Water Vapor Correction in Measurements of Aerosol Backscatter Coefficients Using a 910 nm Vaisala CL51 Ceilometer
Abstract
:1. Introduction
2. Instrumentation and Data
2.1. Ceilometer
2.2. Microwave Radiometer
2.3. Lidar Data
2.4. CE318T Photometer
3. Methodology and Theory
3.1. Background Signal Estimation Method
3.2. Water Vapor Absorption Calculation
- (1)
- To achieve an efficient calculation, the statistical model should be a simple variant of a fundamental function, such as the power function or the logarithmic function.
- (2)
- According to the requirement for describing the function’s variation, at least two parameters are used in the model to describe the relationship between and IWV.
- (3)
- The effective transmission reaches 100% in the absence of water vapor in the atmosphere (IWV = 0).
- (4)
- Showing similar Taylor expansion as exponential formula Equation (7).
3.3. Validation Process
3.4. Lidar Ratio Calculation
4. Results and Method Validation
4.1. Signal Correction Method
4.1.1. Background Signal Estimation
4.1.2. Water Vapor Transmission Model
4.2. Validation with Lidar Observation in Wuhan
4.3. Impact of Signal Correction Method Analysis
4.4. Water Vapor Correction Method Validation in Leipzig
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flentje, H.; Claude, H.; Elste, T.; Gilge, S.; Köhler, U.; Plass-Dülmer, C.; Steinbrecht, W.; Thomas, W.; Werner, A.; Fricke, W. The Eyjafjallajökull eruption in April 2010—Detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles. Atmos. Chem. Phys. 2010, 10, 10085–10092. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Paliatsos, A.G.; Kappos, N.; Kasselouri, B. A Case of African Dust Transport over Athens Captured by a Ceilometer. In Advances in Meteorology, Climatology and Atmospheric Physics; Helmis, C.G., Nastos, P.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1011–1018. [Google Scholar]
- Nikolay, K.; Tsvetina, E.; Ivan, G.; Atanaska, D.; Danko, I.; Ventsislav, D.; Plamen, S.; Doyno, P. Ceilometer observation of Saharan dust over mountain valley of Sofia, Bulgaria. In Proceedings of the 18th International School on Quantum Electronics: Laser Physics and Applications, Sozopol, Bulgaria, 29 September–3 October 2014; SPIE: Bellingham, WA, USA, 2015; Volume 9447, p. 94470Q. [Google Scholar]
- Geiß, A. Automated Calibration of Ceilometer Data and Its Applicability for Quantitative Aerosol Monitoring. Ph.D. Thesis, Ludwig Maximilian University of Munich, Munich, Germany, 2016. [Google Scholar]
- Knepp, T.N.; Szykman, J.J.; Long, R.; Duvall, R.M.; Krug, J.; Beaver, M.; Cavender, K.; Kronmiller, K.; Wheeler, M.; Delgado, R.; et al. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles. Atmos. Meas. Tech. 2017, 10, 3963–3983. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hong, J.; Lee, K.; Hong, J.; Velasco, E.; Lim, Y.J.; Lee, J.B.; Nam, K.; Park, J. Ceilometer Monitoring of Boundary-Layer Height and Its Application in Evaluating the Dilution Effect on Air Pollution. Bound.-Layer Meteor. 2019, 172, 435–455. [Google Scholar] [CrossRef]
- Li, S.; Joseph, E.; Min, Q.; Yin, B.; Sakai, R.; Payne, M.K. Remote sensing of PM2. 5 during cloudy and nighttime periods using ceilometer backscatter. Atmos. Meas. Tech. 2017, 10, 2093–2104. [Google Scholar] [CrossRef]
- Bedoya-Velásquez, A.E.; Herreras-Giralda, M.; Román, R.; Wiegner, M.; Lefebvre, S.; Toledano, C.; Huet, T.; Ceolato, R. Ceilometer inversion method using water-vapor correction from co-located microwave radiometer for aerosol retrievals. Atmos. Res. 2021, 250, 105379. [Google Scholar] [CrossRef]
- Cazorla, A.; Casquero-Vera, J.A.; Román, R.; Guerrero-Rascado, J.L.; Toledano, C.; Cachorro, V.E.; Orza, J.A.G.; Cancillo, M.L.; Serrano, A.; Titos, G.; et al. Near-real-time processing of a ceilometer network assisted with sun-photometer data: Monitoring a dust outbreak over the Iberian Peninsula. Atmos. Chem. Phys. 2017, 17, 11861–11876. [Google Scholar] [CrossRef]
- Marcos, C.R.; Gómez-Amo, J.L.; Peris, C.; Pedrós, R.; Utrillas, M.P.; Martínez-Lozano, J.A. Analysis of four years of ceilometer-derived aerosol backscatter profiles in a coastal site of the western Mediterranean. Atmos. Res. 2018, 213, 331–345. [Google Scholar] [CrossRef]
- Wiegner, M.; Madonna, F.; Binietoglou, I.; Forkel, R.; Gasteiger, J.; Geiß, A.; Pappalardo, G.; Schäfer, K.; Thomas, W. What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET. Atmos. Meas. Tech. 2014, 7, 1979–1997. [Google Scholar] [CrossRef]
- Ioannis, B.; Aldo, A.; Giuseppe, D.; Aldo, G.; Fabio, M.; Lucia, M.; Gelsomina, P. Examination of possible synergy between lidar and ceilometer for the monitoring of atmospheric aerosols. In Proceedings of the Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII, Prague, Czech Republic, 19–22 September 2011; SPIE: Bellingham, WA, USA, 2011; Volume 8182, p. 818209. [Google Scholar]
- Lopatin, A.; Dubovik, O.; Chaikovsky, A.; Goloub, P.; Lapyonok, T.; Tanré, D.; Litvinov, P. Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm. Atmos. Meas. Tech. 2013, 6, 2065–2088. [Google Scholar] [CrossRef]
- Kotthaus, S.; O’Connor, E.; Münkel, C.; Charlton-Perez, C.; Haeffelin, M.; Gabey, A.M.; Grimmond, C.S.B. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers. Atmos. Meas. Tech. 2016, 9, 3769–3791. [Google Scholar] [CrossRef]
- Wiegner, M.; Gasteiger, J. Correction of water vapor absorption for aerosol remote sensing with ceilometers. Atmos. Meas. Tech. 2015, 8, 3971–3984. [Google Scholar] [CrossRef]
- Wiegner, M.; Mattis, I.; Pattantyús-Ábrahám, M.; Bravo-Aranda, J.A.; Poltera, Y.; Haefele, A.; Hervo, M.; Görsdorf, U.; Leinweber, R.; Gasteiger, J.; et al. Aerosol backscatter profiles from ceilometers: Validation of water vapor correction in the framework of CeiLinEx2015. Atmos. Meas. Tech. 2019, 12, 471–490. [Google Scholar] [CrossRef]
- Hervo, M.; Poltera, Y.; Haefele, A. An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers. Atmos. Meas. Tech. 2016, 9, 2947–2959. [Google Scholar] [CrossRef]
- Kong, W.; Yi, F. Convective boundary layer evolution from lidar backscatter and its relationship with surface aerosol concentration at a location of a central China megacity. J. Geophys. Res. Atmos. 2015, 120, 7928–7940. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, B.; Shi, G.; Li, S.; Di, H.; Yan, Q.; Hua, D. Correlation between the lidar ratio and the Ångström exponent of various aerosol types. Particuology 2018, 40, 62–69. [Google Scholar] [CrossRef]
- Collis, R.T.H.; Russell, P.B. Lidar measurement of particles and gases by elastic backscattering and differential absorption. In Laser Monitoring of the Atmosphere; Hinkley, E.D., Ed.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 71–151. [Google Scholar]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef]
- Sasano, Y.; Browell, E.V.; Ismail, S. Error caused by using a constant extinction/backscattering ratio in the lidar solution. Appl. Opt. 1985, 24, 3929–3932. [Google Scholar] [CrossRef]
- Kochanov, R.V.; Gordon, I.E.; Rothman, L.S.; Wcisło, P.; Hill, C.; Wilzewski, J.S. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 15–30. [Google Scholar] [CrossRef]
- Edwards, D.K.; Menard, W.A. Comparison of Models for Correlation of Total Band Absorption. Appl. Opt. 1964, 3, 621–625. [Google Scholar] [CrossRef]
- Howard, J.N.; Burch, D.E.; Williams, D. Infrared Transmission of Synthetic Atmospheres. III. Absorption by Water Vapor. J. Opt. Soc. Am. 1956, 46, 242–245. [Google Scholar] [CrossRef]
- Goody, R.M. A statistical model for water-vapour absorption. Q. J. R. Meteorol. Soc. 1952, 78, 165–169. [Google Scholar] [CrossRef]
- Gates, D.M.; Harrop, W.J. Infrared transmission of the atmosphere to solar radiation. Appl. Opt. 1963, 2, 887–898. [Google Scholar] [CrossRef]
- Bruegge, C.J.; Conel, J.E.; Green, R.O.; Margolis, J.S.; Holm, R.G.; Toon, G. Water vapor column abundance retrievals during FIFE. J. Geophys. Res. Atmos. 1992, 97, 18759–18768. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Wu, Y.; Wang, Q.; Gao, T. Accuracy Analysis of the Aerosol Backscatter Coefficient Profiles Derived from the CYY-2B Ceilometer. Adv. Meteorol. 2018, 2018, 9738197. [Google Scholar] [CrossRef]
- Thome, K.J.; Smith, M.W.; Palmer, J.M.; Reagan, J.A. Three-channel solar radiometer for the determination of atmospheric columnar water vapor. Appl. Opt. 1994, 33, 5811–5819. [Google Scholar] [CrossRef]
- Uchiyama, A.; Yamazaki, A.; Kudo, R. Column Water Vapor Retrievals from Sky Radiometer (POM-02) 940 nm Data. J. Meteorol. Soc. Jpn. Ser. II 2014, 92A, 195–203. [Google Scholar] [CrossRef]
- Uchiyama, A.; Matsunaga, T.; Yamazaki, A. The instrument constant of sky radiometers (POM-02)—Part 1: Calibration constant. Atmos. Meas. Tech. 2018, 11, 5363–5388. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Chen, D.; Li, J.; Zhao, G. Influence of Filter Band Function on Retrieval of Aerosol Optical Depth from Sunphotometer Data. J. Atmos. Ocean. Technol. 2013, 30, 929–941. [Google Scholar] [CrossRef]
- Hopkin, E.; Illingworth, A.J.; Charlton-Perez, C.; Westbrook, C.D.; Ballard, S. A robust automated technique for operational calibration of ceilometers using the integrated backscatter from totally attenuating liquid clouds. Atmos. Meas. Tech. 2019, 12, 4131–4147. [Google Scholar] [CrossRef]
- Wang, W.; Gong, W.; Mao, F.; Pan, Z.; Liu, B. Measurement and study of lidar ratio by using a raman lidar in central China. Int. J. Environ. Res. Public Health 2016, 13, 508. [Google Scholar] [CrossRef] [PubMed]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Morgan Kaufmann Publishers Inc.: Montreal, QC, Canada, 1995; Volume 2, pp. 1137–1143. [Google Scholar]
Model | Parameter | Taylor Expansion (Level n at w = 0) | |
---|---|---|---|
(a) | * | a > 0 | |
(b) | c > 0, d < 0 | ||
(c) | e > 0, f > 0 | ||
(d) | g > 0, h > 0 | \ ** | |
(e) | Quantic Polynomial | Comparison |
* | m | ||
---|---|---|---|
Water-soluble | 2.24 | 0.212 | 1.53–0.005i |
Soot | 2.00 | 0.0118 | 1.75–0.45i |
Mineral | 1.96 | 0.07 | 1.53–0.0055i |
SSEtrain | MSEtrain | RMSEtrain | R2train | SSEtest | MSEtest | RMSEtest | R2test | |
---|---|---|---|---|---|---|---|---|
94.38613 | 0.00013 | 0.01141 | 0.99337 | 10.51938 | 0.00013 | 0.01140 | 0.99334 | |
51.07468 | 0.00007 | 0.00839 | 0.99641 | 5.71024 | 0.00007 | 0.00840 | 0.99633 | |
31.88543 | 0.00004 | 0.00663 | 0.99776 | 3.55543 | 0.00004 | 0.00663 | 0.99773 | |
215.55404 | 0.00030 | 0.01724 | 0.98486 | 24.05642 | 0.00030 | 0.01724 | 0.98477 | |
quantic polynomial | 60.31357 | 0.00008 | 0.00912 | 0.99576 | 7.01209 | 0.00009 | 0.00927 | 0.99556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zeng, X.; Li, S.; Song, G.; Li, S. Water Vapor Correction in Measurements of Aerosol Backscatter Coefficients Using a 910 nm Vaisala CL51 Ceilometer. Remote Sens. 2025, 17, 2013. https://doi.org/10.3390/rs17122013
Chen J, Zeng X, Li S, Song G, Li S. Water Vapor Correction in Measurements of Aerosol Backscatter Coefficients Using a 910 nm Vaisala CL51 Ceilometer. Remote Sensing. 2025; 17(12):2013. https://doi.org/10.3390/rs17122013
Chicago/Turabian StyleChen, Jiarui, Xiaoyue Zeng, Siwei Li, Ge Song, and Shuangliang Li. 2025. "Water Vapor Correction in Measurements of Aerosol Backscatter Coefficients Using a 910 nm Vaisala CL51 Ceilometer" Remote Sensing 17, no. 12: 2013. https://doi.org/10.3390/rs17122013
APA StyleChen, J., Zeng, X., Li, S., Song, G., & Li, S. (2025). Water Vapor Correction in Measurements of Aerosol Backscatter Coefficients Using a 910 nm Vaisala CL51 Ceilometer. Remote Sensing, 17(12), 2013. https://doi.org/10.3390/rs17122013