Increasing Ecosystem Fluxes Observed from Eddy Covariance and Solar-Induced Fluorescence Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Site-Level Observations
2.2. Gridded Observations
2.3. SIF Products
2.4. Machine Learning Algorithms
2.5. Interpretation of Factor Contributions in Machine Learning
3. Results
3.1. Relationships Between SIF and Ecosystem Fluxes
3.2. Site-Level Validations of ML Models Across Various PFTs
3.3. Spatiotemporal Variations in ECSIF-Based GPP and ET
3.4. Spatiotemporal Variations in Global WUE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Chen, J.M.; Guanter, L.; He, L.; Zhang, Y. From Canopy-Leaving to Total Canopy Far-Red Fluorescence Emission for Remote Sensing of Photosynthesis: First Results From TROPOMI. Geophys. Res. Lett. 2019, 46, 12030–12040. [Google Scholar] [CrossRef]
- Chen, A.; Mao, J.; Ricciuto, D.; Lu, D.; Xiao, J.; Li, X.; Thornton, P.E.; Knapp, A.K. Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere. Glob. Change Biol. 2021, 27, 5186–5197. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wen, J.; Chang, C.Y.; Frankenberg, C.; Sun, Y. High Resolution Global Contiguous SIF Estimates from OCO-2 SIF and MODIS, Version 2; ORNL DAAC: Oak Ridge, TN, USA, 2021. [CrossRef]
- Zhang, Q.; Liu, X.; Zhou, K.; Zhou, Y.; Gentine, P.; Pan, M.; Katul, G.G. Solar-induced chlorophyll fluorescence sheds light on global evapotranspiration. Remote Sens. Environ. 2024, 305, 114061. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Xu, C.-y.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Ryu, Y.; Baldocchi, D.D.; Kobayashi, H.; van Ingen, C.; Li, J.; Black, T.A.; Beringer, J.; van Gorsel, E.; Knohl, A.; Law, B.E.; et al. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 2011, 25, 4. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosci. 2009, 6, 2001–2013. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 2011, 116, G3. [Google Scholar] [CrossRef]
- Xiao, J.; Zhuang, Q.; Law, B.E.; Chen, J.; Baldocchi, D.D.; Cook, D.R.; Oren, R.; Richardson, A.D.; Wharton, S.; Ma, S.; et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 2010, 114, 576–591. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Q.; Sun, R. Comparison of Machine Learning Methods to Up-Scale Gross Primary Production. Remote Sens. 2021, 13, 2448. [Google Scholar] [CrossRef]
- Yu, R.; Yao, Y.; Tang, Q.; Shao, C.; Fisher, J.B.; Chen, J.; Jia, K.; Zhang, X.; Li, Y.; Shang, K.; et al. Coupling a light use efficiency model with a machine learning-based water constraint for predicting grassland gross primary production. Agric. For. Meteorol. 2023, 341, 109634. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Cihlar, J.; Park, W.M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 1997, 62, 158–175. [Google Scholar] [CrossRef]
- Jiang, C.; Ryu, Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sens. Environ. 2016, 186, 528–547. [Google Scholar] [CrossRef]
- Bonan, G.B.; Lombardozzi, D.L.; Wieder, W.R.; Oleson, K.W.; Lawrence, D.M.; Hoffman, F.M.; Collier, N. Model Structure and Climate Data Uncertainty in Historical Simulations of the Terrestrial Carbon Cycle (1850–2014). Glob. Biogeochem. Cycles 2019, 33, 1310–1326. [Google Scholar] [CrossRef]
- Minaya, V.; Corzo, G.A.; Solomatine, D.P.; Mynett, A.E. Data-driven techniques for modelling the gross primary production of the páramo vegetation using climate data: Application in the Ecuadorian Andean region. Ecol. Inform. 2018, 43, 222–230. [Google Scholar] [CrossRef]
- Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely, G.; et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with. regression algorithms. Biogeosciences 2016, 13, 4291–4313. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Xiao, J.; Ollinger, S.V.; Frolking, S.; Hurtt, G.C.; Hollinger, D.Y.; Davis, K.J.; Pan, Y.; Zhang, X.; Deng, F.; Chen, J.; et al. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agric. For. Meteorol. 2014, 197, 142–157. [Google Scholar] [CrossRef]
- Li, F.; Xiao, J.; Chen, J.; Ballantyne, A.; Jin, K.; Li, B.; Abraha, M.; John, R. Global water use efficiency saturation due to increased vapor pressure deficit. Science 2023, 381, 672–677. [Google Scholar] [CrossRef]
- Feng, Q.; Shen, J.; Yang, F.; Liang, S.; Liu, J.; Kuang, X.; Wang, D.; Zeng, Z. Long-term gridded land evapotranspiration reconstruction using Deep Forest with high generalizability. Sci. Data 2023, 10, 908. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M.; Huemmrich, K.F.; Yoshida, Y.; Frankenberg, C. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 2803–2823. [Google Scholar] [CrossRef]
- Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Köhler, P.; Pollock, R.; Taylor, T.E. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef]
- Walther, S.; Voigt, M.; Thum, T.; Gonsamo, A.; Zhang, Y.; Köhler, P.; Jung, M.; Varlagin, A.; Guanter, L. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob. Change Biol. 2016, 22, 2979–2996. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; He, B.; Altaf Arain, M.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.; et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations. Glob Chang Biol 2018, 24, 3990–4008. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Nie, C.; Zhang, S.; Wang, G.; Chen, S.; Chen, Z. A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms. Sci. Data. 2022, 9, 427. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Filella, I.; Verger, A.; Peñuelas, J. Photosynthetic light use efficiency from satellite sensors: From global to Mediterranean vegetation. Environ. Exp. Bot. 2014, 103, 3–11. [Google Scholar] [CrossRef]
- Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 2012, 121, 236–251. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Yoshida, Y.; Corp, L.A.; Middleton, E.M. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 2011, 8, 637–651. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; Fang, B.; Konings, A.G.; Aires, F.; Green, J.K.; Kolassa, J.; Miralles, D.; Prigent, C.; Gentine, P. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. Biogeosciences 2017, 14, 4101–4124. [Google Scholar] [CrossRef]
- Lu, X.; Liu, Z.; An, S.; Miralles, D.G.; Maes, W.; Liu, Y.; Tang, J. Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest. Agric. For. Meteorol. 2018, 252, 75–87. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, Q.; Xiong, L.; Gentine, P. Estimating evapotranspiration using remotely sensed solar-induced fluorescence measurements. Agric. For. Meteorol. 2022, 314. [Google Scholar] [CrossRef]
- Tong, B.; Guo, J.; Xu, H.; Wang, Y.; Li, H.; Bian, L.; Zhang, J.; Zhou, S. Effects of soil moisture, net radiation, and atmospheric vapor pressure deficit on surface evaporation fraction at a semi-arid grass site. Sci. Total Environ. 2022, 849, 157890. [Google Scholar] [CrossRef]
- Flo, V.; Martínez-Vilalta, J.; Granda, V.; Mencuccini, M.; Poyatos, R. Vapour pressure deficit is the main driver of tree canopy conductance across biomes. Agric. For. Meteorol. 2022, 322, 109029. [Google Scholar] [CrossRef]
- Shan, N.; Zhang, Y.; Chen, J.M.; Ju, W.; Migliavacca, M.; Peñuelas, J.; Yang, X.; Zhang, Z.; Nelson, J.A.; Goulas, Y. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sens. Environ. 2021, 252, 112134. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; He, J.; Zhang, K. Energy exchange and evapotranspiration over irrigated seed maize agroecosystems in a desert-oasis region, northwest China. Agric. For. Meteorol. 2016, 223, 48–59. [Google Scholar] [CrossRef]
- Ryu, Y.; Jiang, C.; Kobayashi, H.; Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5km resolution from 2000. Remote Sens. Environ. 2018, 204, 812–825. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, M.; Moreno, A. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V061; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [CrossRef]
- Running, S.; Mu, Q.; Zhao, M.; Moreno, A. MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500m SIN Grid V061; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [CrossRef]
- Nelson, J.A.; Walther, S.; Gans, F.; Kraft, B.; Weber, U.; Novick, K.; Buchmann, N.; Migliavacca, M.; Wohlfahrt, G.; Šigut, L.; et al. X-BASE: The first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X. EGUsphere 2024, 2024, 1–51. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Zhang, Y.; Joiner, J.; Alemohammad, S.H.; Zhou, S.; Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 2018, 15, 5779–5800. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.F. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens 2019, 11, 517. [Google Scholar] [CrossRef]
- Roesch, A.; Schaaf, C.; Gao, F. Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos. J. Geophys. Res. Atmos. 2004, 109, D12. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- AlThuwaynee, O.F.; Kim, S.-W.; Najemaden, M.A.; Aydda, A.; Balogun, A.-L.; Fayyadh, M.M.; Park, H.-J. Demystifying uncertainty in PM10 susceptibility mapping using variable drop-off in extreme-gradient boosting (XGB) and random forest (RF) algorithms. Environ. Sci. Pollut. Res. 2021, 28, 43544–43566. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Ma, Y. Comparison of XGBoost and the Neural Network model on the class-balanced datasets. In Proceedings of the 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), Greenville, SC, USA, 12–14 November 2021; IEEE: New York, NY, USA, 2021; pp. 457–461. [Google Scholar]
- Chen, W.; Fu, K.; Zuo, J.; Zheng, X.; Huang, T.; Ren, W. Radar emitter classification for large data set based on weighted-xgboost. IET Radar Sonar Navig. 2017, 11, 1203–1207. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C.; Villa-Vialaneix, N. Random Forests for Big Data. Big Data Res. 2017, 9, 28–46. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Dai, H.; Geng, G.; Yuan, W.; Chen, J.; Shen, G.; Zhang, T.; Zhu, J.; Liao, H. Recovery of ecosystem productivity in China due to the Clean Air Action plan. Nat. Geosci. 2024, 17, 1233–1239. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Wang, B.; Tian, C.; Lu, X.; Zhu, J.; Cao, Y. Distinguishing the main climatic drivers to the variability of gross primary productivity at global FLUXNET sites. Environ. Res. Lett. 2023, 18, 124007. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Zhou, S.; Gao, Z.; Zong, L.; Fan, S.; Yin, J. Estimating Gross Primary Productivity (GPP) over Rice–Wheat-Rotation Croplands by Using the Random Forest Model and Eddy Covariance Measurements: Upscaling and Comparison with the MODIS Product. Remote Sens. 2021, 13, 4229. [Google Scholar] [CrossRef]
- Guo, R.; Chen, T.; Chen, X.; Yuan, W.; Liu, S.; He, B.; Li, L.; Wang, S.; Hu, T.; Yan, Q.; et al. Estimating Global GPP From the Plant Functional Type Perspective Using a Machine Learning Approach. J. Geophys. Res. Biogeosci. 2023, 128, e2022JG007100. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; NeurIPS: Denver, CO, USA, 2017; Volume 30. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [Google Scholar] [CrossRef]
- Mao, H.; Deng, X.; Jiang, H.; Shi, L.; Li, H.; Tuo, L.; Shi, D.; Guo, F. Driving safety assessment for ride-hailing drivers. Accid. Anal. Prev. 2021, 149, 105574. [Google Scholar] [CrossRef]
- Wang, H.; Yan, S.; Ciais, P.; Wigneron, J.-P.; Liu, L.; Li, Y.; Fu, Z.; Ma, H.; Liang, Z.; Wei, F.; et al. Exploring complex water stress–gross primary production relationships: Impact of climatic drivers, main effects, and interactive effects. Glob. Change Biol. 2022, 28, 4110–4123. [Google Scholar] [CrossRef]
- Cui, Z.; Li, M.; Huang, Y.; Wang, Y.; Chen, H. An interpretation framework for autonomous vehicles decision-making via SHAP and RF. In Proceedings of the 2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI), Nanjing, China, 28–30 October 2022; pp. 1–7. [Google Scholar]
- Gao, H.; Liu, S.; Lu, W.; Smith, A.R.; Valbuena, R.; Yan, W.; Wang, Z.; Xiao, L.; Peng, X.; Li, Q.; et al. Global Analysis of the Relationship between Reconstructed Solar-Induced Chlorophyll Fluorescence (SIF) and Gross Primary Production (GPP). Remote Sens. 2021, 13, 2824. [Google Scholar] [CrossRef]
- Xin, Q.; Gong, P.; Yu, C.; Yu, L.; Broich, M.; Suyker, A.E.; Myneni, R.B. A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US. Remote Sens. 2013, 5, 5926–5943. [Google Scholar] [CrossRef]
- Chen, X.; Mo, X.; Hu, S.; Liu, S. Contributions of climate change and human activities to ET and GPP trends over North China Plain from 2000 to 2014. J. Geogr. Sci. 2017, 27, 661–680. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Gonsamo, A.; Luo, X.; Wang, R.; Liu, Y.; Liu, R. Changes in the Shadow: The Shifting Role of Shaded Leaves in Global Carbon and Water Cycles Under Climate Change. Geophys. Res. Lett. 2018, 45, 5052–5061. [Google Scholar] [CrossRef]
- Chen, J.M.; Mo, G.; Pisek, J.; Liu, J.; Deng, F.; Ishizawa, M.; Chan, D. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 2012, 26, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef]
- Yu, T.; Sun, R.; Xiao, Z.; Zhang, Q.; Liu, G.; Cui, T.; Wang, J. Estimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data. Remote Sens. 2018, 10, 327. [Google Scholar] [CrossRef]
- Badgley, G.; Anderegg, L.D.L.; Berry, J.A.; Field, C.B. Terrestrial gross primary production: Using NIRV to scale from site to globe. Glob. Change Biol. 2019, 25, 3731–3740. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary Production Derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Liu, S.; Liang, S.; Chen, J.M.; Ju, W.; Zhang, L.; Yuan, W. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Zeng, Z.; Piao, S.; Lin, X.; Yin, G.; Peng, S.; Ciais, P.; Myneni, R.B. Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models. Environ. Res. Lett. 2012, 7, 14026. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Guanter, L.; Berry, J.; Joanna, J.; Tol, C.; Huete, A.; Gitelson, A.; Voigt, M.; Köhler, P. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Glob. Change Biol. 2014, 20, 3727–3742. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Frankenberg, C.; Berry, J.A. Solar Induced Chlorophyll Fluorescence: Origins, Relation to Photosynthesis and Retrieval. Compr. Remote Sens. 2018, 3, 143–162. [Google Scholar]
- Genty, B.; Harbinson, J.; Baker, N.R. Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-respiratory conditions. Biochemistry 1990, 28, 1–10. [Google Scholar]
- Yang, H.; Yang, X.; Zhang, Y.; Heskel, M.A.; Lu, X.; Munger, J.W.; Sun, S.; Tang, J. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Glob. Change Biol. 2017, 23, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Han, J.; Wood, J.; Chang, C.; Sun, Y. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol. 2019, 223, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.P.; Cramer, W.; Franklin, O.; Prentice, I.C.; Wang, H.; Brännström, Å.; de Boer, H.; Dieckmann, U.; Joshi, J.; Keenan, T.F.; et al. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytol. 2021, 231, 2125–2141. [Google Scholar] [CrossRef]
- Cowan, I.R.; Farquhar, G.D. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol. 1977, 31, 471–505. [Google Scholar]
- Shan, N.; Ju, W.; Migliavacca, M.; Martini, D.; Guanter, L.; Chen, J.; Goulas, Y.; Zhang, Y. Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. Agric. For. Meteorol. 2019, 268, 189–201. [Google Scholar] [CrossRef]
- Maes, W.H.; Pagán, B.R.; Martens, B.; Gentine, P.; Guanter, L.; Steppe, K.; Verhoest, N.E.C.; Dorigo, W.; Li, X.; Xiao, J.; et al. Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sens. Environ. 2020, 249, 112030. [Google Scholar] [CrossRef]
- Damm, A.; Roethlin, S.; Fritsche, L. Towards Advanced Retrievals of Plant Transpiration Using Sun-Induced Chlorophyll Fluorescence: First Considerations. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018; pp. 5983–5986. [Google Scholar]
- Xue, B.-L.; Guo, Q.; Otto, A.; Xiao, J.; Tao, S.; Li, L. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere 2015, 6, 174. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Desai, A.R.; Nagy, Z.; Luo, J.; Kolb, T.E.; Olioso, A.; Xu, X.; Yao, L.; Kutsch, W.; et al. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Sci. Rep. 2014, 4, 7483. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z.; et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Badgley, G.; Fisher, J.B.; Jiménez, C.; Tu, K.P.; Vinukollu, R. On Uncertainty in Global Terrestrial Evapotranspiration Estimates from Choice of Input Forcing Datasets. J. Hydrometeorol. 2015, 16, 1449–1455. [Google Scholar] [CrossRef]
- Guerrieri, R.; Belmecheri, S.; Ollinger, S.V.; Asbjornsen, H.; Jennings, K.; Xiao, J.; Stocker, B.D.; Martin, M.; Hollinger, D.Y.; Bracho-Garrillo, R.; et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl. Acad. Sci. USA 2019, 116, 16909–16914. [Google Scholar] [CrossRef]
- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid, H.P.; Richardson, A.D. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 2013, 499, 324–327. [Google Scholar] [CrossRef]
- Dekker, S.C.; Groenendijk, M.; Booth, B.B.B.; Huntingford, C.; Cox, P.M. Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations. Earth Syst. Dynam. 2016, 7, 525–533. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal Conductance and Photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Yamamoto, H.; Tani, H.; Zhong, G.; Yin, S.; Guo, E. Spatial pattern of GPP variations in terrestrial ecosystems and its drivers: Climatic factors, CO2 concentration and land-cover change, 1982–2015. Ecol. Inform. 2018, 46, 156–165. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; VanLoocke, A. Terrestrial Ecosystems in a Changing Environment: A Dominant Role for Water. Annu. Rev. Plant Physiol. 2015, 66, 599–622. [Google Scholar] [CrossRef]
- Gentine, P.; Green, J.K.; Guérin, M.; Humphrey, V.; Seneviratne, S.I.; Zhang, Y.; Zhou, S. Coupling between the terrestrial carbon and water cycles—A review. Environ. Res. Lett. 2019, 14, 83003. [Google Scholar] [CrossRef]
- Xie, S.; Mo, X.; Hu, S.; Liu, S. Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China. Agric. For. Meteorol. 2020, 295, 108183. [Google Scholar] [CrossRef]
- Hou, W.; Jin, J.; Yan, T.; Liu, Y. Global Atmospheric Carbon Dioxide Concentration Simulation Grid Dataset (1992–2020). Digit. J. Glob. Change Data Repos. 2021, 9, 83. [Google Scholar] [CrossRef]
- Wang, S.; Ibrom, A.; Bauer-Gottwein, P.; Garcia, M. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest. Agric. For. Meteorol. 2018, 248, 479–493. [Google Scholar] [CrossRef]
- Chakraborty, T.; Lee, X.; Lawrence, D.M. Diffuse Radiation Forcing Constraints on Gross Primary Productivity and Global Terrestrial Evapotranspiration. Earth’s Future 2022, 10, e2022EF002805. [Google Scholar] [CrossRef]
- Wang, B.; Yue, X.; Zhou, H.; Lu, X.; Zhu, J. Enhanced Ecosystem Water-Use Efficiency Under the More Diffuse Radiation Conditions. Glob. Biogeochem. Cycles 2023, 37, e2022GB007606. [Google Scholar] [CrossRef]
PFTs | CRO N = 17 | DBF N = 23 | EBF N = 13 | ENF N = 49 | GRA N = 37 | MF N = 9 | SH N = 16 | SAV N = 9 | WET N = 18 | WSA N = 6 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CSIF | GPP | r | 0.62 | 0.84 | 0.59 | 0.81 | 0.81 | 0.91 | 0.81 | 0.68 | 0.75 | 0.82 |
Slope1 | 19.12 | 24.94 | 15.30 | 23.74 | 22.91 | 21.58 | 20.25 | 16.56 | 17.95 | 26.84 | ||
Slope2 | 18.65 | 24.22 | 22.99 | 27.11 | 22.84 | 21.55 | 20.90 | 20.30 | 18.74 | 25.43 | ||
ET | r | 0.58 | 0.75 | 0.71 | 0.69 | 0.71 | 0.75 | 0.70 | 0.59 | 0.51 | 0.69 | |
Slope1 | 0.21 | 0.26 | 0.34 | 0.25 | 0.27 | 0.24 | 0.34 | 0.29 | 0.25 | 0.51 | ||
Slope2 | 0.29 | 0.29 | 0.38 | 0.35 | 0.34 | 0.27 | 0.46 | 0.44 | 0.36 | 0.58 | ||
GOSIF | GPP | r | 0.61 | 0.77 | 0.21 | 0.69 | 0.78 | 0.90 | 0.61 | 0.69 | 0.71 | 0.77 |
Slope1 | 20.78 | 24.49 | 5.38 | 22.19 | 26.65 | 23.21 | 18.38 | 20.59 | 18.34 | 26.96 | ||
Slope2 | 22.51 | 27.56 | 25.75 | 30.48 | 28.15 | 25.93 | 23.45 | 24.39 | 21.00 | 27.19 | ||
ET | r | 0.59 | 0.74 | 0.41 | 0.61 | 0.71 | 0.77 | 0.52 | 0.65 | 0.50 | 0.67 | |
Slope1 | 0.24 | 0.28 | 0.19 | 0.25 | 0.33 | 0.27 | 0.30 | 0.38 | 0.27 | 0.52 | ||
Slope2 | 0.35 | 0.34 | 0.44 | 0.39 | 0.43 | 0.32 | 0.51 | 0.54 | 0.40 | 0.63 | ||
RTSIF | GPP | r | 0.61 | 0.77 | 0.19 | 0.68 | 0.77 | 0.90 | 0.61 | 0.71 | 0.70 | 0.60 |
Slope1 | 10.95 | 13.79 | 3.25 | 13.00 | 14.93 | 13.97 | 11.34 | 13.15 | 10.57 | 13.68 | ||
Slope2 | 11.53 | 15.03 | 16.93 | 17.67 | 15.09 | 15.08 | 13.28 | 14.90 | 11.57 | 15.89 | ||
ET | r | 0.56 | 0.73 | 0.40 | 0.60 | 0.67 | 0.75 | 0.51 | 0.64 | 0.49 | 0.48 | |
Slope1 | 0.12 | 0.15 | 0.12 | 0.14 | 0.18 | 0.16 | 0.18 | 0.24 | 0.15 | 0.25 | ||
Slope2 | 0.18 | 0.18 | 0.29 | 0.23 | 0.23 | 0.19 | 0.30 | 0.33 | 0.22 | 0.37 |
PFTs | CRO N = 959 | DBF N = 1214 | EBF N = 622 | ENF N = 2995 | GRA N = 1795 | MF N = 637 | SH N = 701 | SAV N = 427 | WET N = 613 | WSA N = 411 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CSIF | XGB | GPP | NSE | 0.52 | 0.90 | 0.86 | 0.71 | 0.86 | 0.91 | 0.92 | 0.81 | 0.81 | 0.85 |
RMB | 1.84% | 0.05% | 0.21% | 1.64% | 0.24% | 0.09% | −0.08% | 3.49% | −1.34% | −3.02% | |||
ET | NSE | 0.75 | 0.86 | 0.86 | 0.80 | 0.81 | 0.83 | 0.72 | 0.69 | 0.86 | 0.88 | ||
RMB | 0.65% | −1.38% | 0.25% | −0.71% | −1.49% | 0.99% | 0.12% | 4.40% | −2.25% | −1.82% | |||
RF | GPP | NSE | 0.57 | 0.90 | 0.85 | 0.80 | 0.87 | 0.91 | 0.91 | 0.80 | 0.81 | 0.87 | |
RMB | 2.47% | 0.01% | 0.32% | 1.00% | 0.34% | 0.34% | 0.43% | 5.06% | −1.67% | −2.23% | |||
ET | NSE | 0.74 | 0.87 | 0.89 | 0.75 | 0.81 | 0.82 | 0.79 | 0.78 | 0.88 | 0.86 | ||
RMB | 1.17% | −2.20% | 0.36% | −1.11% | −1.45% | 1.13% | 0.26% | 1.67% | −2.73% | −2.71% | |||
GSIF | XGB | GPP | NSE | 0.51 | 0.90 | 0.86 | 0.70 | 0.85 | 0.91 | 0.90 | 0.82 | 0.80 | 0.85 |
RMB | 1.87% | −0.73% | 0.07% | 1.78% | −1.26% | −0.13% | 1.24% | 4.04% | −3.68% | −1.65% | |||
ET | NSE | 0.74 | 0.85 | 0.86 | 0.75 | 0.81 | 0.85 | 0.66 | 0.69 | 0.85 | 0.87 | ||
RMB | 0.74% | −1.01% | 0.43% | −0.56% | −1.25% | 0.86% | 0.79% | 4.44% | −2.52% | −1.50% | |||
RF | GPP | NSE | 0.55 | 0.90 | 0.86 | 0.80 | 0.87 | 0.92 | 0.89 | 0.78 | 0.81 | 0.87 | |
RMB | 2.25% | −0.06% | 0.02% | 1.06% | 0.10% | 0.05% | 0.87% | 6.61% | −2.76% | −1.28% | |||
ET | NSE | 0.74 | 0.85 | 0.88 | 0.75 | 0.81 | 0.82 | 0.78 | 0.77 | 0.88 | 0.85 | ||
RMB | 0.79% | −2.47% | 0.20% | −1.02% | −1.46% | 0.83% | 0.47% | 3.29% | −2.99% | −2.15% | |||
RSIF | XGB | GPP | NSE | 0.52 | 0.90 | 0.86 | 0.69 | 0.85 | 0.91 | 0.92 | 0.82 | 0.81 | 0.84 |
RMB | 1.54% | −0.36% | −0.34% | 1.62% | −1.29% | −0.91% | 0.29% | 2.96% | −2.01% | −2.87% | |||
ET | NSE | 0.74 | 0.85 | 0.86 | 0.76 | 0.1 | 0.84 | 0.69 | 0.70 | 0.86 | 0.87 | ||
RMB | 0.46% | −1.83% | 0.39% | −0.58% | −0.94% | 0.80% | −0.14% | 3.05% | −2.8% | −1.52% | |||
RF | GPP | NSE | 0.56 | 0.89 | 0.86 | 0.80 | 0.86 | 0.92 | 0.90 | 0.80 | 0.82 | 0.86 | |
RMB | 1.94% | −0.19% | 0.26% | 1.50% | −0.29% | −0.16% | 0.89% | 5.14% | −2.58% | −2.24% | |||
ET | NSE | 0.74 | 0.85 | 0.88 | 0.75 | 0.80 | 0.82 | 0.78 | 0.78 | 0.88 | 0.85 | ||
RMB | 0.82% | −2.58% | 0.36% | −0.76% | −1.17% | 0.89% | 0.52% | 1.98% | −2.91% | −2.93% |
SIFs | Algorithms | Variables | Global | r | RMB | Trends |
---|---|---|---|---|---|---|
CSIF | XGB | GPP | 124.8 ± 1.6 Pg C yr−1 | 0.92 | 8.02% | 0.25 Pg C yr−2 |
ET | 582.4 ± 5.0 mm yr−1 | 0.88 | 15.88% | 0.72 mm yr−2 | ||
RF | GPP | 128.1 ± 1.4 Pg C yr−1 | 0.94 | 11.13% | 0.22 Pg C yr−2 | |
ET | 460.4 ± 3.6 mm yr−1 | 0.95 | −9.04% | 0.52 mm yr−2 | ||
GSIF | XGB | GPP | 126.1 ± 1.7 Pg C yr−1 | 0.89 | 9.20% | 0.26 Pg C yr−2 |
ET | 583.8 ± 6.2 mm yr−1 | 0.91 | 14.99% | 0.87 mm yr−2 | ||
RF | GPP | 130.8 ± 1.5 Pg C yr−1 | 0.94 | 12.48% | 0.24 Pg C yr−2 | |
ET | 468.2 ± 4.0 mm yr−1 | 0.95 | −8.28% | 0.58 mm yr−2 | ||
RSIF | XGB | GPP | 125.3 ± 1.2 Pg C yr−1 | 0.89 | 8.66% | 0.16 Pg C yr−2 |
ET | 574.5 ± 5.4 mm yr−1 | 0.89 | 12.06% | 0.71 mm yr−2 | ||
RF | GPP | 130.1 ± 1.2 Pg C yr−1 | 0.93 | 12.49% | 0.19 Pg C yr−2 | |
ET | 463.4 ± 3.3 mm yr−1 | 0.94 | −8.89% | 0.45 mm yr−2 |
Variables | Methods | Global | Temporal Cover | Spatial Resolution | Temporal Resolution | References |
---|---|---|---|---|---|---|
GPP and ET | BESS | 122 ± 25 Pg C yr−1 | 2000–2015 | 1 km | 8 day | Jiang and Ryu [16] |
501 mm yr−1 | ||||||
BEPS | 124 ± 4 Pg C yr−1 | 1982–2016 | 0.5° × 0.6° | hourly | He, et al. [68] | |
485 ± 8 mm yr−1 | ||||||
PML-V2 | 145.8 Pg C yr−1 | 2002–2017 | 500 m | 8 day | Zhang et al. [5] | |
560 mm yr−1 | ||||||
X-BASE | 124.7 ± 2.1 Pg C yr−1 | 2001–2020 | 0.05° × 0.05° | hourly | Nelson et al. [44] | |
574 ± 7 mm yr−1 | ||||||
SIF-ML | 128 ± 2.3 Pg C yr−1 | 2001–2020 | 0.05° × 0.05° | 8 day | This study | |
522 ± 58.2 mm yr−1 | ||||||
GPP | EC-LUE | 111 ± 21 Pg C yr−1 | 2000–2003 | 0.5° × 0.6° | 8 day | Yuan, et al. [8] |
BEPS | 132 ± 22 Pg C yr−1 | 2003 | 1° × 1° | hourly | Chen, et al. [69] | |
LUE | 122–130 Pg C yr−1 | 2000–2016 | 500 m | 8 day | Zhang et al. [70] | |
LUE | 108–119 Pg C yr−1 | 2004–2012 | 1 km | 8 day | Yu, et al. [71] | |
ML&BESS | 131–163 Pg C yr−1 | 2005–2015 | 0.5° × 0.5° | monthly | Badgley, et al. [72] | |
GOSIF | 136 ± 9 Pg C yr−1 | 2000–2023 | 0.05° × 0.05° | 8 day | Li and Xiao [73] | |
EC-LUE | 106 ± 3 Pg C yr−1 | 1982–2017 | 0.05° × 0.05° | 5, 6, 8 day | Zheng, et al. [74] | |
ML | 117 ± 1.5 Pg C yr−1 | 1999–2019 | 0.05° × 0.05° | monthly | Guo et al. [58] | |
ET | RS-PM | 417 ± 38 mm yr−1 | 2000–2003 | 0.5° × 0.6° | 8 day | Yuan, et al. [8] |
ML | 500 ± 23 mm yr−1 | 1982–2008 | 0.5° × 0.5° | monthly | Jung, et al. [20] | |
PT | 522 mm yr−1 | 1980–2016 | 0.25° × 0.25° | daily | Miralles, et al. [75] | |
WB | 558–650 mm yr−1 | 1982–2009 | 0.5° × 0.5° | annual | Zeng, et al. [76] | |
PML-V1 | 538 ± 57 mm yr−1 | 1998–2012 | 0.5° × 0.5° | monthly | Zhang et al. [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Zhou, H.; Yue, X.; Liu, X.; Xia, Z.; Wang, J.; Xiao, J.; Li, X.; Zhang, F. Increasing Ecosystem Fluxes Observed from Eddy Covariance and Solar-Induced Fluorescence Data. Remote Sens. 2025, 17, 2064. https://doi.org/10.3390/rs17122064
Zheng J, Zhou H, Yue X, Liu X, Xia Z, Wang J, Xiao J, Li X, Zhang F. Increasing Ecosystem Fluxes Observed from Eddy Covariance and Solar-Induced Fluorescence Data. Remote Sensing. 2025; 17(12):2064. https://doi.org/10.3390/rs17122064
Chicago/Turabian StyleZheng, Jiao, Hao Zhou, Xu Yue, Xichuan Liu, Zhuge Xia, Jun Wang, Jingfeng Xiao, Xing Li, and Fangmin Zhang. 2025. "Increasing Ecosystem Fluxes Observed from Eddy Covariance and Solar-Induced Fluorescence Data" Remote Sensing 17, no. 12: 2064. https://doi.org/10.3390/rs17122064
APA StyleZheng, J., Zhou, H., Yue, X., Liu, X., Xia, Z., Wang, J., Xiao, J., Li, X., & Zhang, F. (2025). Increasing Ecosystem Fluxes Observed from Eddy Covariance and Solar-Induced Fluorescence Data. Remote Sensing, 17(12), 2064. https://doi.org/10.3390/rs17122064