Vertical Distribution over China. Atmos. Pollut. Res. 2024, 15, 101959. [Google Scholar] [CrossRef]
- Lu, X.; Mao, F.; Pan, Z.; Gong, W.; Wang, W.; Tian, L.; Fang, S. Three-Dimensional Physical and Optical Characteristics of Aerosols over Central China from Long-Term CALIPSO and HYSPLIT Data. Remote Sens. 2018, 10, 314. [Google Scholar] [CrossRef]
- Chen, X.; Zuo, H.; Zhang, Z.; Cao, X.; Duan, J.; Zhu, C.; Zhang, Z.; Wang, J. Full-Coverage 250 m Monthly Aerosol Optical Depth Dataset (2000–2019) Amended with Environmental Covariates by an Ensemble Machine Learning Model over Arid and Semi-Arid Areas, NW China. Earth Syst. Sci. Data 2022, 14, 5233–5252. [Google Scholar] [CrossRef]
- Ge, Y.; Abuduwaili, J.; Ma, L.; Wu, N.; Liu, D. Potential Transport Pathways of Dust Emanating from the Playa of Ebinur Lake, Xinjiang, in Arid Northwest China. Atmos. Res. 2016, 178–179, 196–206. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, X.; Meng, X.; Lei, J.; Halik, Ü. Characteristics of the Spatio-Temporal Dynamics of Aerosols in Central Asia and Their Influencing Factors. Remote Sens. 2022, 14, 2684. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, J.; Xu, J.; Qin, X.; Deng, C.; Fu, J.S.; Wang, Q.; Yiming, M.; Huang, K.; Zhuang, G. First Long-Term Detection of Paleo-Oceanic Signature of Dust Aerosol at the Southern Marginal Area of the Taklimakan Desert. Sci. Rep. 2018, 8, 6779. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Li, J.; Jia, R.; Jiang, N.; Kang, L.; Ma, X.; Xie, T. Comparison of Dust Emissions, Transport, and Deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci. 2017, 60, 1338–1355. [Google Scholar] [CrossRef]
- Jia, R.; Li, J.; Zhu, Q.; Li, Y.; Tian, Y.; Li, Y.; Xu, Z. Three-Dimensional Distribution and Formation Causes of Aerosols over Northwest China. J. Desert Res. 2021, 41, 34–43. [Google Scholar]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC Algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Z.; Liu, F.; Chen, Z.; Ren, Y.; Guo, Q. Study on Accuracy Evaluation of MCD19A2 and Spatiotemporal Distribution of AOD in Arid Zones of Central Asia. Sustainability 2023, 15, 13959. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Liu, J.; Wang, J.; Ge, X.; Wang, R.; Zuo, H. Validation and Comparison of High-Resolution MAIAC Aerosol Products over Central Asia. Atmos. Environ. 2021, 251, 118273. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1979 to Present. Copernic. Clim. Change Serv. (C3s) Clim. Data Store (Cds) 2018, 10. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z. ChinaHigh PM 2.5: High-Resolution and High-Quality Ground-Level PM 2.5 Dataset for China (2000–2022). Zenodo 2019, 6398971. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Xue, W.; Sun, L.; Fan, T.; Liu, L.; Su, T.; Cribb, M. The ChinaHighPM10 Dataset: Generation, Validation, and Spatiotemporal Variations from 2015 to 2019 across China. Environ. Int. 2021, 146, 106290. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS Software for Meteorological Data Visualization and Analysis. Meteorol. Appl. 2014, 21, 360–368. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G. An Overview of the HYSPLIT_4 Modelling System for Trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Comparison of Hybrid Receptor Models to Locate PCB Sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Harris, J.M. Source Regions for Atmospheric Aerosol Measured at Barrow, Alaska. Environ. Sci. Technol. 2001, 35, 4214–4226. [Google Scholar] [CrossRef]
- Liu, J.; Ding, J.; Rexiding, M.; Li, X.; Zhang, J.; Ran, S.; Bao, Q.; Ge, X. Characteristics of Dust Aerosols and Identification of Dust Sources in Xinjiang, China. Atmos. Environ. 2021, 262, 118651. [Google Scholar] [CrossRef]
- Gan, Y.; Zhang, Z.; Liu, F.; Chen, Z.; Guo, Q.; Zhu, Z.; Ren, Y. Analysis of Characteristics and Changes in Three-Dimensional Spatial and Temporal Distribution of Aerosol Types in Central Asia. Sci. Total Environ. 2024, 927, 172196. [Google Scholar] [CrossRef]
- He, Q.; Gu, Y.; Zhang, M. Spatiotemporal Patterns of Aerosol Optical Depth throughout China from 2003 to 2016. Sci. Total Environ. 2019, 653, 23–35. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, X.; Liu, Y.; Zhu, Q.; Xie, Y.; Yang, F.; Ali, M.; Huo, W.; He, Q.; Meng, L. Terrain Effects of the Tibetan Plateau on Dust Aerosol Distribution over the Tarim Basin, China. Atmos. Res. 2024, 298, 107143. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Wang, J.; Ge, X.; Raxidin, M.; Liang, J.; Chen, X.; Zhang, Z.; Cao, X.; Ding, Y. Retrieval of Fine-Resolution Aerosol Optical Depth (AOD) in Semiarid Urban Areas Using Landsat Data: A Case Study in Urumqi, NW China. Remote Sens. 2020, 12, 467. [Google Scholar] [CrossRef]
- Campbell, J.R.; Tackett, J.L.; Reid, J.S.; Zhang, J.; Curtis, C.A.; Hyer, E.J.; Sessions, W.R.; Westphal, D.L.; Prospero, J.M.; Welton, E.J.; et al. Evaluating Nighttime CALIOP 0.532 μm Aerosol Optical Depth and Extinction Coefficient Retrievals. Atmos. Meas. Tech. 2012, 5, 2143–2160. [Google Scholar] [CrossRef]
- Lv, F.; Yang, Y.; Yang, J. Spatiotemporal Distribution Characteristics and Relationship Analysis of Aerosol Optical Depth and PM2.5 Concentration: Taking the “2+26” Urban Agglomeration as an Example. Acta Ecol. Sin. 2023, 43, 153–165. [Google Scholar]
- Aldabash, M.; Bektas Balcik, F.; Glantz, P. Validation of MODIS C6.1 and MERRA-2 AOD Using AERONET Observations: A Comparative Study over Turkey. Atmosphere 2020, 11, 905. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Wang, J.; Wang, L.; Wang, W.; Lin, C.; Gui, L.; Wang, L.; Yu, C.; Wang, Y. Characterization of Dust Activation and Their Prevailing Transport over East Asia Based on Multi-Satellite Observations. Atmos. Res. 2022, 265, 105886. [Google Scholar] [CrossRef]
- Ma, W.; Ding, J.; Jin, X. Spatial Heterogeneity and Driving Factors of Aerosol in Western China: Analysis on Multiangle Implementation of Atmospheric Correction–Aerosol Optical Depth in Xinjiang over 2001–2019. Int. J. Climatol. 2023, 43, 1993–2011. [Google Scholar] [CrossRef]
- Li, J.; He, Q.; Ge, X.; Abbas, A.; Jin, L. Spatio-Temporal Changes of AOD in Xinjiang of China from 2000 to 2019: Which Factor Is More Influential, Natural Factor or Human Factor? PLoS ONE 2021, 16, e0253942. [Google Scholar] [CrossRef]
Dataset Name | Data Type | Spatial Resolution | Main Parameters/Usage |
---|---|---|---|
MCD19A2 | Remote sensing product | 1 km | AOD (550 nm) |
CALIPSO Level 1B/VFM | Remote sensing product | Horizontal: 333 m, Vertical: 30–300 m | 532 nm backscatter/Aerosol vertical distribution, type identification |
MERRA-2 | Reanalysis data | 0.625° × 0.5° | Aerosol column mass density |
ERA5 | Reanalysis data | 0.25° × 0.25° | Wind fields, geopotential height |
CHAP | Integrated product | 1 km | PM2.5, PM10 |
GDAS1 | Trajectory model input | 1° × 1° | Trajectory analysis driver |
Criteria | Trend Features |
---|---|
and | Significant increasing trend |
and | Significant decreasing trend |
All other cases | Non-significant or inconsistent trend |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Ling, X.; Liu, W.; Tang, Z.; Zhuang, Q.; Fang, M. Long-Term Spatiotemporal Variability and Source Attribution of Aerosols over Xinjiang, China. Remote Sens. 2025, 17, 2207. https://doi.org/10.3390/rs17132207
Li C, Ling X, Liu W, Tang Z, Zhuang Q, Fang M. Long-Term Spatiotemporal Variability and Source Attribution of Aerosols over Xinjiang, China. Remote Sensing. 2025; 17(13):2207. https://doi.org/10.3390/rs17132207
Chicago/Turabian StyleLi, Chenggang, Xiaolu Ling, Wenhao Liu, Zeyu Tang, Qianle Zhuang, and Meiting Fang. 2025. "Long-Term Spatiotemporal Variability and Source Attribution of Aerosols over Xinjiang, China" Remote Sensing 17, no. 13: 2207. https://doi.org/10.3390/rs17132207
APA StyleLi, C., Ling, X., Liu, W., Tang, Z., Zhuang, Q., & Fang, M. (2025). Long-Term Spatiotemporal Variability and Source Attribution of Aerosols over Xinjiang, China. Remote Sensing, 17(13), 2207. https://doi.org/10.3390/rs17132207