Hyperspectral Soil Heavy Metal Prediction via Privileged-Informed Residual Correction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.2.1. Sampling Design
- Model development samples: Ninety-seven sites were sampled on 11 March 2020.
- Verification samples: Twenty-two sites were sampled on 25 March 2022, immediately following the hyperspectral flight.
- Concentrations of Zn, Pb, and Cd (using ICP-OES and pXRF);
- Soil bulk density (ρb);
- pH;
- Total carbon (C);
- Total nitrogen (N);
- Organic carbon (Corg);
- Carbonate content (CaCO3);
- Plant-available phosphorus (P2O5) and potassium K2O.
2.2.2. Analysis of Soil Parameters
2.2.3. Analysis of Heavy Metal Concentrations
- X-ray fluorescence (pXRF) with Olympus Delta 50 (2 × 60–90 s per sample; Cd detection limit = 4.5 ppm);
2.2.4. Laboratory Spectroradiometry
2.3. Hyperspectral Data Acquisition and Preprocessing
- Meteorological data retrieval and procedure:
- 2.
- Dewpoint calculation:Dew point temperature () was calculated using the Magnus formula presented in Equation (1) [76]
- is an empirical constant related to the shape of the saturation vapor pressure curve (typical value: 17.67).
- is an empirical constant related to the saturation point temperature (typical value: 243.5 °C).
- 3.
- Air pressure at flight altitude:Air pressure (p) at flight altitude (h = 1250 m) was estimated based on the surface pressure p0 = 966 hPa, measured at the meteorological station. A simplified barometric formula (Equation (2)) was used, assuming an average vertical pressure gradient of 1 hPa per 8 m in the lower atmosphere [77]:
- 4.
- Estimation of column water vapor:Water vapor content between the average elevation of the study area (255 m) and the flight altitude (1250 m) was estimated by integrating specific humidity over a vertical column [78,79]. The input parameters are pressure values (996 and 870 hPa) and the dew point temperature (−3.1 °C). The resulting column water vapor is = 0.42 cm.
2.4. Feature Engeneering
- Laboratory spectra of subsamples in HSI feature space;
- One based on pXRF concentrations, HSI spectra;
- One based on ICP-OES concentrations and HSI spectra.
2.5. Multi-Stage Privileged Learning with Spectral Residual Correction
2.5.1. Conditional Permutation Importance for Privileged Feature Selection
- pXRF subsamples: Zn-Pb, Zn-Cd, Pb-As, Cd-As;
- pXRF samples: Zn-Pb, Zn-Cd, Pb-As, Cd-As, and
- ICP-OES samples: Zn-Cd.
- A total of 1023 permutations for pXRF datasets, using 10 variables + target (Cd, Zn, Pb, Cu, Ni, Hg, organic matter, pH, CaCO3, ρb, K2O, P2O5);
- A total of 511 permutations for the ICP-OES dataset, same as for pXRF, excluding Hg (9 variables + target).
2.5.2. Privileged-Informed Residual Ensemble Architecture
2.5.3. Validation of Heavy Metal Concentration Predictions
- Stability of agricultural practices
- 2.
- Absence of major external influences
- 3.
- Inertia of heavy metals in soil
- 3 × 3 pixels (1.8 m × 1.8 m),
- 5 × 5 pixels (3.0 m × 3.0 m), and
- 7 × 7 pixels (4.2 m × 4.2 m).
3. Results
3.1. Conditional Permutation Results
3.2. Selected Heavy Metal Concentration Inferred from HSI
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
As | Arsenic |
Cd | Cadmium |
C | Total carbon |
CaCO3 | Calcium carbonate |
Cu | Copper |
GNSS | Global Navigation Satellite System |
ICP-OES | Inductively Coupled Plasma—Optical Emission Spectrometry |
K2O | Plant-available potassium |
KPCA | Kernel Principal Component Analysis |
N | Total nitrogen |
Ni | Nickel |
Pb | Lead |
P2O5 | Plant-available phosphorus |
PCA | Principal Component Analysis |
PRF | Privileged Random Forest |
pXRF | Portable X-ray Fluorescence analyzer |
RF | Random Forest |
RFR | Random Forest Regressor |
RMSE | Root Mean Square Error |
ρb | Bulk Density |
SNR | Şignal-to-Noise Ratio |
SWIR | Short-wave Infrared |
VNIR | Visible and Near-Infrared |
Zn | Zinc |
References
- Mitra, S.; Patnaik, P.; Kebbekus, B. Environmental Chemical Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Government of Slovenia. Zakon o Varstvu Okolja (ZVO-2). 2022. Available online: https://www.uradni-list.si/_pdf/2022/Ur/u2022044.pdf (accessed on 10 April 2025).
- Zupan, M.; Grčman, H.; Lobnik, F. Raziskave Onesnaženosti Tal Slovenije; Agencija RS Za Okolje: Ljubljana, Slovenia, 2008.
- Lobnik, F.; Zupan, M.; Grčman, H. Onesnaženost Tal in Rastlin v Celjski Kotlini. In Onesnaženost Okolja in Naravni Viri Kot Omejitveni Dejavnik Razvoja v Sloveniji—Modelni Pristop za Degradirana Območja: Zbornik 1. konference; Inštitut za Okolje in Prostor: Celje, Slovenia, 2010. [Google Scholar]
- Adriano, D.C. Trace Elements in Terrestrial Environments, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Richardson, M. Environmental Xenobiotics; CRC Press: London, UK, 1996. [Google Scholar] [CrossRef]
- Pirc, S.; Šajn, R. Vloga geokemije v ugotavljanju kemične obremenitve okolja. In Kemizacija okolja in življenja – do katere mere? [Chemical Changes of the Environment and Life – Up to Which Extent?]; Proceedings of the European Year of Nature Conservation 1995 Project; Slovensko ekološko gibanje: Ljubljana, Slovenia, 1997; pp. 165–186. [Google Scholar]
- Commission v Slovenia (Décharge de Bukovžlak). 2025. Available online: https://curia.europa.eu/juris/document/document.jsf?docid=299095 (accessed on 13 May 2025).
- Krige, D.G. A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 1951, 52, 119–139. Available online: https://wiredspace.wits.ac.za/items/ae034a42-dd51-44c9-b405-d14a37f76472 (accessed on 7 June 2025).
- Wang, X.J. Kriging and Heavy Metal Pollution Assessment in Wastewater Irrigated Agricultural Soil of Beijing’s Eastern Farming Regions. J. Environ. Sci. Health Part A 1998, 33, 1057–1073. [Google Scholar] [CrossRef]
- Wu, J.; Norvell, W.A.; Welch, R.M. Kriging on Highly Skewed Data for DTPA-Extractable Soil Zn with Auxiliary Information for pH and Organic Carbon. Geoderma 2006, 134, 187–199. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Rossiter, D.G. About Regression-Kriging: From Equations to Case Studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Ikoyi, I.O.; Heuvelink, G.B.M.; De goede, R.G.M. Geostatistical Modelling and Mapping of Nematode-Based Soil Ecological Quality Indices in a Polluted Nature Reserve. Pedosphere 2021, 31, 670–682. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat Satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Pour, A.B.; Ranjbar, H.; Sekandari, M.; Abd El-Wahed, M.; Hossain, M.S.; Hashim, M.; Yousefi, M.; Zoheir, B.; Wambo, J.D.T.; Muslim, A.M. 2—Remote Sensing for Mineral Exploration. In Geospatial Analysis Applied to Mineral Exploration; Pour, A.B., Parsa, M., Eldosouky, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 17–149. [Google Scholar] [CrossRef]
- Pu, R. Hyperspectral Remote Sensing: Fundamentals and Practices; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Chabrillat, S.; Eisele, A.; Guillaso, S.; Rogaß, C.; Ben-Dor, E.; Kaufmann, H. HYSOMA: An Easy-to-Use Software Interface for Soil Mapping Applications of Hyperspectral Imagery. In Proceedings of the 7th EARSeL SIG Imaging Spectroscopy Workshop, Edinburgh, UK, 11–13 April 2011. [Google Scholar]
- Ben-Dor, E. Quantitative Remote Sensing of Soil Properties. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2002; Volume 75, pp. 173–243. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Irons, J.R.; Epema, G.F. Soil Reflectance. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, A.N., Ed.; John Wiley & Sons: New York, NY, USA, 1999; pp. 111–188. [Google Scholar]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Inbar, Y.; Chen, Y. The Reflectance Spectra of Organic Matter in the Visible Near-Infrared and Short Wave Infrared Region (400–2500 Nm) during a Controlled Decomposition Process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Ben-Dor, E.; Borůvka, L. Monitoring of Selected Soil Contaminants Using Proximal and Remote Sensing Techniques: Background, State-of-the-Art and Future Perspectives. Crit. Rev. Environ. Sci. Technol. 2018, 48, 243–278. [Google Scholar] [CrossRef]
- Resmini, R.G.; Kappus, M.E.; Aldrich, W.S.; Harsanyi, J.C.; Anderson, M. Mineral Mapping with HYperspectral Digital Imagery Collection Experiment (HYDICE) Sensor Data at Cuprite, Nevada, USA. Int. J. Remote Sens. 1997, 18, 1553–1570. [Google Scholar] [CrossRef]
- Weidong, L.; Baret, F.; Xingfa, G.; Qingxi, T.; Lanfen, Z.; Bing, Z. Relating Soil Surface Moisture to Reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar] [CrossRef]
- Omran, E.-S.E. Inference Model to Predict Heavy Metals of Bahr El Baqar Soils, Egypt Using Spectroscopy and Chemometrics Technique. Model. Earth Syst. Environ. 2016, 2, 1–17. [Google Scholar] [CrossRef]
- Francos, N.; Gholizadeh, A.; Ben Dor, E. Spatial Distribution of Lead (Pb) in Soil: A Case Study in a Contaminated Area of the Czech Republic. Geomat. Nat. Hazards Risk 2022, 13, 610–620. [Google Scholar] [CrossRef]
- Bian, Z.; Sun, L.; Tian, K.; Liu, B.; Zhang, X.; Mao, Z.; Huang, B.; Wu, L. Estimation of Heavy Metals in Tailings and Soils Using Hyperspectral Technology: A Case Study in a Tin-Polymetallic Mining Area. Bull. Environ. Contam. Toxicol. 2021, 107, 1022–1031. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, B.; Zou, B.; Wei, W.; Lei, Y.; Li, T. Retrieving Soil Heavy Metals Concentrations Based on GaoFen-5 Hyperspectral Satellite Image at an Opencast Coal Mine, Inner Mongolia, China. Environ. Pollut. 2022, 300, 118981. [Google Scholar] [CrossRef]
- Fu, P.; Zhang, J.; Yuan, Z.; Feng, J.; Zhang, Y.; Meng, F.; Zhou, S. Estimating the Heavy Metal Contents in Entisols from a Mining Area Based on Improved Spectral Indices and Catboost. Sensors 2024, 24, 1492. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Zhang, X.; Zhu, H. Performance of Hyperspectral Data in Predicting and Mapping Zinc Concentration in Soil. Sci. Total Environ. 2022, 824, 153766. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Guo, F.; Xu, Z.; Yang, X.-Y.; Wu, K.-Z. On Retrieving the Chromium and Zinc Concentrations in the Arable Soil by the Hyperspectral Reflectance Based on the Deep Forest. Ecol. Indic. 2022, 144, 109440. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Peng, Y.; Zhao, L.; Wang, G.; Hu, Y. Estimation of Soil Heavy Metal Content Using Hyperspectral Data. Remote Sens. 2019, 11, 1464. [Google Scholar] [CrossRef]
- Cui, S.; Zhou, K.; Ding, R.; Cheng, Y.; Jiang, G. Estimation of Soil Copper Content Based on Fractional-Order Derivative Spectroscopy and Spectral Characteristic Band Selection. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2022, 275, 121190. [Google Scholar] [CrossRef] [PubMed]
- Koerting, F.; Koellner, N.; Mielke, C.; Rogass, C.; Kuras, A.; Altenberger, U.; Kaestner, F.; Hildebrand, C. Hyperspectral Imaging Data of the Northern Mine Face and of Laboratory Samples of the Copper-Gold-Pyrite Mine Apliki, Nicosia District, Republic of Cyprus. GFZ Data Serv. 2021. [Google Scholar] [CrossRef]
- Jiang, G.; Zhou, S.; Cui, S.; Chen, T.; Wang, J.; Chen, X.; Liao, S.; Zhou, K. Exploring the Potential of HySpex Hyperspectral Imagery for Extraction of Copper Content. Sensors 2020, 20, 6325. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, B.; Chai, L.; Lin, Z.; Feng, H.; Tang, Y.; Tian, R.; Tu, Y.; Zhang, B.; Zou, H. Monitoring of Soil Heavy Metals Based on Hyperspectral Remote Sensing: A Review. Earth-Sci. Rev. 2024, 254, 104814. [Google Scholar] [CrossRef]
- Vapnik, V.; Izmailov, R. Learning Using Privileged Information: Similarity Control and Knowledge Transfer. J. Mach. Learn. Res. 2015, 16, 2023–2049. [Google Scholar]
- Lapin, M.; Hein, M.; Schiele, B. Learning Using Privileged Information: SVM+ and Weighted SVM. Neural Netw. 2014, 53, 95–108. [Google Scholar] [CrossRef]
- Serra-Toro, C.; Traver, V.J.; Pla, F. Exploring Some Practical Issues of SVM+: Is Really Privileged Information That Helps? Pattern Recognit. Lett. 2014, 42, 40–46. [Google Scholar] [CrossRef]
- Li, X.; Du, B.; Xu, C.; Zhang, Y.; Zhang, L.; Tao, D. Robust Learning with Imperfect Privileged Information. Artif. Intell. 2020, 282, 103246. [Google Scholar] [CrossRef]
- Moradi, M.; Syeda-Mahmood, T.; Hor, S. Tree-Based Transforms for Privileged Learning. In Machine Learning in Medical Imaging; Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 188–195. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, B.; Li, S.; Tian, R.; Zhang, B.; Feng, H.; Tang, Y. A Hierarchical Residual Correction-Based Hyperspectral Inversion Method for Soil Heavy Metals Considering Spatial Heterogeneity. J. Hazard. Mater. 2024, 479, 135699. [Google Scholar] [CrossRef]
- Grilc, V.; Husić, M. Nastajanje in Ravnanje z Industrijskimi Odpadki v Mestni Občini Celje. In Onesnaženost Okolja in Naravni Viri Kot Omejitveni Dejavnik Razvoja v Sloveniji—Celjska Kotlina Kot Modelni Pristop Za Degradirana Območja; Inštitut Za Okolje in Prostor: Celje, Slovenia, 2013. [Google Scholar]
- Brümmer, G.; Herms, U. Influence of Soil Reaction and Organic Matter on The Solubility of Heavy Metals in Soils. In Effects of Accumulation of Air Pollutants in Forest Ecosystems, Proceedings of a Workshop, Göttingen, Germany, 16–18 May 1982; Ulrich, B., Pankrath, J., Eds.; Ulrich, B., Pankrath, J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1983; pp. 233–243. [Google Scholar] [CrossRef]
- Evans, L.J. Chemistry of Metal Retention by Soils. Environ. Sci. Technol. 1989, 23, 1046–1056. [Google Scholar] [CrossRef]
- MKGP. Evidenca Dejanske Rabe Kmetijskih in Gozdnih Zemljišč. Available online: https://rkg.gov.si/vstop/ (accessed on 10 April 2025).
- Pevec, T.; Setev koruze. Kmetijsko Gozdarska Zbornica Slovenije, Zavod Celje. Available online: https://www.kgzs.si/uploads/kgzs_-_zavod_ce/travnistvo_in_pasnistvo/setev_koruze.doc (accessed on 12 January 2023).
- Škerbot, I. S Setvijo Jarih Žit Ne Odlašamo. Kmetijsko Gozdarska Zbornica Slovenije, Zavod Celje. Available online: https://www.kmetijskizavod-celje.si/aktualno/s-setvijo-jarih-zit-ne-odlasamo-2022-02-25 (accessed on 12 January 2023).
- MKGP. Sloj Kmetijskih Rastlin Iz Zbirnih Vlog (KMRS). 2019. Available online: https://podatki.gov.si/dataset/sloj-kmetijskih-rastlin-iz-zbirnih-vlog-kmrs (accessed on 31 May 2019).
- Yfantis, E.A.; Flatman, G.T.; Behar, J.V. Efficiency of Kriging Estimation for Square, Triangular, and Hexagonal Grids. Math. Geol. 1987, 19, 183–205. [Google Scholar] [CrossRef]
- ISO 18400-105:2017; Soil Quality—Sampling—Part 105: Packaging, Transport, Storage and Preservation of Samples. International Organization for Standardization: Geneva, Switzerland, 2017.
- SIST ISO 11464:2008; Soil Quality—Pretreatment of Samples for Physico-Chemical Analyses. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2008.
- SIST EN ISO 11272:2020; Soil Quality—Determination of Dry Bulk Density. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2020.
- ISO 11465:1993; Soil Quality—Determination of Dry Matter and Water Content on a Mass Basis—Gravimetric Method. International Organization for Standardization: Geneva, Switzerland, 1993.
- SIST ISO 10390:2005; Soil Quality—Determination of pH. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2005.
- SIST ISO 10694:2005; Soil Quality—Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). Slovenian Institute for Standardization: Ljubljana, Slovenia, 2005.
- SIST ISO 13878:2005; Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (“Elemental Analysis”). Slovenian Institute for Standardization: Ljubljana, Slovenia, 2005.
- SIST ISO 10693:1995; Soil Quality—Determination of Calcium Carbonate Content—Volumetric Method. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2005.
- ÖNORM L 1087:2012; Chemical Analyses of Soils—Determination of "Plant-Available" Phosphorus and Potassium by the Calcium-Acetate-Lactate (CAL) Method. Austrian Standards Institute: Vienna, Austria, 2012.
- Jenko, T. Variabilnost Osnovnih Pedoloških Lastnosti Na Izbranih Njivskih Površinah. Bachelor’s Thesis, Univerza v Ljubljani, Biotehniška Fakulteta (samozaložba T. Jenko), Ljubljana, Slovenia, 2022. [Google Scholar]
- Grčman, H.; Zupan, M. Praktična Pedologija; Biotehniška fakulteta, Center za pedologija in varstvo okolja: Ljubljana, Slovenia, 2010. [Google Scholar]
- SIST ISO 12914:2019; Soil Quality—Microwave-Assisted Extraction of the Aqua Regia Soluble Fraction for the Determination of Elements. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2019.
- ISO 22036:2024; Environmental Solid Matrices—Determination of Elements Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). International Organization for Standardization: Geneva, Switzerland, 2024.
- Uredba o Merilih Za Ugotavljanje Stopnje Obremenjenosti Okolja Zaradi Onesnaženosti Tal z Nevarnimi Snovmi. Available online: http://pisrs.si (accessed on 10 January 2023).
- Gholizadeh, A.; Saberioon, M.; Carmon, N.; Boruvka, L.; Ben-Dor, E. Examining the Performance of PARACUDA-II Data-Mining Engine versus Selected Techniques to Model Soil Carbon from Reflectance Spectra. Remote Sens. 2018, 10, 1172. [Google Scholar] [CrossRef]
- Stoner, E.R.; Baumgardner, M.F.; Weismiller, R.A.; Biehl, L.L.; Robinson, B.F. Extension of Laboratory-Measured Soil Spectra to Field Conditions. Soil Sci. Soc. Am. J. 1980, 44, 572–574. [Google Scholar] [CrossRef]
- Chabrillat, S.; Gholizadeh, A.; Neumann, C.; Berger, D.; Milewski, R.; Ogen, Y.; Ben-Dor, E. Preparing a Soil Spectral Library Using the Internal Soil Standard (ISS) Method: Influence of Extreme Different Humidity Laboratory Conditions. Geoderma 2019, 355, 113855. [Google Scholar] [CrossRef]
- SphereOptics. NEO HySpex Hyperspectral Cameras. 2015. Available online: http://sphereoptics.de/wp-content/uploads/2015/01/NEO-HySpex-Hyperspectral-Cameras.pdf (accessed on 10 April 2025).
- HySpex. HySpex SWIR-384: High-Resolution SWIR Hyperspectral Camera. Available online: https://www.hyspex.com/hyspex-products/hyspex-classic/hyspex-swir-384/ (accessed on 10 April 2025).
- ReSe. PARGE Airborne Image Rectification. Available online: https://www.rese-apps.com/software/parge/index.html (accessed on 15 March 2025).
- GURS. Portal CLSS: Pregledovalnik Podatkov Cikličnega Laserskega Skeniranja Slovenije (Geodetska uprava Republike Slovenije). Available online: https://clss.si/ (accessed on 15 March 2025).
- ReSe. ATCOR for Airborne Remote Sensing. Available online: https://www.rese-apps.com/software/atcor-4-airborne/index.html (accessed on 17 March 2025).
- ARSO. meteo.si—Uradna Vremenska Napoved za Slovenijo—Državna Meteorološka Služba RS—Vreme Podrobneje. Available online: https://meteo.arso.gov.si/met/sl/app/webmet/#webmet==8Sdwx2bhR2cv0WZ0V2bvEGcw9ydlJWblR3LwVnaz9SYtVmYh9iclFGbt9SaulGdugXbsx3cs9mdl5WahxXYyNGapZXZ8tHZv1WYp5mOnMHbvZXZulWYnwCchJXYtVGdlJnOn0UQQdSf (accessed on 17 March 2025).
- Press, W.H. Numerical Recipes 3rd Edition: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. Climatol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Barry, R.; Chorley, R.; Barry, R.G.; Chorley, R. Atmosphere, Weather and Climate, 8th ed.; Routledge: London, UK, 2004. [Google Scholar] [CrossRef]
- Salby, M.L. Fundamentals of Atmospheric Physics; International Geophysics Series; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- MetPy. precipitable_water—MetPy 1.6. Available online: https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.precipitable_water.html (accessed on 21 March 2025).
- Vane, G.; Goetz, A.F.H. Terrestrial Imaging Spectroscopy. Remote Sens. Environ. 1988, 24, 1–29. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; King, T.V.V.; Dalton, J.B.; Vance, J.S.; Rockwell, B.W.; Hoefen, T.; McDougal, R.R. Surface Reflectance Calibration of Terrestrial Imaging Spectroscopy Data: A Tutorial Using AVIRIS. In Proceedings of the 10th Airborne Earth Science Workshop; Jet Propulsion Laboratory: Pasadena, CA, USA, 2002. [Google Scholar]
- Qiao, X.-X.; Wang, C.; Feng, M.-C.; Yang, W.-D.; Ding, G.-W.; Sun, H.; Liang, Z.-Y.; Shi, C.-C. Hyperspectral Estimation of Soil Organic Matter Based on Different Spectral Preprocessing Techniques. Spectrosc. Lett. 2017, 50, 156–163. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Ren, H.-Y.; Zhuang, D.-F.; Singh, A.N.; Pan, J.-J.; Qiu, D.-S.; Shi, R.-H. Estimation of As and Cu Contamination in Agricultural Soils Around a Mining Area by Reflectance Spectroscopy: A Case Study. Pedosphere 2009, 19, 719–726. [Google Scholar] [CrossRef]
- Song, Y.; Li, F.; Yang, Z.; Ayoko, G.A.; Frost, R.L.; Ji, J. Diffuse Reflectance Spectroscopy for Monitoring Potentially Toxic Elements in the Agricultural Soils of Changjiang River Delta, China. Appl. Clay Sci. 2012, 64, 75–83. [Google Scholar] [CrossRef]
- Smith, G.M.; and Milton, E.J. The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using Imaging Spectroscopy to Study Soil Properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Burger, J.; Geladi, P. Hyperspectral NIR Image Regression Part I: Calibration and Correction. J. Chemom. 2005, 19, 355–363. [Google Scholar] [CrossRef]
- Demetriades-Shah, T.H.; Steven, M.D.; Clark, J.A. High Resolution Derivative Spectra in Remote Sensing. Remote Sens. Environ. 1990, 33, 55–64. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.; Müller, K.-R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 1998, 10, 1299–1319. [Google Scholar] [CrossRef]
- Williams, C.; Seeger, M. Using the Nyström Method to Speed Up Kernel Machines. In Advances in Neural Information Processing Systems; Leen, T., Dietterich, T., Tresp, V., Eds.; MIT Press: Cambridge, MA, USA, 2000; Volume 13. [Google Scholar]
- Gosar, M.; Šajn, R.; Bavec, Š.; Gaberšek, M.; Pezdir, V.; Miler, M. Geochemical Background and Threshold for 47 Chemical Elements in Slovenian Topsoil. Geologija 2019, 62, 7–59. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional Variable Importance for Random Forests. BMC Bioinformatics 2008, 9, 307. [Google Scholar] [CrossRef]
- Nicodemus, K.K. Letter to the Editor: On the Stability and Ranking of Predictors from Random Forest Variable Importance Measures. Brief. Bioinform. 2011, 12, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. arXiv 2015, arXiv:1511.05741. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Shmueli, G. To Explain or to Predict? Stat. Sci. 2010, 25, 289–310. [Google Scholar] [CrossRef]
- Barten, A.P. The Coefficient of Determination for Regression without a Constant Term. In The Practice of Econometrics: Studies on Demand, Forecasting, Money and Income; Heijmans, R., Neudecker, H., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1987; pp. 181–189. [Google Scholar] [CrossRef]
- Colin Cameron, A.; Windmeijer, F.A.G. An R-Squared Measure of Goodness of Fit for Some Common Nonlinear Regression Models. J. Econom. 1997, 77, 329–342. [Google Scholar] [CrossRef]
- Smieja-Król, B.; Pawlyta, M.; Gałka, M. Ultrafine Multi-Metal (Zn, Cd, Pb) Sulfide Aggregates Formation in Periodically Water-Logged Organic Soil. Sci. Total Environ. 2022, 820, 153308. [Google Scholar] [CrossRef]
- Sun, Q.; Yang, H.; Feng, X.; Liang, Y.; Gao, P.; Song, Y. Synchronous Stabilization of Pb, Zn, Cd, and As in Lead Smelting Slag by Industrial Solid Waste. Chemosphere 2023, 339, 139755. [Google Scholar] [CrossRef]
- Smieja-Król, B.; Pawlyta, M.; Kądziołka-Gaweł, M.; Fiałkiewicz-Kozieł, B. Formation of Zn and Pb Sulfides in a Redox-Sensitive Modern System Due to High Atmospheric Fallout. Geochim. Cosmochim. Acta 2022, 318, 126–143. [Google Scholar] [CrossRef]
Field ID and Number of Samples [tot. 97] | Depth | Zn | Pb | Cd | Cu | Ni | As |
---|---|---|---|---|---|---|---|
cm | [ppm] | [ppm] | [ppm] | [ppm] | [ppm] | [ppm] | |
P [6] | 0–5 | 212.6 | 74.2 | BDL * | 16.0 | 15.6 | 12.1 |
H1 [10] | 0–5 | 220.0 | 74.3 | BDL * | 20.6 | 20.6 | 14.4 |
H3 [18] | 0–5 | 226.7 | 69.2 | BDL * | BDL * | 15.0 | 13.7 |
M1 [4] | 0–5 | 205.2 | 72.5 | BDL * | 21.4 | 15.0 | 12.7 |
M2 [3] | 0–5 | 178.7 | 57.7 | BDL * | 20.8 | 15.0 | 12.0 |
K [14] | 0–5 | 379.8 | 114.1 | BDL * | 31.1 | 17.1 | 17.2 |
T [21] | 0–5 | 645.9 | 121.0 | 5.1 | 24.8 | 15.0 | 16.5 |
Z [17] | 0–5 | 768.0 | 122.8 | 7.6 | 27.6 | 15.0 | 14.0 |
Threshold value [2] | 200.0 | 85.0 | 1.0 | 60.0 | 50.0 | 20.0 | |
Warning value [2] | 300.0 | 100.0 | 2.0 | 100.0 | 70.0 | 30.0 | |
Critical value [2] | 720.0 | 530.0 | 12.0 | 300.0 | 210.0 | 55.0 | |
Slovenia-median [3,7] | 0–5 | 99.0 | 42.0 | 0.6 | 26.3 | 29.2 | 10.2 |
Field ID and Number of Samples [tot. 97] | Depth | Zn | Pb | Cd | Cu | Ni | As |
---|---|---|---|---|---|---|---|
cm | [ppm] | [ppm] | [ppm] | [ppm] | [ppm] | [ppm] | |
P [6] | 0–5 | 178.0 | 68.0 | BDL * | 19.5 | 24.9 | 1.6 |
H1 [10] | 0–5 | 172.2 | 58.4 | BDL * | 19.1 | 25.1 | 15.1 |
H3 [18] | 0–5 | 193.1 | 51.3 | BDL * | 20.2 | 25.9 | 6.8 |
M1 [4] | 0–5 | 155.5 | 58.0 | BDL * | 24.5 | 24.9 | 8.8 |
M2 [3] | 0–5 | 116.0 | 44.3 | BDL * | 25.3 | 22.0 | 13.6 |
K [14] | 0–5 | 298.4 | 92.0 | 2.3 | 29.2 | 28.7 | 24.1 |
T [21] | 0–5 | 562.4 | 92.5 | 4.7 | 21.2 | 21.5 | 4.8 |
Z [17] | 0–5 | 565.5 | 83.9 | 6.2 | 23.5 | 25.2 | 12.6 |
Threshold value [2] | 200.0 | 85.0 | 1.0 | 60.0 | 50.0 | 20.0 | |
Warning value [2] | 300.0 | 100.0 | 2.0 | 100.0 | 70.0 | 30.0 | |
Critical value [2] | 720.0 | 530.0 | 12.0 | 300.0 | 210.0 | 55.0 | |
Slovenia-median [3,7] |
Model with Auxiliary Variables | Direct Model | |||||||
---|---|---|---|---|---|---|---|---|
Spectrum | Dataset | Best Variable Combination | R2 | RMSE | Rel. RMSE | R2 | RMSE | Rel. RMSE |
Savitzky–Golay | sub. pXRF | Cu, Pb | 0.79 | 119.3 | 45.6 | 0.63 | 157.7 | 60.2 |
Savitzky–Golay | samples pXRF | As, Cd, Cu, Hg, Ni, Pb | 0.69 | 133.8 | 51.7 | 0.49 | 176.5 | 68.2 |
Savitzky–Golay | samples ICP-OES | CaCO3, Cd, Pb | 0.63 | 117.0 | 56.7 | 0.43 | 148.5 | 72.0 |
baseline corr. | sub. pXRF | Cd, Cu, Pb | 0.83 | 108.2 | 41.3 | 0.71 | 139.9 | 53.4 |
baseline corr. | samples pXRF | As, Cd, Cu, Hg, Ni, Pb | 0.73 | 129.4 | 50.1 | 0.49 | 166.8 | 64.5 |
baseline corr. | samples ICP-OES | Cd, Cu, Ni, organic matter, Pb, P2O5 | 0.62 | 122.7 | 59.5 | 0.35 | 150.8 | 73.1 |
first derivative | sub. pXRF | As, CaCO3, Cd, Cu, Ni, Pb | 0.91 | 79.5 | 30.4 | 0.83 | 105.6 | 40.4 |
first derivative | samples pXRF | As, CaCO3, Cd, Cu, Hg, Pb | 0.78 | 104.2 | 40.3 | 0.68 | 134.2 | 51.9 |
first derivative | samples ICP-OES | As, CaCO3, Cd, Cu, Ni, Pb | 0.73 | 101.4 | 49.2 | 0.62 | 115.9 | 56.2 |
sec. derivative | sub. pXRF | As, Cd, Cu, Hg, Ni, Pb | 0.90 | 83.7 | 32.0 | 0.80 | 114.6 | 43.8 |
sec. derivative | samples pXRF | As, CaCO3, Cd, Cu, Ni, Pb | 0.84 | 99.0 | 38.3 | 0.69 | 133.0 | 51.4 |
sec. derivative | samples ICP-OES | As, CaCO3, Cd, Pb | 0.72 | 97.3 | 47.2 | 0.60 | 116.4 | 56.5 |
continuum rem. | sub. pXRF | Cd, Cu, Ni, Pb | 0.81 | 113.2 | 43.3 | 0.70 | 141.0 | 53.9 |
continuum rem. | samples pXRF | As, Cd, Cu, Hg, Ni, Pb | 0.65 | 130.0 | 50.3 | 0.43 | 173.1 | 67.0 |
continuum rem. | samples ICP-OES | As, CaCO3, Cd, Cu, Ni, Pb | 0.57 | 116.3 | 56.4 | 0.35 | 144.0 | 69.8 |
PCA 20 | sub. pXRF | As, K2O, organic matter, Pb, P2O5, pH | 0.93 | 68.1 | 26.0 | 0.73 | 134.8 | 51.5 |
PCA 20 | samples pXRF | As, Cd, K2O, organic matter, Pb, P2O5, pH | 0.87 | 88.4 | 34.2 | 0.37 | 190.4 | 73.6 |
PCA 20 | samples ICP-OES | Cd, Cu, Ni, K2O, organic matter, Pb, P2O5, pH | 0.80 | 88.8 | 43.1 | 0.35 | 152.7 | 74.1 |
PCA 50 | sub. pXRF | As, Cd, Cu, K2O, organic matter, Pb, P2O5, pH | 0.87 | 94.2 | 36.0 | 0.60 | 164.1 | 62.7 |
PCA 50 | samples pXRF | As, Cd, Cu, K2O, organic matter, Pb, P2O5, pH | 0.78 | 117.9 | 45.6 | 0.24 | 208.8 | 80.8 |
PCA 50 | samples ICP-OES | Cd, Pb, organic matter, P2O5 | 0.69 | 110.6 | 53.6 | 0.28 | 165.9 | 80.5 |
KPCA 20 | sub. pXRF | As, bulk density, Cd, Cu, Pb, pH, organic matter, P2O5 | 0.91 | 74.9 | 28.6 | 0.63 | 154.0 | 58.8 |
KPCA 20 | samples pXRF | As, Cd, Cu, Pb, P2O5, pH | 0.89 | 83.4 | 32.2 | 0.56 | 160.0 | 61.9 |
KPCA 20 | samples ICP-OES | As, Cd, organic matter, Pb, P2O5, pH | 0.79 | 84.3 | 40.9 | 0.37 | 143.2 | 69.4 |
KPCA 50 | sub. pXRF | As, bulk density, CaCO3, Cd, Cu, Ni, Pb, Hg, pH, P2O5 | 0.88 | 88.6 | 33.8 | 0.63 | 156.1 | 59.6 |
KPCA 50 | samples pXRF | As, Cd, Cu, K2O, organic matter, Pb, P2O5, pH | 0.83 | 102.6 | 39.7 | 0.43 | 175.9 | 68.0 |
KPCA 50 | samples ICP-OES | CaCO3, Cd, Cu, organic matter, Pb, P2O5 | 0.71 | 99.4 | 48.2 | 0.52 | 133.5 | 64.7 |
Model with Auxiliary Variables | Direct Model | |||||||
---|---|---|---|---|---|---|---|---|
Spectrum | Dataset | Best Variable Combination | R2 | RMSE | Rel. RMSE | R2 | RMSE | Rel. RMSE |
Savitzky–Golay | sub. pXRF | As, Cd, Cu, Ni, Zn, Hg | 0.56 | 28.4 | 65.6 | 0.18 | 38.6 | 89.2 |
Savitzky–Golay | samples pXRF | As, Cd, Cu, Hg, Ni, Zn | 0.39 | 29.4 | 69.2 | 0.01 | 41.0 | 96.4 |
Savitzky–Golay | samples ICP-OES | As, CaCO3, Cd, Cu, Ni, Zn | −0.02 | 28.6 | 83.5 | −0.05 | 33.8 | 98.5 |
baseline corr. | sub. pXRF | As, Cd, Cu, Ni, Zn, Hg | 0.59 | 27.6 | 63.7 | 0.41 | 32.4 | 74.8 |
baseline corr. | samples pXRF | As, Cd, Cu, Hg, Ni, Zn | 0.51 | 28.5 | 67.0 | 0.11 | 36.7 | 86.3 |
baseline corr. | samples ICP-OES | Cu, Ni, Zn | 0.34 | 26.2 | 76.5 | 0.16 | 30.2 | 88.2 |
first derivative | sub. pXRF | As, CaCO3, Cd, Cu, Hg, Zn | 0.79 | 19.4 | 44.9 | 0.59 | 27.2 | 62.8 |
first derivative | samples pXRF | As, CaCO3, Cd, Hg, Ni, Zn | 0.33 | 29.0 | 68.1 | 0.32 | 32.4 | 76.2 |
first derivative | samples ICP-OES | As, CaCO3, Cd, Cu, Ni, Zn | 0.26 | 27.6 | 80.6 | 0.19 | 29.4 | 85.9 |
sec. derivative | sub. pXRF | As, Cd, Cu, Hg, Ni, Zn | 0.78 | 20.1 | 46.5 | 0.56 | 28.5 | 65.8 |
sec. derivative | samples pXRF | As, CaCO3, Cu, Hg, Ni, Zn | 0.47 | 29.7 | 69.9 | 0.23 | 35.0 | 82.3 |
sec. derivative | samples ICP-OES | As, CaCO3, Cd, Cu, Ni, Zn | 0.16 | 28.0 | 81.6 | 0.08 | 31.4 | 91.8 |
continuum rem. | sub. pXRF | Cd, Cu, Ni, Zn | 0.61 | 26.8 | 61.9 | 0.35 | 34.2 | 79.0 |
continuum rem. | samples pXRF | As, Cd, Cu, Hg, Ni, Zn | 0.28 | 30.0 | 70.4 | 0.25 | 35.6 | 83.7 |
continuum rem. | samples ICP-OES | As, CaCO3, Cd, Cu, Ni, Zn | 0.13 | 27.8 | 81.0 | 0.02 | 32.3 | 94.3 |
PCA 20 | sub. pXRF | As, CaCO3, Cd, Hg, Zn | 0.88 | 14.9 | 34.4 | 0.53 | 29.3 | 67.6 |
PCA 20 | samples pXRF | As, Cd, Cu, Hg, Zn | 0.76 | 20.3 | 47.6 | 0.27 | 35.4 | 83.1 |
PCA 20 | samples ICP-OES | As, CaCO3, Cd, Cu, Zn | 0.39 | 25.2 | 73.5 | 0.10 | 31.3 | 91.3 |
PCA 50 | sub. pXRF | As, Cd, Cu, Hg, Zn | 0.80 | 19.2 | 44.3 | 0.42 | 32.7 | 75.5 |
PCA 50 | samples pXRF | As, Cd, Cu, Zn | 0.64 | 24.7 | 57.9 | 0.19 | 36.2 | 85.0 |
PCA 50 | samples ICP-OES | Cd, Cu, Ni, Zn | 0.35 | 26.2 | 76.5 | 0.02 | 32.4 | 94.4 |
KPCA 20 | sub. pXRF | As, Cu, Hg, CaCO3, organic matter, pH, P2O5, K2O, Zn | 0.86 | 16.3 | 37.6 | 0.26 | 36.6 | 84.6 |
KPCA 20 | samples pXRF | As, Cd, Cu, Hg, Zn | 0.79 | 18.7 | 43.9 | 0.09 | 38.3 | 90.1 |
KPCA 20 | samples ICP-OES | As, CaCO3, Cd, Cu, Zn | 0.50 | 22.3 | 65.1 | 0.07 | 31.5 | 92.0 |
KPCA 50 | sub. pXRF | As, Cd, Cu, CaCO3, organic matter, pH, P2O5, Zn | 0.78 | 20.0 | 46.2 | 0.32 | 35.1 | 81.1 |
KPCA 50 | samples pXRF | As, CaCO3, Cu, Hg, Ni, Zn | 0.66 | 23.7 | 55.8 | 0.11 | 37.8 | 88.8 |
KPCA 50 | samples ICP-OES | CaCO3, Cd, Cu, Ni, Zn | 0.38 | 24.6 | 71.7 | 0.27 | 28.3 | 82.7 |
Model with Auxiliary Variables | Direct Model | |||||||
---|---|---|---|---|---|---|---|---|
Spectrum | Dataset | Best Variable Combination | R2 | RMSE | Rel. RMSE | R2 | RMSE | Rel. RMSE |
Savitzky–Golay | sub. pXRF | CaCO3, organic matter, Pb, pH, P2O5, Zn | 0.51 | 2.6 | 69.1 | 0.45 | 2.8 | 72.7 |
Savitzky–Golay | samples pXRF | As, Cu, Hg, Ni, Pb, Zn | 0.46 | 2.3 | 69.2 | 0.43 | 2.5 | 73.8 |
Savitzky–Golay | samples ICP-OES | CaCO3, Cu, Ni, Pb, P2O5, Zn | 0.74 | 1.3 | 48.6 | 0.64 | 1.6 | 57.3 |
baseline corr. | sub. pXRF | bulk density Cu, Pb, Hg, K2O, pH, P2O5, Zn | 0.42 | 2.9 | 76.8 | 0.39 | 2.9 | 76.8 |
baseline corr. | samples pXRF | As, Cu, Hg, Ni, Pb, Zn | 0.32 | 2.3 | 68.9 | 0.50 | 2.3 | 67.8 |
baseline corr. | samples ICP-OES | As, CaCO3, Cu, Ni, Pb, Zn | 0.67 | 1.5 | 54.3 | 0.54 | 1.7 | 62.1 |
first derivative | sub. pXRF | bulk density, CaCO3, Cu, K2O, organic matter, P2O5, Pb, pH, Zn | 0.55 | 2.5 | 65.5 | 0.49 | 2.7 | 69.5 |
first derivative | samples pXRF | CaCO3, Cu, K2O | 0.65 | 1.9 | 56.7 | 0.63 | 1.9 | 57.4 |
first derivative | samples ICP-OES | CaCO3, Pb, Zn | 0.88 | 0.9 | 32.5 | 0.81 | 1.1 | 39.2 |
sec. derivative | sub. pXRF | bulk density, Cu, Hg, Ni, Zn, K2O, P2O5, pH | 0.51 | 2.6 | 68.9 | 0.49 | 2.7 | 70.2 |
sec. derivative | samples pXRF | As, bulk density, CaCO3, Cu, Hg, K2O, Ni, organic matter, Pb, pH, P2O5, Zn | 0.33 | 2.0 | 60.3 | 0.62 | 1.9 | 58.1 |
sec. derivative | samples ICP-OES | As, CaCO3, Cu, Ni, Pb, Zn | 0.90 | 0.8 | 29.6 | 0.86 | 1.0 | 35.5 |
continuum rem. | sub. pXRF | As, bulk density, CaCO3, Cu, Hg, organic matter pH, P2O5, Zn | 0.46 | 2.8 | 72.1 | 0.31 | 3.1 | 81.7 |
continuum rem. | samples pXRF | As, CaCO3, Cu, Hg, K2O, organic matter, P2O5, Zn | 0.53 | 2.2 | 64.3 | 0.44 | 2.3 | 69.8 |
continuum rem. | samples ICP-OES | Cu, Ni, Pb, Zn | 0.59 | 1.3 | 49.1 | 0.51 | 1.6 | 56.5 |
PCA 20 | sub. pXRF | As, CaCO3, Cu, Hg, K2O, organic matter, Pb, pH, P2O5, Zn | 0.55 | 2.5 | 65.7 | 0.46 | 2.8 | 72.6 |
PCA 20 | samples pXRF | As, CaCO3, Ni, K2O, organic matter, Pb, pH, P2O5, Zn | 0.27 | 2.0 | 59.6 | 0.45 | 2.4 | 70.6 |
PCA 20 | samples ICP-OES | Ni, K2O, organic matter, Pb, pH, P2O5, Zn | 0.85 | 1.0 | 37.0 | 0.55 | 1.7 | 62.1 |
PCA 50 | sub. pXRF | Hg, Ni, K2O, Pb, P2O5, pH, Zn | 0.53 | 2.6 | 68.1 | 0.31 | 3.0 | 79.3 |
PCA 50 | samples pXRF | CaCO3, Cu, Ni, K2O, organic matter, Pb, P2O5, pH, Zn | 0.25 | 2.3 | 67.1 | 0.34 | 2.6 | 77.4 |
PCA 50 | samples ICP-OES | Ni, K2O, organic matter, Pb, P2O5, pH, Zn | 0.73 | 1.4 | 49.5 | 0.39 | 2.0 | 72.7 |
KPCA 20 | sub. pXRF | As, bulk density, CaCO3, K2O, organic matter, Pb, pH, P2O5, Zn | 0.58 | 2.5 | 64.4 | 0.45 | 2.8 | 73.0 |
KPCA 20 | samples pXRF | As, CaCO3, Cu, Ni, Pb, Zn, K2O, P2O5 | 0.31 | 2.1 | 63.7 | 0.47 | 2.3 | 69.0 |
KPCA 20 | samples ICP-OES | bulk density, K2O, Ni, organic matter, Pb, P2O5, pH, Zn | 0.80 | 1.1 | 38.5 | 0.59 | 1.6 | 57.3 |
KPCA 50 | sub. pXRF | CaCO3, Cu, Hg, Ni, Pb, Pb, pH, P2O5, Zn | 0.55 | 2.5 | 65.3 | 0.45 | 2.8 | 73.0 |
KPCA 50 | samples pXRF | As, CaCO3, Cu, K2O, Ni, organic matter, Pb, pH, P2O5, Zn | 0.30 | 2.2 | 66.1 | 0.46 | 2.4 | 70.2 |
KPCA 50 | samples ICP-OES | CaCO3, Cu, Ni, organic matter, Pb, P2O5, Zn | 0.76 | 1.2 | 43.7 | 0.56 | 1.7 | 60.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangafić, A.; Oštir, K.; Kolar, M.; Zupan, M. Hyperspectral Soil Heavy Metal Prediction via Privileged-Informed Residual Correction. Remote Sens. 2025, 17, 1987. https://doi.org/10.3390/rs17121987
Mangafić A, Oštir K, Kolar M, Zupan M. Hyperspectral Soil Heavy Metal Prediction via Privileged-Informed Residual Correction. Remote Sensing. 2025; 17(12):1987. https://doi.org/10.3390/rs17121987
Chicago/Turabian StyleMangafić, Alen, Krištof Oštir, Mitja Kolar, and Marko Zupan. 2025. "Hyperspectral Soil Heavy Metal Prediction via Privileged-Informed Residual Correction" Remote Sensing 17, no. 12: 1987. https://doi.org/10.3390/rs17121987
APA StyleMangafić, A., Oštir, K., Kolar, M., & Zupan, M. (2025). Hyperspectral Soil Heavy Metal Prediction via Privileged-Informed Residual Correction. Remote Sensing, 17(12), 1987. https://doi.org/10.3390/rs17121987