Spatiotemporal Evolution and Intensification of Extreme Precipitation Events in Mainland China from 1961 to 2022
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methods
2.3.1. Definition and Characteristics of Extreme Precipitation Events
- (1)
- Definition of Extreme Precipitation Event (EPE)
- (2)
- Characteristics of EPEs
- (3)
- Types of EPEs
2.3.2. Sen’s Slope and Mann–Kendall Trend Analysis
2.3.3. Correlation Analysis
3. Results
3.1. The Temporal Evolution Trend of the Characteristic Variables of EPEs
3.2. The Evolution of the Spatial Pattern of EPE Characteristics
3.3. Spatiotemporal Evolution of Different Types of EPEs
3.3.1. Temporal Evolution of Different Types of EPEs
3.3.2. Different Types of EPEs Exhibit Significant Spatial Heterogeneity
3.4. Regional Differences in the Dependence of EPE Characteristics on ED
4. Discussion
4.1. The Relationship Between EPE Types and ED
4.2. Factors Contributing to the Increasing Severity of EPEs in Southwest China
4.3. Spatiotemporal Characteristics of Extreme Precipitation Events and Existing Studies
5. Limitations and Future Works
- (1)
- Classification of EPE types
- (2)
- Limited causal analysis
- (3)
- Data limitations
6. Conclusions
- (1)
- From 1961 to 2022, the frequency of EPEs in mainland China shows a significant increasing trend across most regions, with the exception of northern China, where the upward trend is not statistically significant. The most notable increase occurs in Xingjiang (XJ), with a Sen’s slope of 4.2 ×10−2 events·year−1. On average, regional EPE frequency increased by approximately 56 events from the P1 (1961–1980) to P3 (2000–2022) stages.
- (2)
- The duration of EPEs generally exhibits a declining trend. Southwestern China (SW) shows the most pronounced decrease in both event duration (ED) and extreme duration (ExtD), with Sen’s slopes of −6.4 × 10−2 day·year−1 and −6 × 10−3 day·year−1, respectively. From P1 to P3, both the ED and ExtD decreased in most regions of mainland China, with SW experiencing the largest reductions, as regional averages declined by approximately 2.189 days and 2.221 days, respectively.
- (3)
- The extremity of EPEs has intensified, particularly in southeast of China. Emax, Eint, and ExtInt have increased at rates of 2.9 × 10−2 mm·year−1, 1.9 × 10−2 mm·day−1·year−1, and 4.1 × 10−2 mm·day−1·year−1, respectively. Between P2 (1981–2000) and P3 (2000–2022), the extremity of EPEs intensified in most regions, as reflected by increases in Emax, Eint, and ExtInt. The southeastern (SE) region experienced the most significant rise, with respective values increasing by 4.18 × 10−1 mm, 4.7 × 10−1 mm·day−1, and 5.8 × 10−1 mm·day−1.
- (4)
- Different EPE types show an upward trend across regions. Short-duration EPEs are increasing significantly in all regions, with the most pronounced increase in XJ (Sen’s slope = 1.9 × 10−2 events·year−1). In all regions except XJ, double-peaked EPEs dominate, with proportions exceeding 50% in SE, SW, and the Tibetan Plateau (TP). In XJ, short-duration EPEs are most common, accounting for 35.38%.
- (5)
- EPEs of different durations show distinct spatial characteristics. In XJ, the most frequent EPEs last 2 days (102 events), with no occurrences beyond 19 days. In contrast, the SE region records the highest frequency at 4-day durations (72 events), and events with ED ≥ 6 days are significantly more common than in other regions. Additionally, Esum demonstrates a nonlinear positive relationship with ED, characterized by a modest increase during short events and markedly accelerated growth as the duration extends.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Regions Variable | NE | XJ | TP | SW | NW | SE | NC |
---|---|---|---|---|---|---|---|
EF | 2.5 × 10−2 ** | 4.2 × 10−2 ** | 2.0 × 10−2 ** | 1.1 × 10−2 ** | 2.2 × 10−2 ** | 1.8 × 10−2 ** | 1.4 × 10−2 |
Emax | 1.1 × 10−2 | 7 × 10−3 | 7 × 10−3 | −7 × 10−4 | 7 × 10−3 | 2.9 × 10−2 * | 1.0 × 10−2 |
ED | −1.2 × 10−2 | 2 × 10−3 | −5 × 10−3 | −6.4 × 10−2 ** | −1.3 × 10−2 ** | −1.6 × 10−2 | −1.6 × 10−2 ** |
ExtD | −7 × 10−4 | 6 × 10−4 * | 1 × 10−3 | −6 × 10−3 ** | −9 × 10−4 | −2 × 10−5 | −1 × 10−3 |
Esum | −1.4 × 10−2 | 1.5 × 10−2 | 2.9 × 10−2 | −4.13 × 10−1 * | −3.0 × 10−2 | 2.6 × 10−2 | 2.6 × 10−2 |
ExtSum | 1.4 × 10−2 | 1.3 × 10−2 | 3.6 × 10−2 | −1.82 × 10−1 | −4 × 10−3 | 5.9 × 10−2 | −2.2 × 10−2 |
Eint | 1.2 × 10−2 * | 3 × 10−3 | 2 × 10−3 | 7 × 10−3 * | 1.0 × 10−2 ** | 1.9 × 10−2 ** | 1.7 × 10−2 ** |
ExtInt | 7 × 10−3 | 7 × 10−3 | 9 × 10−3 | 2 × 10−3 | 9 × 10−3 | 4.1 × 10−2 ** | 9 × 10−3 |
Appendix F
Region Variable | NE | XJ | TP | SW | NW | SE | NC |
---|---|---|---|---|---|---|---|
TEP1 | 9.4 × 10−3 ** | 1.90 × 10−2 ** | 3.5 × 10−3 ** | 5.0 × 10−3 ** | 9.6 × 10−3 ** | 5.0 × 10−3 ** | 8.3 × 10−3 * |
TEP2 | 6 × 10−4 | 8 × 10−4 | 1.0 × 10−3 ** | 1.6 × 10−3 * | 9 × 10−4 | 9 × 10−4 | −2 × 10−4 |
TEP3 | 2.0 × 10−3 | 3.2 × 10−3 * | 2.5 × 10−3 ** | 1.9 × 10−3 | 2.7 × 10−3 * | 5.3 × 10−3 ** | 2.3 × 10−3 |
TEP4 | 7.5 × 10−3 * | 6.0 × 10−3 * | 2.9 × 10−3 * | 4.8 × 10−3 * | 5.6 × 10−3 * | 2.1 × 10−3 | 2.9 × 10−3 |
TEP5 | −2 × 10−5 | 0 | 0 | −2 × 10−5 | 2 × 10−5 | 6 × 10−5 | 0 |
TEP6 | −1 × 10−4 | 1.4 × 10−3 ** | 1.1 × 10−3 ** | 7 × 10−4 | −1 × 10−4 | 9 × 10−4 | −4 × 10−4 |
TEP7 | 5.9 × 10−3 | 1.21 × 10−2 ** | 9.7 × 10−3 ** | −6 × 10−4 | 2.1 × 10−3 | 6.1 × 10−3 | 9 × 10−4 |
References
- Badawy, A.; Sultan, M.; Abdelmohsen, K.; Yan, E.; Elhaddad, H.; Milewski, A.; Torres-Uribe, H.E. Floods of Egypt’s Nile in the 21st century. Sci. Rep. 2024, 14, 27031. [Google Scholar] [CrossRef] [PubMed]
- Furtak, K.; Wolińska, A. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture—A review. CATENA 2023, 231, 107378. [Google Scholar] [CrossRef]
- Azadgar, A.; Nyka, L.; Salata, S. Advancing Urban Flood Resilience: A Systematic Review of Urban Flood Risk Mitigation Model, Research Trends, and Future Directions. Land 2024, 13, 2138. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Choi, T.-M.; Lam, H.K.S.; Sarkis, J.; Zhan, Y.; Zhu, Q. Extreme weather and production economics: Insights, challenges, and future directions. Int. J. Prod. Econ. 2025, 281, 109504. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate (Ed.) Annex VI: Climatic Impact-driver and Extreme Indices. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 2205–2214. [Google Scholar]
- Tran, T.-N.-D.; Lakshmi, V. Enhancing human resilience against climate change: Assessment of hydroclimatic extremes and sea level rise impacts on the Eastern Shore of Virginia, United States. Sci. Total Environ. 2024, 947, 174289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; You, Q.; Ullah, S.; Chen, C.; Shen, L.; Liu, Z. Substantial increase in abrupt shifts between drought and flood events in China based on observations and model simulations. Sci. Total Environ. 2023, 876, 162822. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Wang, W.; Li, X.; Yang, H.; Sun, Y. Social vulnerability assessment under different extreme precipitation scenarios: A case study in Henan Province, China. PLoS ONE 2024, 19, e0299956. [Google Scholar] [CrossRef]
- Tabari, H. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 2021, 593, 125932. [Google Scholar] [CrossRef]
- Han, X.; Chen, Q.; Fu, D. Trends in Extreme Precipitation and Associated Natural Disasters in China, 1961–2021. Climate 2025, 13, 74. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Xie, J.; Lee, J.-Y.; Zhu, Z.; Li, Y.; Chen, B.; Zhang, S. Multiscale interactions driving the devastating floods in Henan Province, China during July 2021. Weather Clim. Extrem. 2023, 39, 100541. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, B.; Xie, J.; Tan, H.; Zhou, B.; Lin, S.; He, J.; Zhao, L. Anthropogenic Influence on 2022 Extreme January-February Precipitation in Southern China. Bull. Am. Meteorol. Soc. 2023, 104, E1935–E1940. [Google Scholar] [CrossRef]
- Liu, X.; Jie, H.; Zou, Y.; Liu, S.; Hu, Y.; Liu, S.; Yang, D.; Zhao, L.; He, J. Anthropogenic Influence on 2022 June Extreme Rainfall over the Pearl River Basin. Bull. Am. Meteorol. Soc. 2024, 105, 7. [Google Scholar] [CrossRef]
- Zhang, H.; Zhai, P. Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv. Atmos. Sci. 2011, 28, 1177–1183. [Google Scholar] [CrossRef]
- Rojpratak, S.; Supharatid, S. Regional extreme precipitation index: Evaluations and projections from the multi-model ensemble CMIP5 over Thailand. Weather Clim. Extrem. 2022, 37, 100475. [Google Scholar] [CrossRef]
- Gu, X.; Ye, L.; Xin, Q.; Zhang, C.; Zeng, F.; Nerantzaki, S.D.; Papalexiou, S.M. Extreme Precipitation in China: A Review on Statistical Methods and Applications. Adv. Water Resour. 2022, 163, 104144. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Wei, W.; Fang, G.; Duan, W. The increase in extreme precipitation and its proportion over global land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
- White, R.H.; Battisti, D.S.; Skok, G. Tracking precipitation events in time and space in gridded observational data. Geophys. Res. Lett. 2017, 44, 8637–8646. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, Y.; Zhang, X.; Zhu, P. Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China. Acta Meteorol. Sin. 2013, 27, 868–888. [Google Scholar] [CrossRef]
- She, D.; Shao, Q.; Xia, J.; Taylor, J.A.; Zhang, Y.; Zhang, L.; Zhang, X.; Zou, L. Investigating the variation and non-stationarity in precipitation extremes based on the concept of event-based extreme precipitation. J. Hydrol. 2015, 530, 785–798. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, Y.; Ma, M.; Chen, Y.; Wei, J.; Kunstmann, H.; Gao, L. Compound temporal-spatial extreme precipitation events in the Poyang Lake Basin of China. J. Hydrol. Reg. Stud. 2025, 58, 102270. [Google Scholar] [CrossRef]
- Cao, F.; Gao, T.; Dan, L.; Ma, Z.; Chen, X.; Zou, L.; Zhang, L. Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle–lower reaches of the Yangtze River Basin. Clim. Dyn. 2019, 53, 3109–3129. [Google Scholar] [CrossRef]
- Xiao, C.; Wu, P.; Zhang, L.; Song, L. Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep. 2016, 6, 38506. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett. 2005, 32, L09707. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, M.; Ren, F.; Li, J.; Wong, W.-K. Synoptic Situations of Extreme Hourly Precipitation over China. J. Clim. 2016, 29, 8703–8719. [Google Scholar] [CrossRef]
- Shang, W.; Li, S.; Ren, X.; Duan, K. Event-based extreme precipitation in Central-Eastern China: Large-scale anomalies and teleconnections. Clim. Dyn. 2020, 54, 2347–2360. [Google Scholar] [CrossRef]
- Shang, W.; Ren, X.; Li, S.; Duan, K. Precursors and Formation Mechanisms of Event-Based Extreme Precipitation during Springtime in Central-Eastern China. J. Clim. 2022, 35, 373–385. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Yan, J.; Liu, X. Variability of the event-based extreme precipitation in the south and north Qinling Mountains. Acta Geogr. Sin. 2020, 75, 989–1007. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.; Juan, D.; Yumeng, Y.; Wang, Y. Evaluating extreme precipitation estimations based on the GPM IMERG products over the Yangtze River Basin, China. Geomat. Nat. Hazards Risk 2020, 11, 601–618. [Google Scholar] [CrossRef]
- Ran, Q.; Wang, J.; Chen, X.; Liu, L.; Li, J.; Ye, S. The relative importance of antecedent soil moisture and precipitation in flood generation in the middle and lower Yangtze River basin. Hydrol. Earth Syst. Sci. 2022, 26, 4919–4931. [Google Scholar] [CrossRef]
- Upreti, P.; Ojha, C.S.P. Comparison of antecedent precipitation based rainfall-runoff models. Water Supply 2020, 21, 2122–2138. [Google Scholar] [CrossRef]
- Lu, W.; Cai, W. Temporal trends features in consecutive days of extreme precipitation over China, 1951–2017. Mausam J. Meteorol. Dep. India 2019, 70, 321–328. [Google Scholar] [CrossRef]
- Wu, X.; Guo, S.; Yin, J.; Yang, G.; Zhong, Y.; Liu, D. On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels. J. Hydrol. 2018, 562, 305–317. [Google Scholar] [CrossRef]
- Zaman, M.; Ahmad, I.; Usman, M.; Saifullah, M.; Anjum, M.N.; Khan, M.I.; Uzair Qamar, M. Event-based time distribution patterns, return levels, and their trends of extreme precipitation across Indus Basin. Water 2020, 12, 3373. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, K.; Liu, C. Time distribution pattern and spatial heterogeneity of hourly scale event-based extreme precipitation in China. J. Hydrol. 2023, 622, 129712. [Google Scholar] [CrossRef]
- Guo, C.; Ning, N.; Guo, H.; Tian, Y.; Bao, A.; De Maeyer, P. Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin? Atmosphere 2024, 15, 1254. [Google Scholar] [CrossRef]
- Wan, W.; Zhou, Y. Spatiotemporal patterns in persistent precipitation extremes of the Chinese mainland (1961–2022) and association with the dynamic factors. Atmos. Res. 2024, 310, 107600. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [CrossRef]
- Zang, Z.; Luo, J.; Ha, Y. Interdecadal Increase in Summertime Extreme Precipitation over East China in the Late 1990’s. Front. Earth Sci. 2022, 10, 969853. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Liu, D.; He, P.; Li, Z.; Shi, M.; Xu, J. Spatiotemporal variability characteristics of extreme climate events in Xinjiang during 1960–2019. Environ. Sci. Pollut. Res. 2023, 30, 57316–57330. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Chen, Y.; Duan, W.; Wang, C.; Li, Y.; Zhu, J.; He, G.; Wei, W.; Yuan, M. Temporal and spatial changes of extreme precipitation and its related large-scale climate mechanisms in the arid region of Northwest China during 1961–2022. J. Hydrol. 2025, 658, 133182. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, Z.F.; Wang, L. Spatiotemporal variations and future projections of extreme precipitation events in Southwestern China. Appl. Ecol. Environ. Res. 2023, 21, 5389–5414. [Google Scholar] [CrossRef]
- Pei, Z.; Cui, X.; Jiang, R. 40-Year statistics of warm-season extreme hourly precipitation over North China. Weather Clim. Extrem. 2025, 48, 100761. [Google Scholar] [CrossRef]
- Hu, W.; Chen, L.; Shen, J.; Yao, J.; He, Q.; Chen, J. Changes in Extreme Precipitation on the Tibetan Plateau and Its Surroundings: Trends, Patterns, and Relationship with Ocean Oscillation Factors. Water 2022, 14, 2509. [Google Scholar] [CrossRef]
- Lamjiri, M.A.; Dettinger, M.D.; Ralph, F.M.; Guan, B. Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett. 2017, 44, 7020–7028. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Yu, H.; Shen, Z.; Sun, P. Double increase in precipitation extremes across China in a 1.5 °C/2.0 °C warmer climate. Sci. Total Environ. 2020, 746, 140807. [Google Scholar] [CrossRef]
- Zhu, Z.; Cai, Y.; Dai, X.; Bai, X.; Yang, Y.; Li, X.; Yang, Z. Spatiotemporally contiguous precipitation events across China: Role of atmospheric rivers and tropical cyclones in heavy precipitation. Ecol. Indic. 2024, 158, 111426. [Google Scholar] [CrossRef]
- Han, J.; Miao, C.; Gou, J.; Zheng, H.; Zhang, Q.; Guo, X.Y. A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations. Earth Syst. Sci. Data 2023, 15, 3147–3161. [Google Scholar] [CrossRef]
- Shen, Y.; Feng, M.; Zhang, H.; Gao, F. Interpolation Methods of China Daily Precipitation Data. J. Appl. Meteorol. Sci. 2010, 21, 279–286. [Google Scholar] [CrossRef]
- Jia, W.; Xue-Jie, G. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. Chin. Ed. 2013, 56, 1102–1111. (In Chinese) [Google Scholar] [CrossRef]
- Wei, L.; Jiang, S.; Ren, L.; Hua, Z.; Zhang, L.; Duan, Z. Detection of the 2022 extreme drought over the Yangtze River basin using two satellite-gauge precipitation products. Atmos. Res. 2025, 315, 107929. [Google Scholar] [CrossRef]
- Yang, H.; Wang, T.; Yang, D.; Yan, Z.; Wu, J.; Lei, H. Runoff and sediment effect of the soil-water conservation measures in a typical river basin of the Loess Plateau. CATENA 2024, 243, 108218. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Tatli, H. Detecting persistence of meteorological droughtviathe Hurst exponent. Meteorol. Appl. 2015, 22, 763–769. [Google Scholar] [CrossRef]
- Huang, J.; Sun, S.; Xu, D.; Lan, H.; Sun, H.; Wang, Z.; Bao, Y.; Wang, J.; Tang, H.; Zhang, H. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Mol. Biol. 2012, 80, 337–350. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, W.; Guo, H.; Cao, Y.; Wang, W.; Yao, N.; Wang, Y.; Maeyer, P.D. Spatiotemporal Evolution and Intensification of Extreme Precipitation Events in Mainland China from 1961 to 2022. Remote Sens. 2025, 17, 2037. https://doi.org/10.3390/rs17122037
Gan W, Guo H, Cao Y, Wang W, Yao N, Wang Y, Maeyer PD. Spatiotemporal Evolution and Intensification of Extreme Precipitation Events in Mainland China from 1961 to 2022. Remote Sensing. 2025; 17(12):2037. https://doi.org/10.3390/rs17122037
Chicago/Turabian StyleGan, Weimeng, Hao Guo, Ying Cao, Wei Wang, Na Yao, Yunqian Wang, and Philippe De Maeyer. 2025. "Spatiotemporal Evolution and Intensification of Extreme Precipitation Events in Mainland China from 1961 to 2022" Remote Sensing 17, no. 12: 2037. https://doi.org/10.3390/rs17122037
APA StyleGan, W., Guo, H., Cao, Y., Wang, W., Yao, N., Wang, Y., & Maeyer, P. D. (2025). Spatiotemporal Evolution and Intensification of Extreme Precipitation Events in Mainland China from 1961 to 2022. Remote Sensing, 17(12), 2037. https://doi.org/10.3390/rs17122037