Robust Land-Surface Parameterisation for Repeated Topographic Surveys in Dynamic Environments with Adaptive State-Space Models
Abstract
1. Introduction
2. Methods
2.1. Advances in State-Space Models and the Kalman Filter
- Stage 1:
- Prediction
- Stage 2:
- Measurement update
2.1.1. Adaptive Filters
2.1.2. Covariance Estimation
2.1.3. M-Type Robust Estimators
2.2. Robust Self-Adaptive Algorithm
Algorithm 1 Robust Self-Adaptive Kalman filter |
|
2.3. Surface Model and Problem Formulation
Modifications to the Kalman Update Function
2.4. Evaluation
2.4.1. Filter Configurations
2.4.2. Simulating a Simple Surface
- Case 1:
- Static models a perfectly static surface by never adding the change model or process noise to the state (i.e., ). Thus, the only change apparent to the filter is from observation noise. This case acts as a control by eliminating all surface change and isolating the effects of repeated observations.
- Case 2:
- Periodic models period processes such as seasonal erosion and deposition by scaling the change model continuously between using Equation (54). Note that this imparts a periodic trend based on the epoch rather than the time difference. A first-order white process noise vector with variance was added at every epoch.
- Case 3:
- Irregular models a surface that starts and stops changing intermittently, mimicking some landslide behaviors. This is implemented by selecting five random ‘start’ epochs, which then received constant change for 25 epochs before returning to static. A first-order white process noise vector with variance was added at every epoch.
- Case 4:
- Catastrophe models a surface that experiences a natural disaster, such as a large mass movement. This is implemented as a single epoch where 5 m elevation is subtracted and the remaining coefficients are randomized. Two catastrophic events are simulated 365 epochs apart, and the second event was subjected to and additional 25 epochs of constant change to simulate sustained effects following a large disturbance. Note that the catastrophe represents a highly non-linear impulse error signature with non-Gaussian properties. A first-order white process noise vector with was added at every epoch.
2.4.3. Spatial Analysis
3. Results
3.1. Aggregate Performance
3.2. Sensitivity to Initial Parameters
3.3. Response to Case Dynamics
3.4. Mode of Adaptation
3.5. Spatial Distributions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hashemi-Beni, L.; Jones, J.; Thompson, G.; Johnson, C.; Gebrehiwot, A. Challenges and opportunities for UAV-based digital elevation model generation for flood-risk management: A case of Princeville, North Carolina. Sensors 2018, 18, 3843. [Google Scholar] [CrossRef] [PubMed]
- Uysal, M.; Toprak, A.S.; Polat, N. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement 2015, 73, 539–543. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, M.; Xu, Q.; Sawada, K.; Moriguchi, S.; Yashima, A.; Liu, C.; Xue, L. InSAR-derived digital elevation models for terrain change analysis of earthquake-triggered flow-like landslides based on ALOS/PALSAR imagery. Environ. Earth Sci. 2015, 73, 7661–7668. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Mueller, M.M.; Dietenberger, S.; Nestler, M.; Hese, S.; Ziemer, J.; Bachmann, F.; Leiber, J.; Dubois, C.; Thiel, C. Novel UAV Flight Designs for Accuracy Optimization of Structure from Motion Data Products. Remote Sens. 2023, 15, 4308. [Google Scholar] [CrossRef]
- Ruzgiene, B.; Berteška, T.; Gečyte, S.; Jakubauskiene, E.; Česlovas Aksamitauskas, V. The surface modelling based on UAV Photogrammetry and qualitative estimation. Meas. J. Int. Meas. Confed. 2015, 73, 619–627. [Google Scholar] [CrossRef]
- Oguchi, T.; Hayakawa, Y.S.; Wasklewicz, T. Remote Data in Fluvial Geomorphology: Characteristics and Applications. In Treatise on Geomorphology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 1116–1142. [Google Scholar] [CrossRef]
- Fuad, N.A.; Ismail, Z.; Majid, Z.; Darwin, N.; Ariff, M.F.M.; Idris, K.M.; Yusoff, A.R. Accuracy evaluation of digital terrain model based on different flying altitudes and conditional of terrain using UAV LiDAR technology. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 12100. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Kucharczyk, M.; Hugenholtz, C.H.; Zou, X. UAV–LiDAR accuracy in vegetated terrain. J. Unmanned Veh. Syst. 2018, 6, 212–234. [Google Scholar] [CrossRef]
- Salach, A.; Bakuła, K.; Pilarska, M.; Ostrowski, W.; Górski, K.; Kurczyński, Z. Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation. ISPRS Int. J. Geo-Inf. 2018, 7, 342. [Google Scholar] [CrossRef]
- Santise, M.; Fornari, M.; Forlani, G.; Roncella, R. Evaluation of DEM generation accuracy from UAS imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-5, 529–536. [Google Scholar] [CrossRef]
- Giordan, D.; Hayakawa, Y.; Nex, F.; Remondino, F.; Tarolli, P. Review article: The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Nat. Hazards Earth Syst. Sci. 2018, 18, 1079–1096. [Google Scholar] [CrossRef]
- James, L.A.; Hodgson, M.E.; Ghoshal, S.; Latiolais, M.M. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology 2012, 137, 181–198. [Google Scholar] [CrossRef]
- Hu, X.; Lu, Z.; Pierson, T.C.; Kramer, R.; George, D.L. Combining InSAR and GPS to Determine Transient Movement and Thickness of a Seasonally Active Low-Gradient Translational Landslide. Geophys. Res. Lett. 2018, 45, 1453–1462. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Katzenstein, K. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter. Groundwater 2017, 55, 871–878. [Google Scholar] [CrossRef]
- de Sousa, A.M.; Viana, C.D.; Garcia, G.P.B.; Grohmann, C.H. Monitoring Geological Risk Areas in the City of São Paulo Based on Multi-Temporal High-Resolution 3D Models. Remote Sens. 2023, 15, 3028. [Google Scholar] [CrossRef]
- Tsunetaka, H.; Hotta, N.; Hayakawa, Y.S.; Imaizumi, F. Spatial accuracy assessment of unmanned aerial vehicle-based structures from motion multi-view stereo photogrammetry for geomorphic observations in initiation zones of debris flows, Ohya landslide, Japan. Prog. Earth Planet. Sci. 2020, 7, 24. [Google Scholar] [CrossRef]
- Williams, R.D. DEMs of Difference. Geomorphol. Tech. 2012, 2, 1–17. [Google Scholar]
- Miliaresis, G.C. Quantification of Terrain Processes. In Advances in Digital Terrain Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 13–28. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Desmet, P.J.J. Effects of Interpolation Errors on the Analysis of DEMs. Earth Surf. Process. Landf. 1997, 22, 563–580. [Google Scholar] [CrossRef]
- Florinsky, I.V. Errors of signal processing in digital terrain modelling. Int. J. Geogr. Inf. Sci. 2002, 16, 475–501. [Google Scholar] [CrossRef]
- Oksanen, J.; Sarjakoski, T. Error propagation of DEM-based surface derivatives. Comput. Geosci. 2005, 31, 1015–1027. [Google Scholar] [CrossRef]
- Florinsky, I.V. An illustrated introduction to general geomorphometry. Prog. Phys. Geogr. 2017, 41, 723–752. [Google Scholar] [CrossRef]
- Minár, J.; Evans, I.S.; Jenčo, M. A comprehensive system of definitions of land surface (topographic) curvatures, with implications for their application in geoscience modelling and prediction. Earth-Sci. Rev. 2020, 211, 103414. [Google Scholar] [CrossRef]
- Sofia, G.; Pirotti, F.; Tarolli, P. Variations in multiscale curvature distribution and signatures of LiDAR DTM errors. Earth Surf. Process. Landf. 2013, 38, 1116–1134. [Google Scholar] [CrossRef]
- Humpherys, J.; Redd, P.; West, J. A Fresh Look at the Kalman Filter. SIAM Rev. 2012, 54, 801–823. [Google Scholar] [CrossRef]
- Cappe, O.; Godsill, S.J.; Moulines, E. An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo. Proc. IEEE 2007, 95, 899–924. [Google Scholar] [CrossRef]
- Cai, J.; Liu, G.; Jia, H.; Zhang, B.; Wu, R.; Fu, Y.; Xiang, W.; Mao, W.; Wang, X.; Zhang, R. A new algorithm for landslide dynamic monitoring with high temporal resolution by Kalman filter integration of multiplatform time-series InSAR processing. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102812. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, Q.; Jiao, J.; Zhang, J. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs. ISPRS J. Photogramm. Remote Sens. 2016, 111, 32–44. [Google Scholar] [CrossRef]
- Seoane, L.; Ramillien, G.; Beirens, B.; Darrozes, J.; Rouxel, D.; Schmitt, T.; Salaün, C.; Frappart, F. Regional Seafloor Topography by Extended Kalman Filtering of Marine Gravity Data without Ship-Track Information. Remote Sens. 2022, 14, 169. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, W.; Sun, Y.; Xu, C.; Chen, B. A quality factor of forecasting error for sounding data in MBES. Meas. Sci. Technol. 2022, 33, 85014. [Google Scholar] [CrossRef]
- Ghannadi, M.A.; Alebooye, S.; Izadi, M.; Moradi, A. A method for Sentinel-1 DEM outlier removal using 2-D Kalman filter. Geocarto Int. 2022, 37, 2237–2251. [Google Scholar] [CrossRef]
- Wang, P. Applying two dimensional Kalman filtering for digital terrain modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 1998, 32, 649–656. [Google Scholar]
- Lawrence, H.; Celestine, M.H. Enhancing Terrain Analysis from Digital Elevation Models Using 2-D Kalman Filtering Technique. J. Geogr. Environ. Earth Sci. Int. 2024, 28, 40–51. [Google Scholar] [CrossRef]
- Orti, M.V.; Anders, K.; Ajayi, O.; Bubenzer, O.; Höfle, B. Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning. ISPRS Open J. Photogramm. Remote Sens. 2024, 12, 100059. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M.; Schoorl, J.M.; Veldkamp, A.; Pennock, D.J. Space–time Kalman filtering of soil redistribution. Geoderma 2006, 133, 124–137. [Google Scholar] [CrossRef]
- James, M.R.; Antoniazza, G.; Robson, S.; Lane, S.N. Mitigating systematic error in topographic models for geomorphic change detection: Accuracy, precision and considerations beyond off-nadir imagery. Earth Surf. Process. Landf. 2020, 45, 2251–2271. [Google Scholar] [CrossRef]
- Chen, Z.; Heckman, C.; Julier, S.; Ahmed, N. Weak in the NEES?: Auto-Tuning Kalman Filters with Bayesian Optimization. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 1072–1079. [Google Scholar] [CrossRef]
- Kaba, A.; Kıyak, E. Optimizing a Kalman filter with an evolutionary algorithm for nonlinear quadrotor attitude dynamics. J. Comput. Sci. 2020, 39, 101051. [Google Scholar] [CrossRef]
- Karasalo, M.; Hu, X. An optimization approach to adaptive Kalman filtering. Automatica 2011, 47, 1785–1793. [Google Scholar] [CrossRef]
- Wen, W.; Pfeifer, T.; Bai, X.; Hsu, L.T. Factor graph optimization for GNSS/INS integration: A comparison with the extended Kalman filter. NAVIG. J. Inst. Navig. 2021, 68, 315–331. [Google Scholar] [CrossRef]
- Winiwarter, L.; Anders, K.; Czerwonka-Schröder, D.; Höfle, B. Full four-dimensional change analysis of topographic point cloud time series using Kalman filtering. Earth Surf. Dyn. 2023, 11, 593–613. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Gurajala, R.; Choppala, P.B.; Meka, J.S.; Teal, P.D. Derivation of the Kalman filter in a Bayesian filtering perspective. In Proceedings of the 2021 2nd International Conference on Range Technology (ICORT), Balasore, India, 5–6 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Saha, M.; Ghosh, R.; Goswami, B. Robustness and Sensitivity Metrics for Tuning the Extended Kalman Filter. IEEE Trans. Instrum. Meas. 2014, 63, 964–971. [Google Scholar] [CrossRef]
- Greenberg, I.; Yannay, N.; Mannor, S. Optimization or Architecture: How to Hack Kalman Filtering. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2023; Volume 36, pp. 50482–50505. [Google Scholar]
- Sage, A.P.; Husa, G.W. Adaptive filtering with unknown prior statistics. Jt. Autom. Control Conf. 1969, 7, 760–769. [Google Scholar]
- Mohamed, A.H.; Schwarz, K.P. Adaptive Kalman filtering for INS/GPS. J. Geod. 1999, 73, 193–203. [Google Scholar] [CrossRef]
- Wang, J. Stochastic Modeling for Real-Time Kinematic GPS/GLONASS Positioning. Navigation 1999, 46, 297–305. [Google Scholar] [CrossRef]
- Sorenson, H.W.; Sacks, J.E. Recursive fading memory filtering. Inf. Sci. 1971, 3, 101–119. [Google Scholar] [CrossRef]
- Yang, Y.; He, H.; Xu, G. Adaptively robust filtering for kinematic geodetic positioning. J. Geod. 2001, 75, 109–116. [Google Scholar] [CrossRef]
- Akhlaghi, S.; Zhou, N.; Huang, Z. Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, Y.W.; Tu, K.M. Robust self-adaptive Kalman filter with application in target tracking. Meas. Control 2022, 55, 935–944. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, T.; He, H. On adaptively kinematic filtering. Sel. Pap. Engl. Acta Geod. Cartogr. Sin. 2001, 200, 25–32. [Google Scholar]
- Yang, Y.; Gao, W. An optimal adaptive Kalman filter. J. Geod. 2006, 80, 177–183. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, J. GNSS receiver autonomous integrity monitoring (RAIM) algorithm based on robust estimation. Geod. Geodyn. 2016, 7, 117–123. [Google Scholar] [CrossRef]
- Almagbile, A.; Wang, J.; Ding, W. Evaluating the Performances of Adaptive Kalman Filter Methods in GPS/INS Integration. J. Glob. Position. Syst. 2010, 9, 33–40. [Google Scholar] [CrossRef]
- Ding, W.; Wang, J.; Rizos, C.; Kinlyside, D. Improving adaptive kalman estimation in GPS/INS integration. J. Navig. 2007, 60, 517–529. [Google Scholar] [CrossRef]
- Huber, P.J. Robust Estimation of a Location Parameter. Ann. Math. Stat. 1964, 35, 73–101. [Google Scholar] [CrossRef]
- Durovic, Z.M.; Kovacevic, B.D. Robust estimation with unknown noise statistics. IEEE Trans. Autom. Control 1999, 44, 1292–1296. [Google Scholar] [CrossRef]
- Yang, Y. Robust estimation for dependent observations. Manuscripta Geod. 1994, 19, 10–17. [Google Scholar]
- Schwarz, K.P. A comparison of GPS kinematic models for the determination of position and velocity along a trajectory. Manuscripta Geod. 1989, 14, 345–353. [Google Scholar] [CrossRef]
- Lindsay, J.B. WhiteboxTools User Manual. 2025. Available online: http://whiteboxgeo.com/manual/wbt_book/preface.html (accessed on 1 May 2025).
- Zhao, C.; Lv, J.; Du, S. Geometrical deviation modeling and monitoring of 3D surface based on multi-output Gaussian process. Measurement 2022, 199, 111569. [Google Scholar] [CrossRef]
- Tondaś, D.; Ilieva, M.; van Leijen, F.; van der Marel, H.; Rohm, W. Kalman filter-based integration of GNSS and InSAR observations for local nonlinear strong deformations. J. Geod. 2023, 97, 109. [Google Scholar] [CrossRef]
- Chow, T.E.; Hodgson, M.E. Effects of lidar post-spacing and DEM resolution to mean slope estimation. Int. J. Geogr. Inf. Sci. 2009, 23, 1277–1295. [Google Scholar] [CrossRef]
- Su, J.; Bork, E. Influence of vegetation, slope, and lidar sampling angle on DEM accuracy. Photogramm. Eng. Remote Sens. 2006, 72, 1265–1274. [Google Scholar] [CrossRef]
- Rastogi, G.; Agrawal, R.; Ajai. Bias corrections of CartoDEM using ICESat-GLAS data in hilly regions. GIScience Remote Sens. 2015, 52, 571–585. [Google Scholar] [CrossRef]
- Schaffrath, K.R.; Belmont, P.; Wheaton, J.M. Landscape-scale geomorphic change detection: Quantifying spatially variable uncertainty and circumventing legacy data issues. Geomorphology 2015, 250, 334–348. [Google Scholar] [CrossRef]
- Yan, W.Y. Airborne Lidar Data Artifacts: What we know thus far. IEEE Geosci. Remote Sens. Mag. 2023, 11, 21–45. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Mills, J.P. Accuracy assessment of lidar-derived digital elevation models. Photogramm. Rec. 2008, 23, 148–169. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Mills, J.P.; Delgado, J.; Aguilar, M.A.; Negreiros, J.G.; Pérez, J.L. Modelling vertical error in LiDAR-derived digital elevation models. ISPRS J. Photogramm. Remote Sens. 2010, 65, 103–110. [Google Scholar] [CrossRef]
- Leigh, C.L.; Kidner, D.B.; Thomas, M.C. The Use of LiDAR in Digital Surface Modelling: Issues and Errors. Trans. GIS 2009, 13, 345–361. [Google Scholar] [CrossRef]
- Bater, C.W.; Coops, N.C. Evaluating error associated with lidar-derived DEM interpolation. Comput. Geosci. 2009, 35, 289–300. [Google Scholar] [CrossRef]
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Liu, X. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr. Earth Environ. 2008, 32, 31–49. [Google Scholar] [CrossRef]
- Polidori, L.; Hage, M.E. Digital elevation model quality assessment methods: A critical review. Remote Sens. 2020, 12, 3522. [Google Scholar] [CrossRef]
- Arefi, H.; Hahn, M. A morphological reconstruction algorithm for separating off-terrain points from terrain points in laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, 120–125. [Google Scholar]
- Lindsay, J. A New Method for the Removal of Off-Terrain Objects from LiDAR-Derived Raster Surface Models; Technical Report; University of Guelph: Guelph, ON, Canada, 2018. [Google Scholar]
- Vosselman, G. Slope based filtering of laser altimetry data. Int. Arch. Photogramm. Remote Sens. 2000, 33, 935–942. [Google Scholar]
- Newman, D.R.; Cockburn, J.M.H.; Drǎguţ, L.; Lindsay, J.B. Evaluating Scaling Frameworks for Multiscale Geomorphometric Analysis. Geomatics 2022, 2, 36–51. [Google Scholar] [CrossRef]
- Newman, D.; Cockburn, J.; Drǎguţ, L.; Lindsay, J. Local scale optimization of geomorphometric land surface parameters using scale-standardized Gaussian scale-space. Comput. Geosci. 2022, 165, 105144. [Google Scholar] [CrossRef]
- Arshad, B.; Barthelemy, J.; Perez, P. Autonomous Lidar-Based Monitoring of Coastal Lagoon Entrances. Remote Sens. 2021, 13, 1320. [Google Scholar] [CrossRef]
- O’Dea, A.; Brodie, K.L.; Hartzell, P. Continuous Coastal Monitoring with an Automated Terrestrial Lidar Scanner. J. Mar. Sci. Eng. 2019, 7, 37. [Google Scholar] [CrossRef]
- Lange, T.; Stannat, W. On the continuous time limit of the ensemble Kalman filter. Math. Comput. 2021, 90, 233–265. [Google Scholar] [CrossRef]
- Gustafsson, F. Particle filter theory and practice with positioning applications. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 53–82. [Google Scholar] [CrossRef]
- Gustafsson, F.; Hendeby, G. Some Relations Between Extended and Unscented Kalman Filters. IEEE Trans. Signal Process. 2012, 60, 545–555. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Ooi, B.C.; Tan, K.L.; Zhang, M. In-Memory Big Data Management and Processing: A Survey. IEEE Trans. Knowl. Data Eng. 2015, 27, 1920–1948. [Google Scholar] [CrossRef]
- Rougier, J.; Brady, A.; Bamber, J.; Chuter, S.; Royston, S.; Vishwakarma, B.D.; Westaway, R.; Ziegler, Y. The scope of the Kalman filter for spatio-temporal applications in environmental science. Environmetrics 2022, 34, e2773. [Google Scholar] [CrossRef]
Average | Maximum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CKF-1 | 0.032 | 0.034 | 0.034 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | ||
0.023 | 0.014 | 0.013 | 0.039 | 0.081 | 0.081 | 0.081 | 0.081 | |||
0.081 | 0.076 | 0.060 | 0.023 | 0.086 | 0.085 | 0.081 | 0.081 | |||
ARK-∅ | 0.036 | 0.024 | 0.017 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | ||
ARK-∅A | 0.032 | 0.026 | 0.018 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | ||
ARK-0 | 0.036 | 0.024 | 0.017 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | ||
0.036 | 0.024 | 0.017 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | |||
0.031 | 0.023 | 0.016 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | |||
RSAK-0 | 0.025 | 0.022 | 0.016 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | ||
0.025 | 0.022 | 0.016 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | |||
0.026 | 0.022 | 0.016 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | |||
ARK-1 | 0.036 | 0.024 | 0.017 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | ||
0.036 | 0.024 | 0.017 | 0.039 | 0.081 | 0.081 | 0.081 | 0.081 | |||
0.071 | 0.070 | 0.058 | 0.023 | 0.085 | 0.087 | 0.081 | 0.081 | |||
RSAK-1 | 0.055 | 0.051 | 0.031 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | ||
0.055 | 0.051 | 0.031 | 0.039 | 0.081 | 0.081 | 0.081 | 0.081 | |||
0.071 | 0.070 | 0.058 | 0.023 | 0.084 | 0.087 | 0.081 | 0.081 | |||
RSAK-1A | 0.056 | 0.052 | 0.032 | 0.044 | 0.081 | 0.081 | 0.081 | 0.081 | ||
0.057 | 0.052 | 0.032 | 0.039 | 0.081 | 0.081 | 0.081 | 0.081 | |||
0.071 | 0.070 | 0.058 | 0.023 | 0.085 | 0.087 | 0.081 | 0.081 |
Average | Maximum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CKF-1 | 20.025 | 22.214 | 22.829 | 24.831 | 32.283 | 36.760 | 38.167 | 41.761 | ||
0.277 | 2.254 | 4.938 | 21.605 | 0.521 | 4.127 | 9.957 | 34.786 | |||
0.081 | 0.076 | 0.060 | 0.277 | 0.086 | 0.085 | 0.081 | 0.521 | |||
ARK-∅ | 0.082 | 0.076 | 0.051 | 1.244 | 0.103 | 0.096 | 0.081 | 1.873 | ||
ARK-∅A | 0.079 | 0.075 | 0.051 | 1.231 | 0.100 | 0.095 | 0.081 | 1.853 | ||
ARK-0 | 0.082 | 0.076 | 0.051 | 1.244 | 0.103 | 0.096 | 0.081 | 1.873 | ||
0.082 | 0.077 | 0.051 | 1.244 | 0.103 | 0.097 | 0.081 | 1.873 | |||
0.080 | 0.076 | 0.052 | 1.244 | 0.099 | 0.096 | 0.081 | 1.874 | |||
RSAK-0 | 0.115 | 0.117 | 0.178 | 1.645 | 0.166 | 0.170 | 0.274 | 2.501 | ||
0.115 | 0.117 | 0.178 | 1.645 | 0.164 | 0.170 | 0.274 | 2.501 | |||
0.116 | 0.117 | 0.178 | 1.645 | 0.165 | 0.166 | 0.274 | 2.501 | |||
ARK-1 | 0.082 | 0.077 | 0.051 | 1.244 | 0.101 | 0.096 | 0.081 | 1.873 | ||
0.083 | 0.076 | 0.051 | 1.244 | 0.103 | 0.097 | 0.081 | 1.875 | |||
0.072 | 0.071 | 0.058 | 0.277 | 0.087 | 0.085 | 0.081 | 0.521 | |||
RSAK-1 | 0.064 | 0.063 | 0.063 | 2.908 | 0.083 | 0.083 | 0.111 | 5.327 | ||
0.064 | 0.063 | 0.063 | 2.909 | 0.083 | 0.085 | 0.111 | 5.327 | |||
0.072 | 0.071 | 0.058 | 0.277 | 0.087 | 0.085 | 0.081 | 0.521 | |||
RSAK-1A | 0.064 | 0.063 | 0.063 | 2.889 | 0.081 | 0.083 | 0.105 | 5.290 | ||
0.065 | 0.063 | 0.063 | 2.889 | 0.082 | 0.082 | 0.105 | 5.290 | |||
0.072 | 0.071 | 0.058 | 0.277 | 0.086 | 0.085 | 0.081 | 0.521 |
Average | Maximum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CKF-1 | 9.534 | 10.482 | 10.794 | 11.977 | 16.003 | 17.279 | 17.518 | 18.446 | ||
0.292 | 0.737 | 2.387 | 10.440 | 1.776 | 3.942 | 7.229 | 16.802 | |||
0.081 | 0.076 | 0.061 | 0.292 | 0.086 | 0.085 | 0.126 | 1.776 | |||
ARK-∅ | 0.052 | 0.045 | 0.026 | 0.696 | 0.117 | 0.117 | 0.084 | 2.111 | ||
ARK-∅A | 0.050 | 0.045 | 0.028 | 0.687 | 0.168 | 0.134 | 0.115 | 2.054 | ||
ARK-0 | 0.052 | 0.045 | 0.026 | 0.696 | 0.118 | 0.117 | 0.084 | 2.111 | ||
0.052 | 0.045 | 0.026 | 0.696 | 0.116 | 0.116 | 0.084 | 2.111 | |||
0.050 | 0.046 | 0.025 | 0.697 | 0.117 | 0.116 | 0.084 | 2.113 | |||
RSAK-0 | 0.049 | 0.047 | 0.025 | 1.135 | 0.116 | 0.117 | 0.084 | 3.378 | ||
0.049 | 0.047 | 0.025 | 1.135 | 0.117 | 0.117 | 0.084 | 3.378 | |||
0.049 | 0.047 | 0.025 | 1.135 | 0.118 | 0.117 | 0.084 | 3.378 | |||
ARK-1 | 0.053 | 0.045 | 0.026 | 0.696 | 0.117 | 0.116 | 0.084 | 2.111 | ||
0.052 | 0.045 | 0.025 | 0.703 | 0.117 | 0.116 | 0.084 | 2.160 | |||
0.076 | 0.076 | 0.062 | 0.292 | 0.345 | 0.341 | 0.313 | 1.776 | |||
RSAK-1 | 0.061 | 0.057 | 0.037 | 0.547 | 0.216 | 0.160 | 0.134 | 3.189 | ||
0.063 | 0.057 | 0.037 | 0.547 | 0.227 | 0.158 | 0.135 | 3.189 | |||
0.076 | 0.076 | 0.062 | 0.292 | 0.344 | 0.342 | 0.313 | 1.776 | |||
RSAK-1A | 0.070 | 0.068 | 0.053 | 0.534 | 0.299 | 0.289 | 0.266 | 3.127 | ||
0.069 | 0.067 | 0.053 | 0.534 | 0.297 | 0.287 | 0.266 | 3.127 | |||
0.076 | 0.076 | 0.062 | 0.292 | 0.343 | 0.342 | 0.313 | 1.776 |
Average | Maximum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CKF-1 | 2.919 | 4.347 | 4.913 | 5.021 | 9.179 | 11.181 | 11.713 | 11.730 | ||
0.119 | 0.373 | 1.008 | 3.018 | 3.624 | 4.484 | 6.535 | 9.182 | |||
0.081 | 0.077 | 0.062 | 0.119 | 0.096 | 0.243 | 0.912 | 3.624 | |||
ARK-∅ | 0.044 | 0.034 | 0.021 | 1.335 | 0.128 | 0.128 | 0.121 | 3.043 | ||
ARK-∅A | N/A | 0.035 | 0.022 | 0.325 | N/A | 0.131 | 0.131 | 1.932 | ||
ARK-0 | 0.044 | 0.034 | 0.021 | 1.335 | 0.128 | 0.128 | 0.121 | 3.043 | ||
0.044 | 0.034 | 0.021 | 1.335 | 0.128 | 0.128 | 0.121 | 3.043 | |||
0.040 | 0.034 | 0.020 | 1.335 | 0.128 | 0.128 | 0.121 | 3.043 | |||
RSAK-0 | 0.037 | 0.034 | 0.020 | 1.386 | 0.128 | 0.128 | 0.121 | 3.247 | ||
0.037 | 0.034 | 0.020 | 1.386 | 0.128 | 0.128 | 0.121 | 3.247 | |||
0.037 | 0.035 | 0.020 | 1.386 | 0.128 | 0.128 | 0.121 | 3.247 | |||
ARK-1 | 0.044 | 0.034 | 0.021 | 1.335 | 0.128 | 0.128 | 0.121 | 3.043 | ||
0.043 | 0.034 | 0.020 | 1.335 | 0.128 | 0.128 | 0.121 | 3.043 | |||
0.072 | 0.072 | 0.059 | 0.096 | 0.258 | 0.257 | 0.230 | 1.449 | |||
RSAK-1 | 0.055 | 0.054 | 0.045 | 0.189 | 0.246 | 0.247 | 0.248 | 1.906 | ||
0.055 | 0.054 | 0.045 | 0.189 | 0.246 | 0.246 | 0.248 | 1.906 | |||
0.058 | 0.057 | 0.049 | 0.169 | 0.248 | 0.248 | 0.261 | 1.867 | |||
RSAK-1A | 0.054 | 0.052 | 0.036 | 0.082 | 0.169 | 0.165 | 0.126 | 1.092 | ||
0.054 | 0.052 | 0.036 | 0.082 | 0.170 | 0.164 | 0.126 | 1.092 | |||
0.055 | 0.052 | 0.037 | 0.060 | 0.170 | 0.167 | 0.126 | 0.965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newman, D.R.; Hayakawa, Y.S. Robust Land-Surface Parameterisation for Repeated Topographic Surveys in Dynamic Environments with Adaptive State-Space Models. Remote Sens. 2025, 17, 1993. https://doi.org/10.3390/rs17121993
Newman DR, Hayakawa YS. Robust Land-Surface Parameterisation for Repeated Topographic Surveys in Dynamic Environments with Adaptive State-Space Models. Remote Sensing. 2025; 17(12):1993. https://doi.org/10.3390/rs17121993
Chicago/Turabian StyleNewman, Daniel R., and Yuichi S. Hayakawa. 2025. "Robust Land-Surface Parameterisation for Repeated Topographic Surveys in Dynamic Environments with Adaptive State-Space Models" Remote Sensing 17, no. 12: 1993. https://doi.org/10.3390/rs17121993
APA StyleNewman, D. R., & Hayakawa, Y. S. (2025). Robust Land-Surface Parameterisation for Repeated Topographic Surveys in Dynamic Environments with Adaptive State-Space Models. Remote Sensing, 17(12), 1993. https://doi.org/10.3390/rs17121993