Crop Classification Using Time-Series Sentinel-1 SAR Data: A Comparison of LSTM, GRU, and TCN with Attention
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Data
2.3. Satellite Data
2.4. Classification Model Structure
2.5. Classification Process
3. Results
3.1. Temporal Changes in Backscatter Coefficients
3.2. Crop Classification Accuracies
3.3. Importance of Each Variable
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Victor, N.; Maddikunta, P.K.R.; Mary, D.R.K.; Murugan, R.; Chengoden, R.; Gadekallu, T.R.; Rakesh, N.; Zhu, Y.; Paek, J. Remote Sensing for Agriculture in the Era of Industry 5.0-A Survey. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5920–5945. [Google Scholar] [CrossRef]
- Pokhariyal, S.; Patel, N.R.; Govind, A. Machine Learning-Driven Remote Sensing Applications for Agriculture in India—A Systematic Review. Agronomy 2023, 13, 2302. [Google Scholar] [CrossRef]
- Komp, K.U.; Haub, C. Global Monitoring for Food Security and Sustainable Land Management—Recent Advances of Remote Sensing Applications to African and Siberian Show Cases. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B8, 256–270. [Google Scholar] [CrossRef]
- Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are Agricultural Land-Use Models Able to Predict Changes in Land-Use Intensity? Agric. Ecosyst. Env. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Rabbinge, R.; Van Diepen, C.A. Changes in Agriculture and Land Use in Europe. Eur. J. Agron. 2000, 13, 85–99. [Google Scholar] [CrossRef]
- Kusumastuti, R.D.; Van Donk, D.P.; Teunter, R. Crop-Related Harvesting and Processing Planning: A Review. Int. J. Prod. Econ. 2016, 174, 76–92. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A. Big GIS Analytics Framework for Agriculture Supply Chains: A Literature Review Identifying the Current Trends and Future Perspectives. Comput. Electron. Agric. 2018, 155, 103–120. [Google Scholar] [CrossRef]
- Rasheed, N.; Khan, S.A.; Hassan, A.; Safdar, S. A Decision Support Framework for National Crop Production Planning. IEEE Access 2021, 9, 133402–133415. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-Annual Reflectance Composites from Sentinel-2 and Landsat for National-Scale Crop and Land Cover Mapping. Remote Sens. Env. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Guida, R.; Iervolino, P.; Iodice, A.; Papa, M.N.; Riccio, D.; Ruello, G. Earth Environmental Monitoring Using Multi-Temporal Synthetic Aperture Radar: A Critical Review of Selected Applications. Remote Sens. 2021, 13, 604. [Google Scholar] [CrossRef]
- Akbari, V.; Doulgeris, A.P.; Eltoft, T. Monitoring Glacier Changes Using Multitemporal Multipolarization SAR Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3729–3741. [Google Scholar] [CrossRef]
- Hussain, M.; Keshavarz, R.; Shariati, N. Advancements in Agricultural Microwave Remote Sensing: An Overview From Indoor to Space-Borne Platforms. IEEE Trans. Instrum. Meas. 2025, 74, 5502622. [Google Scholar] [CrossRef]
- García, L.P.; Furano, G.; Ghiglione, M.; Zancan, V.; Imbembo, E.; Ilioudis, C.; Clemente, C.; Trucco, P. Advancements in Onboard Processing of Synthetic Aperture Radar (SAR) Data: Enhancing Efficiency and Real-Time Capabilities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 16625–16645. [Google Scholar] [CrossRef]
- Majidi Nezhad, M.; Nastasi, B.; Groppi, D.; Lamagna, M.; Piras, G.; Astiaso Garcia, D. Green Energy Sources Assessment Using Sentinel-1 Satellite Remote Sensing. Front. Energy Res. 2021, 9, 649305. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Jacome, A.; Poulin, J.; Ludwig, R. Comparison of TerraSAR-X and ALOS PALSAR Differential Interferometry with Multisource DEMs for Monitoring Ground Displacement in a Discontinuous Permafrost Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4074–4093. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Zadi, M.; Shimamura, H.; Mochizuki, K. Improving Crop Classification Accuracy Using Sentinel-1 C-SAR Data and GAN-Generated Optical Images. J. Appl. Remote Sens. 2025, 19, 024505. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random Forest Classification of Crop Type Using Multioral TerraSAR-X Dual-Polarimetric Data. Remote Sens. Lett. 2014, 5, 157–164. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Discrimination of Crop Types with TerraSAR-X-Derived Information. Phys. Chem. Earth 2015, 83–84, 2–13. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.-I. Assessing the Suitability of Data from Sentinel-1A and 2A for Crop Classification. GIsci Remote Sens. 2017, 54, 918–938. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Parameter Tuning in the Support Vector Machine and Random Forest and Their Performances in Cross- and Same-Year Crop Classification Using TerraSAR-X. Int. J. Remote Sens. 2014, 35, 7898–7909. [Google Scholar] [CrossRef]
- Sonobe, R. Combining ASNARO-2 XSAR HH and Sentinel-1 C-SAR VH/VV Polarization Data for Improved Crop Mapping. Remote Sens. 2019, 11, 1920. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Shimamura, H.; Mochizuki, K. Addition of Fake Imagery Generated by Generative Adversarial Networks for Improving Crop Classification. Adv. Space Res. 2024, 74, 2901–2914. [Google Scholar] [CrossRef]
- Waqas, M.; Humphries, U.W. A Critical Review of RNN and LSTM Variants in Hydrological Time Series Predictions. MethodsX 2024, 13, 102946. [Google Scholar] [CrossRef]
- Malhotra, R.; Singh, P. Recent Advances in Deep Learning Models: A Systematic Literature Review. Multimed. Tools Appl. 2023, 82, 44977–45060. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Cheruyot, R.; Wachera, A.N. Rainfall and Runoff Time-Series Trend Analysis Using LSTM Recurrent Neural Network and Wavelet Neural Network with Satellite-Based Meteorological Data: Case Study of Nzoia Hydrologic Basin. Complex. Intell. Syst. 2022, 8, 213–236. [Google Scholar] [CrossRef]
- Soydaner, D. Attention Mechanism in Neural Networks: Where It Comes and Where It Goes. Neural Comput. Appl. 2022, 34, 13371–13385. [Google Scholar] [CrossRef]
- Hernández, A.; Amigó, J.M. Attention Mechanisms and Their Applications to Complex Systems. Entropy 2021, 23, 283. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed on 14 June 2025).
- Liu, L.; He, J.; Ren, K.; Lungu, J.; Hou, Y.; Dong, R. An Information Gain-Based Model and an Attention-Based RNN for Wearable Human Activity Recognition. Entropy 2021, 23, 1635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, F.; Huang, R. A Combination of RNN and CNN for Attention-Based Relation Classification. Procedia Comput. Sci. 2018, 131, 911–917. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, R.; Du, X.; Du, Y. TransUNetCD: A Hybrid Transformer Network for Change Detection in Optical Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5622519. [Google Scholar] [CrossRef]
- Reza, S.; Ferreira, M.C.; Machado, J.J.M.; Tavares, J.M.R.S. A Multi-Head Attention-Based Transformer Model for Traffic Flow Forecasting with a Comparative Analysis to Recurrent Neural Networks. Expert. Syst. Appl. 2022, 202, 117275. [Google Scholar] [CrossRef]
- Han, Y.; Li, Z.; Wei, T.; Zuo, X.; Liu, M.; Ma, B.; Geng, Z. Production Capacity Prediction Based Response Conditions Optimization of Straw Reforming Using Attention-Enhanced Convolutional LSTM Integrating Data Expansion. Appl. Energy 2024, 365, 123253. [Google Scholar] [CrossRef]
- Sheng, Z.; Cao, Y.; Yang, Y.; Feng, Z.-K.; Shi, K.; Huang, T.; Wen, S. Residual Temporal Convolutional Network With Dual Attention Mechanism for Multilead-Time Interpretable Runoff Forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 8757–8771. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, Y.; Zhang, Z.; Wang, H.; Zhao, Y.; Li, C. Exploring Spatio-Temporal Representations by Integrating Attention-Based Bidirectional-LSTM-RNNs and FCNs for Speech Emotion Recognition. In Proceedings of the 19th Annual Conference of the International Speech Communication Association (INTERSPEECH 2018), Hyderabad, India, 2–6 September 2018; Volume 2018. [Google Scholar]
- Zheng, J.; Zheng, L. A Hybrid Bidirectional Recurrent Convolutional Neural Network Attention-Based Model for Text Classification. IEEE Access 2019, 7, 106673–106685. [Google Scholar] [CrossRef]
- Himeur, Y.; Rimal, B.; Tiwary, A.; Amira, A. Using Artificial Intelligence and Data Fusion for Environmental Monitoring: A Review and Future Perspectives. Inf. Fusion. 2022, 86–87, 44–75. [Google Scholar] [CrossRef]
- Han, H.; Liu, Z.; Li, J.; Zeng, Z. Challenges in Remote Sensing Based Climate and Crop Monitoring: Navigating the Complexities Using AI. J. Cloud Comput. 2024, 13, 34. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: Lstm Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Wani, T.; Qadri, S.A.A. A Review of Deep Learning Architectures for Speech and Audio Processing. Int. J. Sci. Eng. Res. 2020, 11, 63–69. [Google Scholar]
- Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to Diagnose with LSTM Recurrent Neural Networks. In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Kumar, D.; Aziz, S. Performance Evaluation of Recurrent Neural Networks-LSTM and GRU for Automatic Speech Recognition. In Proceedings of the 2023 International Conference on Computer, Electronics and Electrical Engineering and their Applications, IC2E3 2023, Srinagar Garhwal, India, 8–9 June 2023. [Google Scholar]
- Abdelgwad, M.M.; Soliman, T.H.A.; Taloba, A.I.; Farghaly, M.F. Arabic Aspect Based Sentiment Analysis Using Bidirectional GRU Based Models. J. King Saud. Univ. Comput. Inf. Sci. 2022, 34, 6652–6662. [Google Scholar] [CrossRef]
- Ullah, H.; Munir, A. Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework. J. Imaging 2023, 9, 130. [Google Scholar] [CrossRef]
- Hazmoune, S.; Bougamouza, F. Using Transformers for Multimodal Emotion Recognition: Taxonomies and State of the Art Review. Eng. Appl. Artif. Intell. 2024, 133, 108339. [Google Scholar] [CrossRef]
- Lara-Benítez, P.; Carranza-García, M.; Luna-Romera, J.M.; Riquelme, J.C. Temporal Convolutional Networks Applied to Energy-Related Time Series Forecasting. Appl. Sci. 2020, 10, 2322. [Google Scholar] [CrossRef]
- Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef]
- Ló, T.B.; Corrêa, U.B.; Araújo, R.M.; Johann, J.A. Temporal Convolutional Neural Network for Land Use and Land Cover Classification Using Satellite Images Time Series. Arab. J. Geosci. 2023, 16, 585. [Google Scholar] [CrossRef]
- Liu, S.; Le, F.; Chakraborty, S.; Abdelzaher, T. On Exploring Attention-Based Explanation for Transformer Models in Text Classification. In Proceedings of the 2021 IEEE International Conference on Big Data, Big Data 2021, Orlando, FL, USA, 15–18 December 2021. [Google Scholar]
- Gao, Y.; Ruan, Y. Interpretable Deep Learning Model for Building Energy Consumption Prediction Based on Attention Mechanism. Energy Build 2021, 252, 111379. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the Temporal Behavior of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Env. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; Lili-Chabaane, Z.; Baghdadi, N.; El Hajj, M.; Gao, Q.; Mougenot, B. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters. Sensors 2017, 17, 2617. [Google Scholar] [CrossRef] [PubMed]
- Abdikan, S.; Sanli, F.B.; Ustuner, M.; Calò, F. Land Cover Mapping Using Sentinel-1 SAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 757–761. [Google Scholar] [CrossRef]
Number Fields | Area (ha) | |||||
---|---|---|---|---|---|---|
Minimum | Median | Mean | Maximum | Standard Deviation | ||
Beans | 533 | 0.13 | 2.58 | 2.97 | 12.90 | 1.89 |
Beetroot | 274 | 0.20 | 2.50 | 2.89 | 14.36 | 1.69 |
Grass | 720 | 0.08 | 2.07 | 2.67 | 23.70 | 2.38 |
Maize | 451 | 0.05 | 2.35 | 2.99 | 17.85 | 2.35 |
Potatoes | 188 | 0.33 | 2.84 | 3.16 | 9.04 | 1.83 |
Wheat | 496 | 0.09 | 2.90 | 3.25 | 12.83 | 1.95 |
Acquisition Date | Mode | Polarization | Incidence Angle (°) | Pass Direction | Look Direction | |
---|---|---|---|---|---|---|
Near | Far | |||||
25 April 2024 | IW | VH/VV | 30.65 | 45.87 | Descending | Right |
7 May 2024 | IW | VH/VV | 30.65 | 45.87 | Descending | Right |
19 May 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
31 May 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
12 June 2024 | IW | VH/VV | 30.65 | 45.87 | Descending | Right |
24 June 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
6 July 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
18 July 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
30 July 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
11 August 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
23 August 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
4 September 2024 | IW | VH/VV | 30.66 | 45.87 | Descending | Right |
16 September 2024 | IW | VH/VV | 30.65 | 45.87 | Descending | Right |
28 September 2024 | IW | VH/VV | 30.65 | 45.87 | Descending | Right |
10 October 2024 | IW | VH/VV | 30.65 | 45.87 | Descending | Right |
22 October 2024 | IW | VH/VV | 30.65 | 45.87 | Descending | Right |
LSTM | Bi-GRU | TCN | LSTM + Attention | Bi-GRU + Attention | TCN + Attention | ||
---|---|---|---|---|---|---|---|
PA | |||||||
Beans | 80.1% | 81.1% | 76.3% | 83.6% | 80.2% | 79.0% | |
Beetroot | 81.4% | 84.4% | 84.5% | 82.1% | 84.1% | 82.5% | |
Grass | 91.4% | 92.2% | 90.1% | 90.6% | 92.3% | 92.3% | |
Maize | 81.4% | 83.5% | 84.6% | 80.2% | 84.0% | 88.3% | |
Potatoes | 66.8% | 76.8% | 72.6% | 66.7% | 77.2% | 75.3% | |
Wheat | 84.4% | 85.6% | 85.0% | 84.6% | 85.6% | 87.7% | |
UA | |||||||
Beans | 82.2% | 84.8% | 85.6% | 80.1% | 86.5% | 87.6% | |
Beetroot | 87.6% | 88.7% | 87.2% | 86.9% | 88.7% | 88.0% | |
Grass | 86.9% | 88.8% | 87.5% | 87.4% | 88.6% | 90.1% | |
Maize | 72.7% | 76.1% | 74.1% | 78.3% | 74.3% | 74.9% | |
Potatoes | 72.9% | 75.5% | 69.1% | 73.4% | 73.9% | 69.7% | |
Wheat | 89.7% | 91.1% | 87.1% | 88.7% | 91.1% | 91.7% | |
F1 | |||||||
Beans | 81.1% | 82.9% | 80.6% | 81.8% | 83.2% | 83.1% | |
Beetroot | 84.4% | 86.5% | 85.8% | 84.4% | 86.3% | 85.2% | |
Grass | 89.1% | 90.4% | 88.8% | 89.0% | 90.4% | 91.2% | |
Maize | 76.8% | 79.6% | 79.0% | 79.2% | 78.8% | 81.1% | |
Potatoes | 69.7% | 76.1% | 70.8% | 69.9% | 75.5% | 72.4% | |
Wheat | 87.0% | 88.3% | 86.1% | 86.6% | 88.3% | 89.7% | |
OA | 83.2% | 85.3% | 83.4% | 83.6% | 85.2% | 85.7% | |
Kappa | 0.792 | 0.818 | 0.795 | 0.797 | 0.817 | 0.823 |
LSTM | Bi-GRU | TCN | LSTM + Attention | Bi-GRU + Attention | TCN + Attention | |
---|---|---|---|---|---|---|
LSTM | . | *** | n.s. | * | * | |
Bi-GRU | . | ** | * | * | ||
TCN | *** | n.s. | *** | |||
LSTM + Attention | *** | *** | ||||
Bi-GRU + Attention | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchiya, Y.; Sonobe, R. Crop Classification Using Time-Series Sentinel-1 SAR Data: A Comparison of LSTM, GRU, and TCN with Attention. Remote Sens. 2025, 17, 2095. https://doi.org/10.3390/rs17122095
Tsuchiya Y, Sonobe R. Crop Classification Using Time-Series Sentinel-1 SAR Data: A Comparison of LSTM, GRU, and TCN with Attention. Remote Sensing. 2025; 17(12):2095. https://doi.org/10.3390/rs17122095
Chicago/Turabian StyleTsuchiya, Yuta, and Rei Sonobe. 2025. "Crop Classification Using Time-Series Sentinel-1 SAR Data: A Comparison of LSTM, GRU, and TCN with Attention" Remote Sensing 17, no. 12: 2095. https://doi.org/10.3390/rs17122095
APA StyleTsuchiya, Y., & Sonobe, R. (2025). Crop Classification Using Time-Series Sentinel-1 SAR Data: A Comparison of LSTM, GRU, and TCN with Attention. Remote Sensing, 17(12), 2095. https://doi.org/10.3390/rs17122095