Harnessing Geospatial Artificial Intelligence and Deep Learning for Landslide Inventory Mapping: Advances, Challenges, and Emerging Directions
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Common Deep Learning Models in LIM
3. Progress on Deep Learning-Based Modeling for LIM
3.1. Early Attempts at Using Deep Learning in LIM
3.2. CNN Improvements in LIM
- CNN model exploration in LIM
- Component-level comparisons of the effectiveness of CNN models in LIM
- Multi-model integration in LIM
- CNN model variants in LIM
3.3. The Application of GANs in LIM
- Domain-adaptive GANs with adversarial learning in LIM
- Weakly inexact supervised learning trained on image-level labels in landslide segmentation
- Weakly semi-supervised learning in LIM
3.4. The Application of RNNs in LIM
- Landslide temporal change detection using LSTM
- Landslide classification and extraction using LSTM
3.5. The Application of Transformers in Landslide Detection
- Single Transformer adaption in LIM
- Hybrid architecture designed for using Transformers with CNNs or GCNs in LIM
4. Advanced Deep Learning Strategies and Techniques Adopted for Landslide Mapping
4.1. Feature Enhancement and Fusion Techniques
- Image-derived feature representations enhancement in LIM
- Feature fusion enhancement in LIM
- Background enhancements in LIM
4.2. Attention-Boosted Neural Network for LIM
- Attention blocks used in LIM
- Spatial/channel attention mechanism applied in LIM
- Multi-scale mechanism applied in LIM
- Long-range dependency-capturing attention mechanism used in LIM
4.3. Addressing the Limitation of Insufficient Training Data
- Manual creation of benchmark dataset in LIM
- Tools for dataset updating to support LIM
- Learning with fewer or less accurate labels in LIM
4.4. Detecting Different Types of Landslides
- Identifying earthquake-triggered landslides
- Identifying rainfall-triggered landslides
- Identifying old landslides
5. Discussions on the Limitations of the Current Research and Future Opportunities
- Estimating more diverse variables in landslide mapping
- Regional variability and model replicability
- Multimodal data alignment challenges
- High computational demand and resource consumption
- Data misinterpretation and model explainability
- Explainable AI for LIM
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crosta, G.B.; Agliardi, F. A Methodology for Physically Based Rockfall Hazard Assessment. Nat. Hazards Earth Syst. Sci. 2003, 3, 407–422. [Google Scholar] [CrossRef]
- Karstens, J.; Haflidason, H.; Berndt, C.; Crutchley, G.J. Revised Storegga Slide Reconstruction Reveals Two Major Submarine Landslides 12,000 Years Apart. Commun. Earth Environ. 2023, 4, 55. [Google Scholar] [CrossRef]
- Higman, B.; Shugar, D.H.; Stark, C.P.; Ekström, G.; Koppes, M.N.; Lynett, P.; Dufresne, A.; Haeussler, P.J.; Geertsema, M.; Gulick, S.; et al. The 2015 Landslide and Tsunami in Taan Fiord, Alaska. Sci. Rep. 2018, 8, 12993. [Google Scholar] [CrossRef]
- Measurement of Ridge-Spreading Movements (Sackungen) at Bald Eagle Mountain, Lake County, Colorado, II: Continuation of the 1975–1989 Measurements Using a Global Positioning System in 1997 and 1999. Available online: https://pubs.usgs.gov/publication/ofr00205 (accessed on 4 March 2025).
- McColl, S.T. Landslide Causes and Triggers. In Landslide Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 17–42. ISBN 978-0-12-396452-6. [Google Scholar]
- Landslides Kill and Hurt Thousands, but Science Largely Ignores These Disasters. Available online: https://www.scientificamerican.com/article/landslides-kill-and-hurt-thousands-but-science-largely-ignores-these-disasters/ (accessed on 4 March 2025).
- Larsen, M.C.; Wieczorek, G.F.; Eaton, L.S.; Torres-Sierra, H. The rainfall-triggered landslide and flash-flood disaster. In Proceedings of the Seventh Federal Interagency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001. [Google Scholar]
- Hansen, A. Engineering geomorphology: The application of an evolutionary model of Hong Kong’s terrain. Zeitschrift für Geomorphologie. Supplementband 1984, 51, 39–50. [Google Scholar]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing Landslide Inventory Maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G.; Piccialli, F. Machine Learning for Landslides Prevention: A Survey. Neural Comput. Applic. 2021, 33, 10881–10907. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Chen, J.; Zheng, K. Assessing Landslide Susceptibility Based on the Random Forest Model and Multi-Source Heterogeneous Data. Ecol. Indic. 2024, 158, 111600. [Google Scholar] [CrossRef]
- Agboola, G.; Beni, L.H.; Elbayoumi, T.; Thompson, G. Optimizing Landslide Susceptibility Mapping Using Machine Learning and Geospatial Techniques. Ecol. Inform. 2024, 81, 102583. [Google Scholar] [CrossRef]
- Youssef, K.; Shao, K.; Moon, S.; Bouchard, L.S. Landslide susceptibility modeling by interpretable neural network. Commun. Earth Environ. 2023, 4, 162. [Google Scholar] [CrossRef]
- Moosavi, V.; Talebi, A.; Shirmohammadi, B. Producing a Landslide Inventory Map Using Pixel-Based and Object-Oriented Approaches Optimized by Taguchi Method. Geomorphology 2014, 204, 646–656. [Google Scholar] [CrossRef]
- Li, X.; Cheng, X.; Chen, W.; Chen, G.; Liu, S. Identification of Forested Landslides Using LiDar Data, Object-Based Image Analysis, and Machine Learning Algorithms. Remote Sens. 2015, 7, 9705–9726. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Object-Oriented Mapping of Landslides Using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Li, W. GeoAI: Where Machine Learning and Big Data Converge in GIScience. J. Spat. Inf. Sci. 2020, 20, 71–77. [Google Scholar] [CrossRef]
- Li, W.; Hsu, C.-Y. GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS Int. J. Geo-Inf. 2022, 11, 385. [Google Scholar] [CrossRef]
- Thirugnanam, H. Deep Learning in Landslide Studies: A Review. In Progress in Landslide Research and Technology; Springer International Publishing: Cham, Switzerland, 2022; Volume 1, pp. 247–255. ISBN 978-3-031-18470-3. [Google Scholar]
- Tehrani, F.S.; Calvello, M.; Liu, Z.; Zhang, L.; Lacasse, S. Machine Learning and Landslide Studies: Recent Advances and Applications. Nat. Hazards 2022, 114, 1197–1245. [Google Scholar] [CrossRef]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on Remote Sensing Methods for Landslide Detection Using Machine and Deep Learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Schönfeldt, E.; Winocur, D.; Pánek, T.; Korup, O. Deep Learning Reveals One of Earth’s Largest Landslide Terrain in Patagonia. Earth Planet. Sci. Lett. 2022, 593, 117642. [Google Scholar] [CrossRef]
- Tang, X.; Tu, Z.; Wang, Y.; Liu, M.; Li, D.; Fan, X. Automatic Detection of Coseismic Landslides Using a New Transformer Method. Remote Sens. 2022, 14, 2884. [Google Scholar] [CrossRef]
- Ullo, S.; Mohan, A.; Sebastianelli, A.; Ahamed, S.; Kumar, B.; Dwivedi, R.; Sinha, G.R. A New Mask R-CNN-Based Method for Improved Landslide Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3799–3810. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Jian, J. Remote Sensing Landslide Recognition Based on Convolutional Neural Network. Math. Probl. Eng. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Xu, G.; Wang, Y.; Wang, L.; Soares, L.P.; Grohmann, C.H. Feature-Based Constraint Deep CNN Method for Mapping Rainfall-Induced Landslides in Remote Regions with Mountainous Terrain: An Application to Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2644–2659. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Vinod Chandra, S.S. Visual Saliency-Based Landslide Identification Using Super-Resolution Remote Sensing Data. Results Eng. 2024, 21, 101656. [Google Scholar] [CrossRef]
- Nava, L.; Bhuyan, K.; Meena, S.R.; Monserrat, O.; Catani, F. Rapid Mapping of Landslides on SAR Data by Attention U-Net. Remote Sens. 2022, 14, 1449. [Google Scholar] [CrossRef]
- Kamiyama, J.; Noro, T.; Sakagami, M.; Suzuki, Y.; Yoshikawa, K.; Hikosaka, S.; Hirata, I. Detection of landslide candidate interference fringes in DInSAR imagery using deep learning. Recall 2018, 90, 94–95. [Google Scholar]
- Liu, X.; Zhao, C.; Yin, Y.; Tomás, R.; Zhang, J.; Zhang, Q.; Wei, Y.; Wang, M.; Lopez-Sanchez, J.M. Refined InSAR Method for Mapping and Classification of Active Landslides in a High Mountain Region: Deqin County, Southern Tibet Plateau, China. Remote Sens. Environ. 2024, 304, 114030. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Gu, Z.; Li, R.; Zhou, Z.; Liu, X.; Jiang, S.; Yao, C.; Wei, S. Research on Automatic Recognition of Active Landslides Using InSAR Deformation under Digital Morphology: A Case Study of the Baihetan Reservoir, China. Remote Sens. Environ. 2024, 304, 114029. [Google Scholar] [CrossRef]
- Niu, C.; Ma, K.; Shen, X.; Wang, X.; Xie, X.; Tan, L.; Xue, Y. Attention-Enhanced Region Proposal Networks for Multi-Scale Landslide and Mudslide Detection from Optical Remote Sensing Images. Land 2023, 12, 313. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, M.; Ma, J.; Xing, G.; Feng, G.; An, Q. InSAR-Based Landslide Detection Method with the Assistance of C-Index. Landslides 2023, 20, 2709–2723. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef]
- Su, Z.; Chow, J.K.; Tan, P.S.; Wu, J.; Ho, Y.K.; Wang, Y.-H. Deep Convolutional Neural Network–Based Pixel-Wise Landslide Inventory Mapping. Landslides 2021, 18, 1421–1443. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, F.; Xia, J.; Wu, C. Landslide Extraction Using Mask R-CNN with Background-Enhancement Method. Remote Sens. 2022, 14, 2206. [Google Scholar] [CrossRef]
- Mezaal, M.R.; Pradhan, B.; Sameen, M.I.; Mohd Shafri, H.Z.; Yusoff, Z.M. Optimized Neural Architecture for Automatic Landslide Detection from High-Resolution Airborne Laser Scanning Data. Appl. Sci. 2017, 7, 730. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Xu, Y.; Zhao, H.; Wang, J.; Zhong, Y.; Zhao, D.; Zang, Q.; Wang, S.; Zhang, F.; Shi, Y.; et al. The Outcome of the 2022 Landslide4Sense Competition: Advanced Landslide Detection from Multisource Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9927–9942. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. arXiv 2015, arXiv:1506.04214. [Google Scholar]
- Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Li, W.; Hsu, C.-Y.; Wang, S.; Yang, Y.; Lee, H.; Liljedahl, A.; Witharana, C.; Yang, Y.; Rogers, B.M.; Arundel, S.T.; et al. Segment Anything Model Can Not Segment Anything: Assessing AI Foundation Model’s Generalizability in Permafrost Mapping. Remote Sens. 2024, 16, 797. [Google Scholar] [CrossRef]
- Ding, A.; Zhang, Q.; Zhou, X.; Dai, B. Automatic Recognition of Landslide Based on CNN and Texture Change Detection. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 444–448. [Google Scholar]
- Yu, H.; Ma, Y.; Wang, L.; Zhai, Y.; Wang, X. A Landslide Intelligent Detection Method Based on CNN and RSG_R. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 40–44. [Google Scholar]
- Meena, S.R.; Soares, L.P.; Grohmann, C.H.; Van Westen, C.; Bhuyan, K.; Singh, R.P.; Floris, M.; Catani, F. Landslide Detection in the Himalayas Using Machine Learning Algorithms and U-Net. Landslides 2022, 19, 1209–1229. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, Q.; Xue, D.; Chen, T.; Meng, H.; Nandi, A.K. End-to-End Change Detection Using a Symmetric Fully Convolutional Network for Landslide Mapping. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 3027–3031. [Google Scholar]
- Liu, T.; Chen, T.; Niu, R.; Plaza, A. Landslide Detection Mapping Employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11417–11428. [Google Scholar] [CrossRef]
- Janarthanan, S.S.; Subbian, D.; Subbarayan, S.; Zhang, H.; Ko, S.B. SFCNet: Deep Learning-Based Lightweight Separable Factorized Convolution Network for Landslide Detection. J. Indian Soc. Remote Sens. 2023, 51, 1157–1170. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, Q.; Jin, S.; Li, W.; Su, Y.; Dong, X.; Guo, Q. Loess Landslide Detection Using Object Detection Algorithms in Northwest China. Remote Sens. 2022, 14, 1182. [Google Scholar] [CrossRef]
- Liu, P.; Wei, Y.; Wang, Q.; Xie, J.; Chen, Y.; Li, Z.; Zhou, H. A Research on Landslides Automatic Extraction Model Based on the Improved Mask R-CNN. ISPRS Int. J. Geo-Inf. 2021, 10, 168. [Google Scholar] [CrossRef]
- Dang, K.B.; Nguyen, C.Q.; Tran, Q.C.; Nguyen, H.; Nguyen, T.T.; Nguyen, D.A.; Tran, T.H.; Bui, P.T.; Giang, T.L.; Nguyen, D.A.; et al. Comparison between U-Shaped Structural Deep Learning Models to Detect Landslide Traces. Sci. Total Environ. 2024, 912, 169113. [Google Scholar] [CrossRef]
- Lin, M.; Teng, S.; Chen, G.; Lv, J.; Hao, Z. Optimal CNN-Based Semantic Segmentation Model of Cutting Slope Images. Front. Struct. Civ. Eng. 2022, 16, 414–433. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Wang, P.; Mu, J.; Jiao, S.; Zhao, X.; Wang, Z.; Wang, K.; Zhu, Y. Automatic Identification of Landslides Based on Deep Learning. Appl. Sci. 2022, 12, 8153. [Google Scholar] [CrossRef]
- Qin, H.; Wang, J.; Mao, X.; Zhao, Z.; Gao, X.; Lu, W. An Improved Faster R-CNN Method for Landslide Detection in Remote Sensing Images. J. Geovis. Spat. Anal. 2024, 8, 2. [Google Scholar] [CrossRef]
- Ganerød, A.J.; Lindsay, E.; Fredin, O.; Myrvoll, T.-A.; Nordal, S.; Rød, J.K. Globally vs. Locally Trained Machine Learning Models for Landslide Detection: A Case Study of a Glacial Landscape. Remote Sens. 2023, 15, 895. [Google Scholar] [CrossRef]
- Lu, Z.; Peng, Y.; Li, W.; Yu, J.; Ge, D.; Han, L.; Xiang, W. An Iterative Classification and Semantic Segmentation Network for Old Landslide Detection Using High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Li, W.; Fu, Y.; Fan, S.; Xin, M.; Bai, H. DCI-PGCN: Dual-Channel Interaction Portable Graph Convolutional Network for Landslide Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Fan, S.; Fu, Y.; Li, W.; Bai, H.; Jiang, Y. ETGC2-Net: An Enhanced Transformer and Graph Convolution Combined Network for Landslide Detection. Nat. Hazards 2025, 121, 135–160. [Google Scholar] [CrossRef]
- Rajasekar, P.; Devendraiah, K.M.; Tamizhselvi, A.; Yadav, D.; Priyadharshini, A.; Suganthi, D. Rainfall-Induced Landslide Prediction Using Graph-Based Convolutional Network Models. In Proceedings of the 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkuru, India, 4 December 2024; pp. 1–6. [Google Scholar]
- Tomar, N.K.; Shergill, A.; Rieders, B.; Bagci, U.; Jha, D. TransResU-Net: Transformer Based ResU-Net for Real-Time Colonoscopy Polyp Segmentation. arXiv 2022, arXiv:2206.08985. [Google Scholar]
- Liu, L.; Chen, Q.; Su, J.; Du, X.G.; Lei, T.; Wan, Y. MGU-Net: A Multiscale Gate Attention Encoder-Decoder Network for Medical Image Segmentation. Int. J. Comput. Appl. Technol. 2023, 71, 275–285. [Google Scholar] [CrossRef]
- Fang, B.; Chen, G.; Pan, L.; Kou, R.; Wang, L. GAN-Based Siamese Framework for Landslide Inventory Mapping Using Bi-Temporal Optical Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 391–395. [Google Scholar] [CrossRef]
- Zhang, X.; Pun, M.-O.; Liu, M. Semi-Supervised Multi-Temporal Deep Representation Fusion Network for Landslide Mapping from Aerial Orthophotos. Remote Sens. 2021, 13, 548. [Google Scholar] [CrossRef]
- Lu, W.; Zhao, Z.; Mao, X.; Cheng, Y. An Accurate Recognition Method for Landslides Based on a Semi-Supervised Generative Adversarial Network: A Case Study in Lanzhou City. Appl. Sci. 2024, 14, 5084. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Yang, R.; Yao, G.; Xu, Q.; Zhang, X. A Novel Weakly Supervised Remote Sensing Landslide Semantic Segmentation Method: Combining CAM and cycleGAN Algorithms. Remote Sens. 2022, 14, 3650. [Google Scholar] [CrossRef]
- Zhou, Z.G.; Chen, B.; Li, Z.; Li, C. The Use of LSTM-Based RNN and SVM Models to Detect Ludian Coseismic Landslides in Time Series Images. J. Phys. Conf. Ser. 2020, 1631, 012085. [Google Scholar] [CrossRef]
- Varangaonkar, P.; Rode, S.V. Lightweight Deep Learning Model for Automatic Landslide Prediction and Localization. Multimed. Tools Appl. 2023, 82, 33245–33266. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.; Xie, Y.; Huang, S.; Kong, J.; Zhang, X. Seismic Landslide Detection Based on Transformer and RNN Algorithm. In Proceedings of the 2023 IEEE International Conference on Sensors, Electronics and Computer Engineering (ICSECE), Jinzhou, China, 18 August 2023; pp. 1394–1397. [Google Scholar]
- Yang, S.; Wang, Y.; Zhao, K.; Liu, X.; Mu, J.; Zhao, X. Partial Convolution-Simple Attention Mechanism-SegFormer: An Accurate and Robust Model for Landslide Identification. Eng. Appl. Artif. Intell. 2025, 151, 110612. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; He, H.; Jia, Y.; Chen, R.; Ge, Y.; Ming, Z.; Zhang, L.; Li, H. MAST: An Earthquake-Triggered Landslides Extraction Method Combining Morphological Analysis Edge Recognition with Swin-Transformer Deep Learning Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 2586–2595. [Google Scholar] [CrossRef]
- Lv, P.; Ma, L.; Li, Q.; Du, F. ShapeFormer: A Shape-Enhanced Vision Transformer Model for Optical Remote Sensing Image Landslide Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2681–2689. [Google Scholar] [CrossRef]
- Kumar, A.; Misra, R.; Singh, T.N.; Dhiman, G. APO-AN Feature Selection Based Glorot Init Optimal TransCNN Landslide Detection from Multi Source Satellite Imagery. Multimed. Tools Appl. 2024, 83, 40451–40488. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Li, D.; Jia, J.; Yang, A.; Zheng, W.; Yin, L. Conv-Trans Dual Network for Landslide Detection of Multi-Channel Optical Remote Sensing Images. Front. Earth Sci. 2023, 11, 1182145. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Fu, Y. CTHNet: A CNN–Transformer Hybrid Network for Landslide Identification in Loess Plateau Regions Using High-Resolution Remote Sensing Images. Sensors 2025, 25, 273. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Wu, J.; Zhang, R.; Xu, X.; Zhou, Y. DBSANet: A Dual-Branch Semantic Aggregation Network Integrating CNNs and Transformers for Landslide Detection in Remote Sensing Images. Remote Sens. 2025, 17, 807. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, C.; Li, L. Landslide Detection Based on ResU-Net with Transformer and CBAM Embedded: Two Examples with Geologically Different Environments. Remote Sens. 2022, 14, 2885. [Google Scholar] [CrossRef]
- Li, D.; Tang, X.; Tu, Z.; Fang, C.; Ju, Y. Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China. Remote Sens. 2023, 15, 3850. [Google Scholar] [CrossRef]
- Wu, L.; Liu, R.; Ju, N.; Zhang, A.; Gou, J.; He, G.; Lei, Y. Landslide Mapping Based on a Hybrid CNN-Transformer Network and Deep Transfer Learning Using Remote Sensing Images with Topographic and Spectral Features. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103612. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, W. A New Deep-Learning-Based Approach for Earthquake-Triggered Landslide Detection from Single-Temporal RapidEye Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6166–6176. [Google Scholar] [CrossRef]
- Asadi, A.; Baise, L.G.; Koch, M.; Moaveni, B.; Chatterjee, S.; Aimaiti, Y. Pixel-Based Classification Method for Earthquake-Induced Landslide Mapping Using Remotely Sensed Imagery, Geospatial Data and Temporal Change Information. Nat Hazards 2024, 120, 5163–5200. [Google Scholar] [CrossRef]
- Shahabi, H.; Rahimzad, M.; Tavakkoli Piralilou, S.; Ghorbanzadeh, O.; Homayouni, S.; Blaschke, T.; Lim, S.; Ghamisi, P. Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery. Remote Sens. 2021, 13, 4698. [Google Scholar] [CrossRef]
- Yusri, N.A.; Misbari, S.; Ismail, I.W.; Gisen, J.I.A. Satellite-Based Landslide Distribution Mapping with the Adoption of Deep Learning Approach in the Kuantan River Basin, Pahang. IOP Conf. Ser. Earth Environ. Sci. 2024, 1296, 012014. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Shen, X.; Shi, W. Landslide Mapping Using Multilevel-Feature-Enhancement Change Detection Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3599–3610. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Zheng, Y.; Liu, Z.; Xia, W.; Guo, H.; Li, D. GDSNet: A Gated Dual-Stream Convolutional Neural Network for Automatic Recognition of Coseismic Landslides. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103677. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, W.; Li, Z.; Zhang, B.; Chen, B. Re-Net: Multibranch Network with Structural Reparameterization for Landslide Detection in Optical Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 2828–2837. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Si, T.; Ullah, K.; Han, W.; Wang, L. MFFSP: Multi-Scale Feature Fusion Scene Parsing Network for Landslides Detection Based on High-Resolution Satellite Images. Eng. Appl. Artif. Intell. 2024, 127, 107337. [Google Scholar] [CrossRef]
- Lu, W.; Hu, Y.; Zhang, Z.; Cao, W. A Dual-Encoder U-Net for Landslide Detection Using Sentinel-2 and DEM Data. Landslides 2023, 20, 1975–1987. [Google Scholar] [CrossRef]
- Liu, X.; Peng, Y.; Lu, Z.; Li, W.; Yu, J.; Ge, D.; Xiang, W. Feature-Fusion Segmentation Network for Landslide Detection Using High-Resolution Remote Sensing Images and Digital Elevation Model Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, Y.; Zhang, J.; Wei, X.; Zhu, H.; Zhu, Z. A Feature Fusion Method on Landslide Identification in Remote Sensing with Segment Anything Model. Landslides 2025, 22, 471–483. [Google Scholar] [CrossRef]
- He, Y.; Chen, H.; Zhu, Q.; Zhang, Q.; Zhang, L.; Liu, T.; Li, W.; Chen, H. A Heterogeneous Ensemble Learning Method Combining Spectral, Terrain, and Texture Features for Landslide Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 3746–3765. [Google Scholar] [CrossRef]
- Qu, Y.; Xing, H.; Sun, L.; Shi, X.; Huang, J.; Ao, Z.; Chang, Z.; Li, J. Integrating Sentinel-2a Imagery, DEM Data, and Spectral Feature Analysis for Landslide Detection via Fully Convolutional Networks. Landslides 2025, 22, 335–352. [Google Scholar] [CrossRef]
- Liu, X.; Xu, L.; Zhang, J. Landslide Detection with Mask R-CNN Using Complex Background Enhancement Based on Multi-Scale Samples. Geomat. Nat. Hazards Risk 2024, 15, 2300823. [Google Scholar] [CrossRef]
- Paheding, S.; Reyes, A.A.; Rajaneesh, A.; Sajinkumar, K.S.; Oommen, T. MarsLS-Net: Martian Landslides Segmentation Network and Benchmark Dataset. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 8236–8245. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6023–6032. [Google Scholar]
- Wei, R.; Ye, C.; Sui, T.; Zhang, H.; Ge, Y.; Li, Y. A Feature Enhancement Framework for Landslide Detection. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103521. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, Z.; Zhang, H.; Wang, B.; Wu, L. Lightweight Attention-Guided YOLO With Level Set Layer for Landslide Detection from Optical Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3543–3559. [Google Scholar] [CrossRef]
- Ji, Q.; Liang, Y.; Xie, F.; Yu, Z.; Wang, Y. Automatic and Efficient Detection of Loess Landslides Based on Deep Learning. Sustainability 2024, 16, 1238. [Google Scholar] [CrossRef]
- Li, Y.; Ding, M.; Zhang, Q.; Luo, Z.; Huang, W.; Zhang, C.; Jiang, H. Old Landslide Detection Using Optical Remote Sensing Images Based on Improved YOLOv8. Appl. Sci. 2024, 14, 1100. [Google Scholar] [CrossRef]
- Ji, S.; Yu, D.; Shen, C.; Li, W.; Xu, Q. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Qin, S.; Guo, X.; Sun, J.; Qiao, S.; Zhang, L.; Yao, J.; Cheng, Q.; Zhang, Y. Landslide Detection from Open Satellite Imagery Using Distant Domain Transfer Learning. Remote Sens. 2021, 13, 3383. [Google Scholar] [CrossRef]
- Fu, Y.; Li, W.; Fan, S.; Jiang, Y.; Bai, H. CAL-Net: Conditional Attention Lightweight Network for In-Orbit Landslide Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Amankwah, S.O.Y.; Wang, G.; Gnyawali, K.; Hagan, D.F.T.; Sarfo, I.; Zhen, D.; Nooni, I.K.; Ullah, W.; Duan, Z. Landslide Detection from Bitemporal Satellite Imagery Using Attention-Based Deep Neural Networks. Landslides 2022, 19, 2459–2471. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Zhang, L.; Yao, S.; Yang, W.; Fang, Y.; Liu, Y.; Gao, B. A Landslide Extraction Method of Channel Attention Mechanism U-Net Network Based on Sentinel-2A Remote Sensing Images. Int. J. Digit. Earth 2023, 16, 552–577. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, T.; Deng, Y.; Liu, Z. SE-YOLOv7 Landslide Detection Algorithm Based on Attention Mechanism and Improved Loss Function. Land 2023, 12, 1522. [Google Scholar] [CrossRef]
- Ge, X.; Zhao, Q.; Wang, B.; Chen, M. Lightweight Landslide Detection Network for Emergency Scenarios. Remote Sens. 2023, 15, 1085. [Google Scholar] [CrossRef]
- Du, Y.; Xu, X.; He, X. Optimizing Geo-Hazard Response: LBE-YOLO’s Innovative Lightweight Framework for Enhanced Real-Time Landslide Detection and Risk Mitigation. Remote Sens. 2024, 16, 534. [Google Scholar] [CrossRef]
- Mo, P.; Li, D.; Liu, M.; Jia, J.; Chen, X. A Lightweight and Partitioned CNN Algorithm for Multi-Landslide Detection in Remote Sensing Images. Appl. Sci. 2023, 13, 8583. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Z.; Zhou, S.; Qi, W.; Wu, X.; Zhang, T.; Han, L. LS-YOLO: A Novel Model for Detecting Multiscale Landslides with Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4952–4965. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, L.; Xu, D.; Wang, H. A YOLOv5 Landslide Detection Model Based on Multi-Scale Feature Fusion. Res. Sq. 2024. submitted. [Google Scholar] [CrossRef]
- Lu, W.; Hu, Y.; Shao, W.; Wang, H.; Zhang, Z.; Wang, M. A Multiscale Feature Fusion Enhanced CNN with the Multiscale Channel Attention Mechanism for Efficient Landslide Detection (MS2LandsNet) Using Medium-Resolution Remote Sensing Data. Int. J. Digit. Earth 2024, 17, 2300731. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Gu, Z.; Zhou, Z.; Liu, X.; Chen, X.; Wei, S. Study of the Automatic Recognition of Landslides by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau. Remote Sens. 2022, 14, 3362. [Google Scholar] [CrossRef]
- Cheng, L.; Li, J.; Duan, P.; Wang, M. A Small Attentional YOLO Model for Landslide Detection from Satellite Remote Sensing Images. Landslides 2021, 18, 2751–2765. [Google Scholar] [CrossRef]
- Han, Z.; Fang, Z.; Li, Y.; Fu, B. A Novel Dynahead-Yolo Neural Network for the Detection of Landslides with Variable Proportions Using Remote Sensing Images. Front. Earth Sci. 2023, 10, 1077153. [Google Scholar] [CrossRef]
- Meng, S.; Shi, Z.; Pirasteh, S.; Liberata Ullo, S.; Peng, M.; Zhou, C.; Nunes Gonçalves, W.; Zhang, L. TLSTMF-YOLO: Transfer Learning and Feature Fusion Network for Earthquake-Induced Landslide Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–12. [Google Scholar] [CrossRef]
- Xiang, X.; Gong, W.; Zhao, F.; Cheng, Z.; Wang, L. Earthquake-Induced Landslide Mapping in Mountainous Areas Using a Semantic Segmentation Model Combined with A Dual Feature Pyramid. J. Earth Sci. 2025. [Google Scholar]
- Lampert, J.; Pham, L.; Le, C.; Schlögl, M.; Schindler, A. Utilizing Deep Neural Networks for Landslide Detection and Segmentation in Remote Sensing Imagery. In Proceedings of EGU General Assembly, Vienna, Austria, 14–19 April 2024; p. 20698. [Google Scholar]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Nagendra, S.; Kifer, D.; Mirus, B.; Pei, T.; Lawson, K.; Manjunatha, S.B.; Li, W.; Nguyen, H.; Qiu, T.; Tran, S.; et al. Constructing a Large-Scale Landslide Database Across Heterogeneous Environments Using Task-Specific Model Updates. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4349–4370. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, W.; Pun, M.-O.; Shi, W. Cross-Domain Landslide Mapping from Large-Scale Remote Sensing Images Using Prototype-Guided Domain-Aware Progressive Representation Learning. ISPRS J. Photogramm. Remote Sens. 2023, 197, 1–17. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Jaboyedoff, M.; Derron, M.-H.; Fei, L.; Li, H.; Luo, X. Loess Landslides Detection via a Partially Supervised Learning and Improved Mask-RCNN with Multi-Source Remote Sensing Data. CATENA 2023, 231, 107371. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Shi, W. CS-WSCDNet: Class Activation Mapping and Segment Anything Model-Based Framework for Weakly Supervised Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Ma, X.; Yu, W.; Ghamisi, P. Auto-Prompting SAM for Weakly Supervised Landslide Extraction. arXiv 2025, arXiv:2501.13426. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, R.; Wu, R.; Bao, X.; Liu, G. Landslide Detection Based on Pixel-Level Contrastive Learning for Semi-Supervised Semantic Segmentation in Wide Areas. Landslides 2025, 22, 1087–1105. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Shahabi, H.; Piralilou, S.T.; Crivellari, A.; Rosa, L.E.C.L.; Atzberger, C.; Li, J.; Ghamisi, P. Contrastive Self-Supervised Learning for Globally Distributed Landslide Detection. IEEE Access 2024, 12, 118453–118466. [Google Scholar] [CrossRef]
- Garcia, G.P.B.; Grohmann, C.H.; Soares, L.P.; Espadoto, M. Relict Landslide Detection Using Deep-Learning Architectures for Image Segmentation in Rainforest Areas: A New Framework. Int. J. Remote Sens. 2023, 44, 2168–2195. [Google Scholar] [CrossRef]
- Notti, D.; Cignetti, M.; Godone, D.; Cardone, D.; Giordan, D. The unsuPervised shAllow laNdslide rapiD mApping: PANDA Method Applied to Severe Rainfalls in Northeastern Appenine (Italy). Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103806. [Google Scholar] [CrossRef]
- Bhuyan, K.; Meena, S.R.; Nava, L.; Van Westen, C.; Floris, M.; Catani, F. Mapping Landslides through a Temporal Lens: An Insight toward Multi-Temporal Landslide Mapping Using the u-Net Deep Learning Model. GISci. Remote Sens. 2023, 60, 2182057. [Google Scholar] [CrossRef]
- Asadi, A.; Baise, L.G.; Chatterjee, S.; Koch, M.; Moaveni, B. Regional Landslide Mapping Model Developed by a Deep Transfer Learning Framework Using Post-Event Optical Imagery. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2024, 18, 186–210. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Si, T.; Ullah, K.; Han, W.; Wang, L. DSFA: Cross-Scene Domain Style and Feature Adaptation for Landslide Detection from High Spatial Resolution Images. Int. J. Digit. Earth 2023, 16, 2426–2447. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Liu, G.; Fang, Z.; Ullah, K. Unsupervised Landslide Detection from Multitemporal High-Resolution Images Based on Progressive Label Upgradation and Cross-Temporal Style Adaption. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Wang, Z.; Brenning, A. Unsupervised Active–Transfer Learning for Automated Landslide Mapping. Comput. Geosci. 2023, 181, 105457. [Google Scholar] [CrossRef]
- Feng, X.; Du, J.; Wu, M.; Chai, B.; Miao, F.; Wang, Y. Potential of Synthetic Images in Landslide Segmentation in Data-Poor Scenario: A Framework Combining GAN and Transformer Models. Landslides 2024, 21, 2211–2226. [Google Scholar] [CrossRef]
- Kubo, S.; Yamane, T.; Chun, P. Study on Accuracy Improvement of Slope Failure Region Detection Using Mask R-CNN with Augmentation Method. Sensors 2022, 22, 6412. [Google Scholar] [CrossRef]
- Chen, T.-H.K.; Kincey, M.E.; Rosser, N.J.; Seto, K.C. Identifying Recurrent and Persistent Landslides Using Satellite Imagery and Deep Learning: A 30-Year Analysis of the Himalaya. Sci. Total Environ. 2024, 922, 171161. [Google Scholar] [CrossRef]
- Niyokwiringirwa, P.; Lombardo, L.; Dewitte, O.; Deijns, A.A.J.; Wang, N.; Van Westen, C.J.; Tanyas, H. Event-Based Rainfall-Induced Landslide Inventories and Rainfall Thresholds for Malawi. Landslides 2024, 21, 1403–1424. [Google Scholar] [CrossRef]
- Xu, Y.; Ouyang, C.; Xu, Q.; Wang, D.; Zhao, B.; Luo, Y. CAS Landslide Dataset: A Large-Scale and Multisensor Dataset for Deep Learning-Based Landslide Detection. Sci. Data 2024, 11, 12. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, C.; Li, T.; Xu, C.; He, X.; Shao, X.; Xu, X.; Zhan, T.; Chen, Z. An Open-Accessed Inventory of Landslides Triggered by the MS 6.8 Luding Earthquake, China on September 5, 2022. Earthq. Res. Adv. 2023, 3, 100181. [Google Scholar] [CrossRef]
- Emani, G.F.; Xu, W.; Guédé, K.G.; Nattabi, F.S.; Yemele, O.M. Advancing Global Landslide Segmentation: A Coupled Multispectral Attention and Data Augmentation Approach Using the Novel MRGSLD Dataset. Earth Syst. Environ. 2025, 1–22. [Google Scholar] [CrossRef]
- Fang, C.; Fan, X.; Wang, X.; Nava, L.; Zhong, H.; Dong, X.; Qi, J.; Catani, F. A Globally Distributed Dataset of Coseismic Landslide Mapping via Multi-Source High-Resolution Remote Sensing Images. Earth Syst. Sci. Data 2024, 16, 4817–4842. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide types and processes. Landslides Eng. Pract. 1958, 24, 20–47. [Google Scholar]
- Novellino, A.; Pennington, C.; Leeming, K.; Taylor, S.; Alvarez, I.G.; McAllister, E.; Arnhardt, C.; Winson, A. Mapping Landslides from Space: A Review. Landslides 2024, 21, 1041–1052. [Google Scholar] [CrossRef]
- Rodríguez, C.E.; Bommer, J.J.; Chandler, R.J. Earthquake-Induced Landslides: 1980–1997. Soil Dyn. Earthq. Eng. 1999, 18, 325–346. [Google Scholar] [CrossRef]
- Rengers, F.K.; McGuire, L.A.; Oakley, N.S.; Kean, J.W.; Staley, D.M.; Tang, H. Landslides after Wildfire: Initiation, Magnitude, and Mobility. Landslides 2020, 17, 2631–2641. [Google Scholar] [CrossRef]
- Pandey, A.C.; Islam, A.; Parida, B.R.; Dwivedi, C.S. Permafrost Destabilization Induced Hazard Mapping in Himalayas Using Machine Learning Methods. Adv. Space Res. 2025, 75, 6188–6206. [Google Scholar] [CrossRef]
- Pollock, W.; Wartman, J. Human Vulnerability to Landslides. GeoHealth 2020, 4, e2020GH000287. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; US Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall Thresholds for the Initiation of Landslides in Central and Southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Meena, S.R.; Shahabi Sorman Abadi, H.; Tavakkoli Piralilou, S.; Zhiyong, L.; Blaschke, T. Landslide Mapping Using Two Main Deep-Learning Convolution Neural Network Streams Combined by the Dempster–Shafer Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 452–463. [Google Scholar] [CrossRef]
- Cui, W.; He, X.; Yao, M.; Wang, Z.; Li, J.; Hao, Y.; Wu, W.; Zhao, H.; Chen, X.; Cui, W. Landslide Image Captioning Method Based on Semantic Gate and Bi-Temporal LSTM. ISPRS Int. J. Geo-Inf. 2020, 9, 194. [Google Scholar] [CrossRef]
- Wang, L.; Lei, H.; Jian, W.; Wang, W.; Wang, H.; Wei, N. Enhancing Landslide Detection: A Novel LA-YOLO Model for Rainfall-Induced Shallow Landslides. IEEE Geosci. Remote Sens. Lett. 2025, 22, 1–5. [Google Scholar] [CrossRef]
- Qi, W.; Wei, M.; Yang, W.; Xu, C.; Ma, C. Automatic Mapping of Landslides by the ResU-Net. Remote Sens. 2020, 12, 2487. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Meena, S.R.; Blaschke, T.; Aryal, J. UAV-Based Slope Failure Detection Using Deep-Learning Convolutional Neural Networks. Remote Sens. 2019, 11, 2046. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, S.; Liu, X.; Guo, C.; Li, J.; Bi, J.; Ran, L. Reactivation Mechanism of Old Landslide Triggered by Coupling of Fault Creep and Water Infiltration: A Case Study from the East Tibetan Plateau. Bull. Eng. Geol. Environ. 2023, 82, 291. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Li, W. Replication across Space and Time Must Be Weak in the Social and Environmental Sciences. Proc. Natl. Acad. Sci. USA 2021, 118, e2015759118. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hsu, C.-Y.; Wang, S.; Kedron, P. GeoAI Reproducibility and Replicability: A Computational and Spatial Perspective. Ann. Am. Assoc. Geogr. 2024, 114, 2085–2103. [Google Scholar] [CrossRef]
- Jakubik, J.; Roy, S.; Phillips, C.; Fraccaro, P.; Godwin, D.; Zadrozny, B.; Szwarcman, D.; Gomes, C.; Nyirjesy, G.; Edwards, B.; et al. Foundation models for generalist geospatial artificial intelligence. arXiv 2023, arXiv:2310.18660. [Google Scholar]
- Hsu, C.-Y.; Li, W.; Wang, S. Geospatial Foundation Models for Image Analysis: Evaluating and Enhancing NASA-IBM Prithvi’s Domain Adaptability. Int. J. Geogr. Inf. Sci. 2024, 1–30. [Google Scholar] [CrossRef]
- Wang, T.; Dahal, A.; Fang, Z.; Van Westen, C.; Yin, K.; Lombardo, L. From Spatio-Temporal Landslide Susceptibility to Landslide Risk Forecast. Geosci. Front. 2024, 15, 101765. [Google Scholar] [CrossRef]
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. arXiv 2021, arXiv:2106.09685. [Google Scholar]
- Wen, H.; Liu, B.; Di, M.; Li, J.; Zhou, X. A SHAP-Enhanced XGBoost Model for Interpretable Prediction of Coseismic Landslides. Adv. Space Res. 2024, 74, 3826–3854. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Naqvi, R.A.; Choi, S.-M. Investigating the Efficacy of Physics-Based Metaheuristic Algorithms in Combination with Explainable Ensemble Machine-Learning Models for Landslide Susceptibility Mapping. Stoch. Environ. Res. Risk Assess. 2025, 39, 1109–1141. [Google Scholar] [CrossRef]
- Reddy, C.N. Explainable Artificial Intelligence (XAI) for Climate Hazard Assessment: Enhancing Predictive Accuracy and Transparency in Drought, Flood, and Landslide Modeling. Int. J. Sci. Technol. (IJSAT) 2025, 16, 1309. [Google Scholar] [CrossRef]
- Patanè, G.; Bortolotti, T.; Yordanov, V.; Biagi, L.G.A.; Brovelli, M.A.; Truong, X.Q.; Vantini, S. An Interpretable and Transferable Model for Shallow Landslides Detachment Combining Spatial Poisson Point Processes and Generalized Additive Models. Stoch. Environ. Res. Risk Assess. 2025, 39, 1723–1740. [Google Scholar] [CrossRef]
- Pradhan, B.; Dikshit, A.; Lee, S.; Kim, H. An Explainable AI (XAI) Model for Landslide Susceptibility Modeling. Appl. Soft Comput. 2023, 142, 110324. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Li, W. Explainable GeoAI: Can Saliency Maps Help Interpret Artificial Intelligence’s Learning Process? An Empirical Study on Natural Feature Detection. Int. J. Geogr. Inf. Sci. 2023, 37, 963–987. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. In Proceeding of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.-R.; Samek, W. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLoS ONE 2015, 10, e0130140. [Google Scholar] [CrossRef]
- Kumari, S.; Agarwal, S.; Agrawal, N.K.; Agarwal, A.; Garg, M.C. A Comprehensive Review of Remote Sensing Technologies for Improved Geological Disaster Management. Geol. J. 2024, 60, 223–235. [Google Scholar] [CrossRef]
Strategy | Techniques | References |
---|---|---|
Image-derived feature representation enhancement | NDVI, gray-level co-occurrence matrix | [25,26,84,85,86] |
Feature fusion enhancement (Multi-scale-level feature fusion, multimodal feature fusion, bitemporal feature differentiation) | Multi-level feature enhancement network (MFENet) Bi-feature difference enhancement module (BFDEM) Gated Dual-Stream Convolutional Neural Network (GDSNet) Multi-branch feature extraction module (FFEM) Shape-enhanced vision Transformer (ShapeFormer) Multi-scale Feature Fusion Scene Parsing (MFFSP), DemDet | [35] DemDet [81] MFENet, BFDEM [87] GDSNet [88] FFEM [89] ShapeFormer [75] MFFSP [90] [91] FFS-Net [92] SAMLS [93] [94] [95] |
Background enhancement | Partial image replacement | [36] [96] |
Strategy | Techniques | References |
---|---|---|
Attention block | Attention gate, attention convolution block | [28,99,100] |
Spatial/channel attention | Spatial attention, channel attention, CBAM, BAM, 3D SCAM, ECAM, PAM, SENet, dual-stream conditional attention module, etc. | [21,67,80,81,84,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115] |
Multi-scale attention | Selective kernel attention mechanism, Task-aware/spatial-aware/scale-aware attention block, Light-pyramid feature reuse fusion attention mechanism, etc. | [32,105,113,114,115,116,117,118,119] |
Long-range dependencies capturing attention | Self-attention module, multi-head self-attention, non-local attention | [23,32,62,76,77,78,79,80,81,82,91,97,113,115,120] |
Strategy | Techniques | References |
---|---|---|
Manual creation of benchmark datasets | Historical inventory utilization, on-site field surveys, data augmentation, data validation, data augmentation | [97] |
Dataset updating tools | Task-specific model update (TSMU) | [122] |
Learning with fewer or less accurate labels | Transfer learning, unsupervised active-transfer learning, unsupervised domain adaptation model, weakly supervised learning, partially supervised learning, Clustering algorithms (K-means, fuzzy C-means), GANs | [59,67,68,69,82,85,104,118,123,124,125,126,127,128,129,130,131,132,133,134,135,136] |
Applications | Models | Techniques | References |
---|---|---|---|
Identify earthquake-triggered landslides | TLSMF-YOLO with C3-Swin Transformer, dual-feature pyramid-based U-Net (DFPU-Net), Auto-Prompting Segment Anything Model (APSAM), SegFormer, LandsNet, Mask R-CNN, Attention U-Net, LSTM, etc. | Pyramid-structured module, Transfer learning, Transformer, Attention mechanism | [23,28], [70,74,78], [81,84,88,118,122,139], [72,119], [152,153] |
Identify rainfall-triggered landslides | lightweight attention-guided YOLO (LA-YOLO), Feature-based Constraint Deep U-Net (FCDU-Net), etc. | Context-guided block, Feature constraint | [106], [26,154,155,156] |
Identify old landslides | Mask R-CNN, YOLO, YOLOv8, RetinaNet | Neural network comparisons | [53,102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, W.; Hsu, C.-Y.; Arundel, S.T.; Higman, B. Harnessing Geospatial Artificial Intelligence and Deep Learning for Landslide Inventory Mapping: Advances, Challenges, and Emerging Directions. Remote Sens. 2025, 17, 1856. https://doi.org/10.3390/rs17111856
Chen X, Li W, Hsu C-Y, Arundel ST, Higman B. Harnessing Geospatial Artificial Intelligence and Deep Learning for Landslide Inventory Mapping: Advances, Challenges, and Emerging Directions. Remote Sensing. 2025; 17(11):1856. https://doi.org/10.3390/rs17111856
Chicago/Turabian StyleChen, Xiao, Wenwen Li, Chia-Yu Hsu, Samantha T. Arundel, and Bretwood Higman. 2025. "Harnessing Geospatial Artificial Intelligence and Deep Learning for Landslide Inventory Mapping: Advances, Challenges, and Emerging Directions" Remote Sensing 17, no. 11: 1856. https://doi.org/10.3390/rs17111856
APA StyleChen, X., Li, W., Hsu, C.-Y., Arundel, S. T., & Higman, B. (2025). Harnessing Geospatial Artificial Intelligence and Deep Learning for Landslide Inventory Mapping: Advances, Challenges, and Emerging Directions. Remote Sensing, 17(11), 1856. https://doi.org/10.3390/rs17111856