Monitoring Salinity Stress in Moringa and Pomegranate: Comparison of Different Proximal Remote Sensing Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Leaf Pigments and Chlorophyll Fluorescence
2.3. Multispectral and RGB Vegetation Indices
- -
- Normalized Difference Vegetation Index (NDVI): (NDVI): (R780 − R670)/(R780 + R670). NDVI is the most widely used metric for quantifying vegetation health and amount. It is sensitive to both biomass and chlorophyll content and calculated from the red and near-infrared bands, making it applicable across various sensor platforms, from satellites to portable leaf meters [40]
- -
- Soil Adjusted Vegetation Index (SAVI): (800 nm – 670 nm)/(800 nm + 670 nm + L) (1 + L), L = 0.5. SAVI corrects for soil brightness and is especially useful in areas with sparse vegetation. It includes a soil brightness correction factor (L) to reduce soil influence. The parameter L, which accounts for the canopy background adjustment, is a function of vegetation density and typically takes a value of 0.5 for intermediate vegetation cover [41]. SAVI is often preferred over NDVI when soil exposure is significant [41], which was the case in our study.
- -
- Optimized Soil Adjusted Vegetation Index (OSAVI): (1 + Y) (800 nm – 670 nm/800 nm + 670 nm + Y), Y = 0.16. OSAVI is based on SAVI and uses a standard background adjustment factor (Y = 0.16). It is most effective in areas with sparse vegetation where soil is visible through the canopy [42].
- -
- Renormalized Difference Vegetation Index (RDVI): 800 nm − 670 nm)/(√800 nm + 670 nm). RDVI is a variant of NDVI designed to better identify healthy vegetation while being less sensitive to soil and sun geometry effects [43].
- -
- Normalized Difference Red Edge (NDRE): (NIR − Red-edge)/(NIR + Red-edge). NDRE is used to assess chlorophyll content and plant health, detecting crop stress through reduced chlorophyll levels [44].
2.4. Canopy Temperature
2.5. Stable Isotope Composition and Nitrogen Concentration
2.6. Leaf Mineral Content
2.7. Leaf Anatomy and Ultrastructure
2.8. Statistical Analyses
3. Results
3.1. Water Status: Carbon Isotope Composition and Temperature
3.2. Photosynthetic and Nitrogen Metabolism: Leaf Pigments, N Indicators, and Chlorophyll Fluorescence
3.3. Vegetation Indices
3.4. Mineral Content
3.5. Correlations Between Analytical and Remote Sensing Indicators
4. Discussion
4.1. Remote Sensing Assessment of Salinity: Stable Carbon Isotope Composition and Canopy Temperature
4.2. Remote Sensing Assessment of Salinity: Leaf Pigment Content
4.3. Remote Sensing Assessment of Salinity: Vegetation Indices
4.4. Remote Sensing Assessment of Salinity’s Effect on Nitrogen Status
4.5. Remote Sensing Performance Is Species- and Salinity-Level-Dependent
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Singh, A. Salinity research in India-achievements, challenges and future prospects. Water Energy Int. 2015, 58, 35–45. [Google Scholar]
- Shahin, M. Water Scarcity in the Arab region-major problems and attempts to alleviate their impacts. In Water Resources and Hydrometeorology of the Arab Region; Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 2007; Volume 59, pp. 519–547. [Google Scholar]
- Shahid, S.A.; Ahmed, M.; Shahid, S.; Ahmed, M. Changing face of agriculture in the Gulf cooperation council countries. In Environmental Cost and Face of Agriculture in the Gulf Cooperation Council Countries: Fostering Agriculture in the Context of Climate Change; Shahid, S.A., Ahmed, M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 1–25. [Google Scholar]
- Elasha, B.O. Mapping of Climate Change Threats and Human Development Impacts in the Arab Region; UNDP Arab Development Report–Research Paper Series; UNDP Regional Bureau for the Arab States: New York, NY, USA, 2010. [Google Scholar]
- Abdelfattah, M.A.; Shahid, S.A.A. comparative characterization and classification of soils in Abu Dhabi coastal area in relation to arid and semi-arid conditions using USDA and FAO soil classification systems. Arid. Land. Res. Manag. 2007, 21, 245–271. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Sudhakar, C.; Lakshmi, A.; Giridarakumar, S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 2001, 161, 613–619. [Google Scholar] [CrossRef]
- Misra, N.; Gupta, A.K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J. Plant Physiol. 2006, 163, 11–18. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Rev. Environ. Sci. Biotechnol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Jahn, S.A.A. Using Moringa seeds as coagulants in developing countries. J. Am. Water Works Assoc. 1988, 80, 43–50. [Google Scholar] [CrossRef]
- Gandji, K.; Chadare, F.J.; Idohou, R.; Salako, V.K.; Assogbadjo, A.E.; Glèlè, R.L.K. Status and utilisation of Moringa oleifera Lam: A review. Afr. Crop Sci. J. 2018, 26, 137–156. [Google Scholar] [CrossRef]
- Chaudhary, K.; Chaurasia, S. Neutraceutical properties of Moringa oleifera: A review. Eur. J. Pharm. Med. Res. 2017, 4, 646–655. [Google Scholar]
- Mahmood, K.T.; Mugal, T.; Haq, I.U. Moringa oleifera: A natural gift—A review. J. Pharm. Sci. Res. 2010, 2, 775. [Google Scholar]
- Azeem, M.; Pirjan, K.; Qasim, M.; Mahmood, A.; Javed, T.; Muhammad, H.; Rahimi, M. Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci. Rep. 2023, 13, 2895. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef]
- Sun, Y.; Niu, G.; Masabni, J.G.; Ganjegunte, G. Relative salt tolerance of 22 pomegranate (Punica granatum) cultivars. HortScience 2018, 53, 1513–1519. [Google Scholar] [CrossRef]
- Prasad, R.N.; Bankar, G.J.; Vashishtha, B.B. Effect of drip irrigation on growth, yield and quality of pomegranate in arid region. Indian J. Hortic. 2003, 60, 140–142. [Google Scholar]
- Bayomy, H.M.; Alamri, E.S.; Alharbi, B.M.; Foudah, S.H.; Genaidy, E.A.; Atteya, A.K. Response of Moringa oleifera trees to salinity stress conditions in Tabuk region, Kingdom of Saudi Arabia. Saudi J. Biol. Sci. 2023, 30, 103810. [Google Scholar] [CrossRef]
- Abdelaty, H.S.; Hosni, A.M.; Abdelhamid, A.N.; Abdalla, A. Effect of irrigation water quantity and salinity level on growth and internal chemical contents of Moringa plants. Egypt. J. Chem. 2022, 65, 79–85. [Google Scholar] [CrossRef]
- Khoza, T.; Masenya, A.; Khanyile, N.; Thosago, S. Alleviating plant density and salinity stress in Moringa oleifera using arbuscular mycorrhizal fungi. J. Fungi. 2025, 11, 328. [Google Scholar] [CrossRef]
- Khayyat, M.; Vazifeshenas, M.; Akbari, M. Pomegranate and salt Stress responses—Assimilation activities and chlorophyll fluorescence performances: A Review. App. Fruit. Sci. 2024, 66, 2455–2468. [Google Scholar] [CrossRef]
- Awachare, C.; Patel, J.P.; Solomon, S.S.; Raigond, P.; Babu, K.D.; Parashuram, S.; Sarkar, S.K.; Kumar, M.; Manjunath Prasad, C.T.; Marathe, R.A.; et al. Deciphering salt stress response of pomegranate genotypes (Punica granatum L.): A comprehensive evaluation. Plant Physiol. Rep. 2025. [Google Scholar] [CrossRef]
- Calzone, A.; Cotrozzi, L.; Lorenzini, G.; Nali, C.; Pellegrini, E. Hyperspectral detection and monitoring of salt stress in pomegranate cultivars. Agronomy 2021, 11, 1038. [Google Scholar] [CrossRef]
- Solano, J.; Puerto, H.; Rocamora, C.; Rodríguez, S.; Cámara-Zapata, J.M. Remote sensing applications to improve pomegranate irrigation in Vega Baja del Segura area (Alicante, Spain). In Proceedings of the European Conference on Agricultural Engineering AgEng, Évora, Portugal, 4–8 July 2021. [Google Scholar]
- Yousfi, S.; Serret, M.D.; Araus, J.L. Shoot δ15N gives a better indication than ion concentration or Δ13C of genotypic differences in the response of durum wheat to salinity. Funct. Plant Biol. 2009, 36, 144–155. [Google Scholar] [CrossRef]
- Belkhodja, R.; Morales, F.; Abadia, A.; Medrano, H.; Abadia, J. Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. Photosynthetica 1999, 363, 375–387. [Google Scholar] [CrossRef]
- Shahid, S.A.; Taha, F.K.; Ismail, S.; Dakheel, A.; Abdelfattah, M. Turning adversity into an advantage for food security through improving soil quality and providing production systems for marginal saline lands: ICBA perspectives and approach. In Sustainable Agricultural Development: Recent Approaches in Resources Management and Environmentally-Balanced Production Enhancement; Behnassi, M., Shabbir, S.A., D’Silva, J., Eds.; Springer: Berlin, Germany, 2011; pp. 43–67. [Google Scholar]
- Al-Dakheel, A.J.; Hussain, M.I.; Rahman, A.Q.M.A. Impact of irrigation water salinity on agronomical and quality attributes of Cenchrus ciliaris L. accessions. Agric. Water Manag. 2015, 159, 148–154. [Google Scholar] [CrossRef]
- Yousfi, S.; Shahid, M.; Thushar, S.; Ferreira, J.P.; Serret, M.D.; Araus, J.L. Effect of irrigation salinity on yield and quality of seeds in different quinoa genotypes. Agric. Water Manag. 2025, 312, 109413. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef]
- Araus, J.L.; Amaro, T.; Voltas, J.; Nakkoul, H.; Nachit, M.M. Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field. Crops Res. 1998, 55, 209–223. [Google Scholar] [CrossRef]
- Adrian Gracia-Romero, A.; Vergara-Díaz, O.; Thierfelder, C.; Cairns, J.E.; Kefauver, S.C.; Araus, J.L. Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sens. 2018, 10, 349. [Google Scholar] [CrossRef]
- Buchaillot, M.L.; Cairns, J.; Hamadziripi, E.; Wilson, K.; Hughes, D.; Chelal, J.; McCloskey, P.; Kehs, A.; Clinton, N.; Araus, J.L.; et al. Regional monitoring of fall armyworm (FAW) using early warning systems. Remote Sens. 2022, 14, 5003. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.C.; Vergara-Díaz, O.; Zaman-Allah, M.A.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. Comparative performance of ground vs. aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front. Plant Sci. 2017, 8, 2004. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Romero, A.; Kefauver, S.C.; Fernandez-Gallego, J.A.; Vergara-Díaz, O.; Nieto-Taladriz, M.T.; Araus, J.L. UAV and ground image-based phenotyping: A proof of concept with durum wheat. Remote Sens. 2019, 11, 1244. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Vatter, T.; Kefauver, S.C.; Rezzouk, F.Z.; Segarra, J.; Nieto-Taladriz, M.T.; Araus, J.L. Defining durum wheat ideotypes adapted to Mediterranean environments through remote sensing traits. Front. Plant Sci. 2023, 14, 1254301. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Maccioni, A.; Agati, G.; Mazzinghi, P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B Biol. 2001, 61, 52–61. [Google Scholar] [CrossRef]
- Fernandez-Gallego, J.A.; Kefauver, S.C.; Vatter, T.; Gutiérrez, N.A.; Nieto-Taladriz, M.T.; Araus, J.L. Low-cost assessment of grain yield in durum wheat using RGB images. Eur. J. Agron. 2019, 105, 146–156. [Google Scholar] [CrossRef]
- Serret, M.D.; Al-Dakheel, A.J.; Yousfi, S.; Fernáandez-Gallego, J.A.; Elouafi, I.A.; Araus, J.L. Vegetation indices derived from digital images and stable carbon and nitrogen isotope signatures as indicators of date palm performance under salinity. Agri. Water. Manag. 2020, 230, 105949. [Google Scholar] [CrossRef]
- Casadesús, J.; Villegas, D. Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. J. Integr. Plant Biol. 2014, 56, 7–14. [Google Scholar] [CrossRef]
- Coplen, T.B. Explanatory Glossary of Terms Used in Expression of Relative Isotope Ratios and Gas Ratios. IUPAC Provisional Recommendations. Inorganic Chemistry Division. Commission on Isotopic Abundances and Atomic Weights. 2008. Available online: http://old.iupac.org/reports/provisional/abstract08/coplen_310508.html (accessed on 2 June 2025).
- Peñuelas, J.; Isla, R.; Filella, I.; Araus, J.L. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci. 1997, 37, 198–202. [Google Scholar] [CrossRef]
- Yousfi, S.; Serret, M.D.; Voltas, J.; Araus, J.L. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Δ13C, and δ15N of durum wheat and related amphiploids. J. Exp. Bot. 2010, 61, 3529–3542. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, S.; Serret, M.D.; Márquez, A.J.; Voltas, J.; Araus, J.L. Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol. 2012, 194, 230–244. [Google Scholar] [CrossRef]
- Ma, W.T.; Tcherkez, G.; Wang, X.M.; Schäufele, R.; Schnyder, H.; Yang, Y.; Gong, X.Y. Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytol. 2021, 229, 1326–1338. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Richards, R.A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Rukhsar, A.; Kanbar, O.; Mahmoudi, H.; Yousfi, S.; Araus, J.L.; Serret, M.D. Combined effects of saline irrigation and genotype on the growth, grain yield and mineral concentration of durum wheat in hot arid areas. Eur. J. Agron. 2025, 168, 127585. [Google Scholar] [CrossRef]
- Orzechowska, A.; Trtílek, M.; Tokarz, K.M.; Szymańska, R.; Niewiadomska, E.; Rozpądek, P.; Wątor, K. Thermal analysis of stomatal response under salinity and high light. Int. J. Mol. Sci. 2021, 22, 4663. [Google Scholar] [CrossRef]
- Tian, F.; Hou, M.; Qiu, Y.; Zhang, T.; Yuan, Y. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma 2020, 357, 113961. [Google Scholar] [CrossRef]
- Rezzouk, F.Z.; Shahid, M.A.; Elouafi, I.A.; Zhou, B.; Araus, J.L.; Serret, M.D. Agronomic performance of irrigated quinoa in desert areas: Comparing different approaches for early assessment of salinity stress. Agric. Water Manag. 2020, 240, 106205. [Google Scholar] [CrossRef]
- Shah, S.H.; Houborg, R.; McCabe, M.F. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 2017, 7, 61. [Google Scholar] [CrossRef]
- Niu, H.; Wang, D.; Chen, Y. Estimating actual crop evapotranspiration using Deep Stochastic Configuration Networks model and UAV-based crop coefficients in a pomegranate orchard. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V; 114140C; SPIE: Pune, India, 2020. [Google Scholar] [CrossRef]
- Maiti, R.K.; Satya, P. Research advances in major cereal crops for adaptation to abiotic stresses. GM Crops Food 2014, 5, 259–279. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, X.; Xue, P.; Nie, Y.; Liu, J.; Li, Y.; Wan, X. Exogenous melatonin ameliorates heat damages by regulating growth, photosynthetic efficiency and leaf ultrastructure of carnation. Plant Physiol. Biochem. 2023, 198, 107698. [Google Scholar] [CrossRef] [PubMed]
- Gamalei, Y.V.; van Bel, A.J.; Pakhomova, M.V.; Sjutkina, A.V. Effects of temperature on the conformation of the endoplasmic reticulum and on starch accumulation in leaves with the symplasmic minor-vein configuration. Planta 1994, 194, 443–453. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Vani, V.; Mandla, V.R. Comparative study of NDVI and SAVI vegetation indices in Anantapur district semi-arid areas. Int. J. Civ. Eng. Technol. 2017, 8, 559–566. [Google Scholar]
- Yeom, J.; Jung, J.; Chang, A.; Ashapure, A.; Maeda, M.; Maeda, A.; Landivar, J. Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sens. 2019, 11, 1548. [Google Scholar] [CrossRef]
- Rezzouk, F.Z.; Gracia-Romero, A.; Kefauver, S.C.; Nieto-Taladriz, M.T.; Serret, M.D.; Araus, J.L. Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions. Agric. Water Manag. 2022, 259, 107257. [Google Scholar] [CrossRef]
- Ustin, S.L.; Jacquemoud, S. How the optical properties of leaves modify the absorption and scattering of energy and enhance leaf functionality. In Remote Sensing of Plant Biodiversity; Cavender-Bares, J., Gamon, J.A., Townsend, P.A., Eds.; Springer: Cham, Switzerland, 2020; pp. 349–384. [Google Scholar]
- Karabourniotis, G.; Liakopoulos, G.; Bresta, P.; Nikolopoulos, D. The optical properties of leaf structural elements and their contribution to photosynthetic performance and photoprotection. Plants 2021, 10, 1455. [Google Scholar] [CrossRef]
2 dS m−1 | 5 dS m−1 | 10 dS m−1 | Sum of Squares and Level of Significance | |
---|---|---|---|---|
Moringa | ||||
δ13C (‰) | −29.37 a ± 0.26 | −27.70 b ± 0.09 | −27.13 b ± 0.18 | 24.52 *** |
GA-CatS60 | 17.03 b ± 1.70 | 11.96 a ± 1.19 | 12.94 ab ± 1.32 | 130.10 * |
GA-CatS60-TIR (°C) | 22.21 a ± 1.24 | 23.79 a ± 1.18 | 23.66 a ± 2.53 | 13.71 ns |
GA-DUO | 20.25 a ± 3.15 | 24.10 a ± 7.13 | 20.32 a ± 5.36 | 87.47 ns |
GA-DUO-TIR (°C) | 41.18 a ± 0.45 | 43.49 ab ± 0.83 | 43.98 b ± 0.84 | 40.48 * |
Env-CatS60-TIR (°C) | 28.46 a ± 1.58 | 31.09 a ± 0.96 | 27.29 a ± 3.11 | 68.33 ns |
Env-DUO-TIR (°C) | 47.47 a ± 0.70 | 49.27 ab ± 0.79 | 50.47 b ± 0.68 | 40.93 * |
Gun-TIR (°C) | 33.96 a ± 1.03 | 37.55 b ± 0.74 | 36.24 ab ± 0.93 | 59.36 * |
Pomegranate | ||||
δ13C (‰) | −29.28 a ± 0.12 | −28.10 b ± 0.19 | −28.66 ab ± 0.16 | 6.36 *** |
GA-CatS60 | 7.52 a ± 1.35 | 5.48 a ± 0.84 | 10.22 a ± 2.46 | 73.12 ns |
GA-CatS60-TIR (°C) | 30.61a ± 0.68 | 33.67 b ± 0.58 | 33.63 b ± 1.19 | 50.99 ** |
GA-DUO | 10.65 a ± 0.47 | 6.97 a ± 0.80 | 25.17 a ± 3.63 | 1108.56 ns |
GA-DUO-TIR (°C) | 40.34 a ± 0.34 | 42.14 a ± 0.36 | 45.30 b ± 1.75 | 78.98 *** |
Env-CatS60-TIR (°C) | 39.15 a ± 0.80 | 41.56 a ± 0.67 | 40.60 a ± 1.74 | 26.36 ns |
Env-DUO-TIR (°C) | 49.19 a ± 0.25 | 51.01 b ± 0.29 | 51.75 b ± 0.25 | 25.69 *** |
Gun-TIR (°C) | 38.23 a ± 0.46 | 38.61 a ± 0.45 | 38.90 a ± 0.47 | 1.53 ns |
2 dS m−1 | 5 dS m−1 | 10 dS m−1 | Sum of Squares and Level of Significance | |
---|---|---|---|---|
Moringa | ||||
Chlorophyll (µg cm−2) | 18.48 a ± 1.84 | 25.96 b ± 1.15 | 22.86 ab ± 1.45 | 254.19 ** |
Flavonoids (relat. units) | 1.98 a ± 0.04 | 1.99 a ± 0.02 | 1.96 a ± 0.02 | 0.01 ns |
Anthocyanins (relat. units) | 0.08 a ± 0.01 | 0.06 a ± 0.01 | 0.08 a ± 0.01 | 0.01 ns |
N (%) | 3.08 a ± 0.15 | 3.43 ab ± 0.07 | 3.73 b ± 0.09 | 1.87 *** |
δ15N (‰) | 3.73 a ± 0.84 | 4.06 a ± 0.58 | 3.00 a ± 0.20 | 5.36 ns |
NBI | 9.48 a ± 1.01 | 13.01 b ± 0.68 | 11.49 ab ± 0.71 | 56.30 ** |
Ft | 3032.37 a ± 180.17 | 3421.18 a ± 132.18 | 3247.44 a ± 136.68 | 682,858.98 ns |
Pomegranate | ||||
Chlorophyll (µg cm−2) | 9.16 a ± 0.93 | 16.86 b ± 1.47 | 13.83 ab ± 1.28 | 269.62 *** |
Flavonoid (relat. units) | 2.04 a ± 0.03 | 2.02 a ± 0.03 | 1.93 a ± 0.05 | 0.04 ns |
Anthocyanin (relat. units) | 0.22 b ± 0.02 | 0.13 a ± 0.01 | 0.20 ab ± 0.04 | 0.04 * |
N (%) | 0.93 a ± 0.02 | 1.26 b ± 0.05 | 1.28 b ± 0.03 | 0.62 *** |
δ15N (‰) | −0.03 a ± 0.52 | 3.91 b ± 0.72 | 2.18 ab ± 0.05 | 70.24 *** |
NBI | 4.44 a ± 0.44 | 8.57 b ± 0.67 | 6.56 ab ± 0.87 | 76.52 *** |
Ft | 2906.70 a ± 242.98 | 3072.62 a ± 168.46 | 2966.26 a ± 187.70 | 126,033.98 ns |
2 dS m−1 | 5 dS m−1 | 10 dS m−1 | Sum of Squares and Level of Significance | |
---|---|---|---|---|
Moringa | ||||
NDVI | 0.18 a ± 0.02 | 0.28 b ± 0.03 | 0.25 ab ± 0.02 | 0.05 * |
SAVI | 0.18 a ± 0.03 | 0.27 a ± 0.02 | 0.26 a ± 0.02 | 0.04 ns |
OSAVI | −0.003 a ± 0.01 | 0.09 b ± 0.01 | 0.09 b ± 0.01 | 0.05 *** |
RDVI | 0.22 a ± 0.03 | 0.29 a ± 0.03 | 0.25 a ± 0.02 | 0.02 ns |
NDRE | 0.07 a ± 0.01 | 0.21 b ± 0.02 | 0.25 b ± 0.01 | 0.16 *** |
GA × 100 | 12.44 a ± 3.25 | 8.00 a ± 3.27 | 6.30 a ± 1.55 | 181.03 ns |
GGA × 100 | 0.48 a ± 0.23 | 0.70 a ± 0.54 | 0.15 a ± 0.06 | 1.37 ns |
Pomegranate | ||||
NDVI | 0.17 a ± 0.01 | 0.29 b ± 0.01 | 0.31 b ± 0.01 | 0.09 *** |
SAVI | 0.16 a ± 0.01 | 0.27 b ± 0.01 | 0.29 b ± 0.01 | 0.07 *** |
OSAVI | 0.04 a ± 0.01 | 0.13 b ± 0.01 | 0.15 b ± 0.02 | 0.05 *** |
RDVI | 0.15 a ± 0.01 | 0.27 b ± 0.01 | 0.29 b ± 0.01 | 0.08 *** |
NDRE | −0.01 a ± 0.01 | 0.02 a ± 0.02 | 0.01 a ± 0.00 | 0.005 ns |
GA × 100 | 8.22 a ± 0.01 | 13.49 ab ± 2.03 | 24.04 b ± 4.74 | 806.52 ** |
GGA × 100 | 0.14 a ± 0.01 | 0.09 a ± 0.05 | 0.05 a ± 0.01 | 0.02 ns |
2 dS m−1 | 5 dS m−1 | 10 dS m−1 | Sum of Squares and Level of Significance | |
---|---|---|---|---|
Moringa | ||||
K (mg Kg−1) | 11,885.55 a ± 612.42 | 10,304.44 a ± 686.33 | 10,770 a ± 400.93 | 11,883,355.55 ns |
Ca (mg Kg−1) | 16,211.11 a ± 1529.20 | 22,711.11 b ± 2036.36 | 20,455.55 ab ± 658.09 | 196,058,518.50 * |
Mg (mg Kg−1) | 3953.33 a ± 478.38 | 5474.44 b ± 446.34 | 5505.55 b ± 335.39 | 14,172,422.22 * |
P (mg Kg−1) | 2162.22 a ± 136.471 | 2098.88 a ± 158.92 | 2014.44 a ± 69.82 | 98,940.74 ns |
Fe (mg Kg−1) | 175.37 a ± 14.30 | 185.91 a ± 13.95 | 184.11 a ± 9.39 | 571.30 ns |
Na (mg Kg−1) | 2727.77 a ± 897.36 | 2671.11 a ± 355.45 | 6134.44 b ± 778.95 | 70,809,800 ** |
K/Na | 6.94 a ± 1.38 | 4.67 ab ± 0.98 | 2.06 b ± 0.33 | 107.23 ** |
Pomegranate | ||||
K (mg Kg−1) | 8502.44 a ± 573.76 | 12,131.55 b ± 549.62 | 10,283.20 ab ± 684.91 | 59,271,483.97 *** |
Ca (mg Kg−1) | 9904.06 a ± 926.98 | 7682.03 a ± 625.02 | 8458.70 a ± 692.86 | 22,655,849.11 ns |
Mg (mg Kg−1) | 2028.77 a ± 177.26 | 2028.66 a ± 71.36 | 2594.80 b ± 185.07 | 1,253,911.55 * |
P (mg Kg−1) | 1412.55 a ± 76.97 | 1595 a ± 103.21 | 1231.40 a ± 125.08 | 440,094.23 ns |
Fe (mg Kg−1) | 71.77 a ± 6.49 | 57.43 a ± 3.93 | 63.27 a ± 5.24 | 932.33 ns |
Na (mg Kg−1) | 286.55 a ± 31.26 | 442.44 a ± 76.07 | 2345.80 b ± 839.11 | 15,470,202.66 *** |
K/Na | 32.72 b ± 4.48 | 36.14 b ± 6.99 | 7.56 a ± 2.30 | 2878.01 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchaillot, M.L.; Mahmoudi, H.; Thushar, S.; Yousfi, S.; Serret, M.D.; Kefauver, S.C.; Araus, J.L. Monitoring Salinity Stress in Moringa and Pomegranate: Comparison of Different Proximal Remote Sensing Approaches. Remote Sens. 2025, 17, 2045. https://doi.org/10.3390/rs17122045
Buchaillot ML, Mahmoudi H, Thushar S, Yousfi S, Serret MD, Kefauver SC, Araus JL. Monitoring Salinity Stress in Moringa and Pomegranate: Comparison of Different Proximal Remote Sensing Approaches. Remote Sensing. 2025; 17(12):2045. https://doi.org/10.3390/rs17122045
Chicago/Turabian StyleBuchaillot, Maria Luisa, Henda Mahmoudi, Sumitha Thushar, Salima Yousfi, Maria Dolors Serret, Shawn Carlisle Kefauver, and Jose Luis Araus. 2025. "Monitoring Salinity Stress in Moringa and Pomegranate: Comparison of Different Proximal Remote Sensing Approaches" Remote Sensing 17, no. 12: 2045. https://doi.org/10.3390/rs17122045
APA StyleBuchaillot, M. L., Mahmoudi, H., Thushar, S., Yousfi, S., Serret, M. D., Kefauver, S. C., & Araus, J. L. (2025). Monitoring Salinity Stress in Moringa and Pomegranate: Comparison of Different Proximal Remote Sensing Approaches. Remote Sensing, 17(12), 2045. https://doi.org/10.3390/rs17122045