Retrieval of Passive Seismic Virtual Source Data Under Non-Ideal Illumination Conditions Based on Enhanced U-Net
Abstract
:1. Introduction
2. Methods
2.1. Enhanced U-Net Architecture
2.2. Modified MDD
2.2.1. Method of Modified MDD
2.2.2. Validation of the Effectiveness of Modified MDD
2.3. Training Set and Test Set
3. Results
3.1. Test on Fault Model
3.2. Test on SEG/EAGE Overthrust Model
3.3. Overthrust Model Testing with Sparse Active Source Training
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PVS | passive virtual source |
CC | crosscorrelation |
MDD | multidimensional deconvolution |
Appendix A
References
- Tao, Y.; Fu, L.; Sun, W.; Sun, Q. A review of research progress in seismic wave interferometry. Prog. Geophys. 2010, 25, 1775–1784. (In Chinese) [Google Scholar]
- Shang, X.; Zhang, P.; Han, L.; Yang, Y.; Zhou, Y. Joint FWI of Active Source Data and Passive Virtual Source Data Reconstructed Using an Improved Multidimensional Deconvolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Wapenaar, K.; Fokkema, J. Green’s Function Representations for Seismic Interferometry. Geophysics 2006, 71, SI33–SI46. [Google Scholar] [CrossRef]
- Claerbout, J.F. Synthesis of a Layered Medium from Its Acoustic Transmission Response. Geophysics 1968, 33, 264–269. [Google Scholar] [CrossRef]
- Wapenaar, K.; Draganov, D.; Thorbecke, J.; Jacob, F. Theory of Acoustic Daylight Imaging Revisited. In Proceedings of the SEG International Exposition and Annual Meeting, Salt Lake City, UT, USA, 6–11 October 2002. [Google Scholar]
- Slob, E.; Wapenaar, K. Electromagnetic Green’s Functions Retrieval by Cross-correlation and Cross-convolution in Media with Losses. Geophys. Res. Lett. 2007, 34, 2006GL029097. [Google Scholar] [CrossRef]
- Curtis, A.; Gerstoft, P.; Sato, H.; Snieder, R.; Wapenaar, K. Seismic Interferometry—Turning Noise into Signal. Lead. Edge 2006, 25, 1082–1092. [Google Scholar] [CrossRef]
- Snieder, R.; Sheiman, J.; Calvert, R. Equivalence of the Virtual-Source Method and Wave-Field Deconvolution in Seismic Interferometry. Phys. Rev. E 2006, 73, 066620. [Google Scholar] [CrossRef]
- Prieto, G.A.; Lawrence, J.F.; Beroza, G.C. Anelastic Earth Structure from the Coherency of the Ambient Seismic Field. J. Geophys. Res. 2009, 114, 2008JB006067. [Google Scholar] [CrossRef]
- Chamarczuk, M.; Malinowski, M.; Draganov, D.; Koivisto, E.; Heinonen, S.; Rötsä, S. Reflection Imaging of Complex Geology in a Crystalline Environment Using Virtual-Source Seismology: Case Study from the Kylylahti Polymetallic Mine, Finland. Solid Earth 2022, 13, 705–723. [Google Scholar] [CrossRef]
- Ye, Y.; Yao, G.; Zhao, C.; Zhuang, X.; Zhang, H. Sea bottom peg-leg multiple suppression based on seismic interferometry. Oil Geophys. Prospect. 2015, 50, 225–231. (In Chinese) [Google Scholar]
- Cheraghi, S.; Craven, J.A.; Bellefleur, G. Feasibility of Virtual Source Reflection Seismology Using Interferometry for Mineral Exploration: A Test Study in the Lalor Lake Volcanogenic Massive Sulphide Mining Area, Manitoba, Canada. Geophys. Prospect. 2015, 63, 833–848. [Google Scholar] [CrossRef]
- Boullenger, B.; Verdel, A.; Paap, B.; Thorbecke, J.; Draganov, D. Studying CO2 Storage with Ambient-Noise Seismic Interferometry: A Combined Numerical Feasibility Study and Field-Data Example for Ketzin, Germany. Geophysics 2015, 80, Q1–Q13. [Google Scholar] [CrossRef]
- Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K. Reflection Images from Ambient Seismic Noise. Geophysics 2009, 74, A63–A67. [Google Scholar] [CrossRef]
- Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K. Seismic Exploration-scale Velocities and Structure from Ambient Seismic Noise (>1 Hz). J. Geophys. Res. Solid Earth 2013, 118, 4345–4360. [Google Scholar] [CrossRef]
- Gu, N.; Chamarczuk, M.; Gao, J.; Malinowski, M.; Zhang, H. Passive Seismic Structure Imaging of a Coal Mine by Ambient Noise Seismic Interferometry on a Dense Array. Acta Geol. Sin.-Engl. Ed. 2021, 95, 37–39. [Google Scholar] [CrossRef]
- Ramírez, A.C.; Weglein, A.B. Green’s Theorem as a Comprehensive Framework for Data Reconstruction, Regularization, Wavefield Separation, Seismic Interferometry, and Wavelet Estimation: A Tutorial. Geophysics 2009, 74, W35–W62. [Google Scholar] [CrossRef]
- Wapenaar, K.; Van Der Neut, J.; Ruigrok, E. Passive Seismic Interferometry by Multidimensional Deconvolution. Geophysics 2008, 73, A51–A56. [Google Scholar] [CrossRef]
- Bellezza, C.; Poletto, F. Multidimensional Deconvolution and Processing of Seismic-Interferometry Arctic Data. Geophysics 2014, 79, WA25–WA38. [Google Scholar] [CrossRef]
- Van Dalen, K.N.; Wapenaar, K.; Halliday, D.F. Surface Wave Retrieval in Layered Media Using Seismic Interferometry by Multidimensional Deconvolution. Geophys. J. Int. 2014, 196, 230–242. [Google Scholar] [CrossRef]
- Shirmohammadi, F.; Draganov, D.; Hatami, M.R.; Weemstra, C. Application of Seismic Interferometry by Multidimensional Deconvolution to Earthquake Data Recorded in Malargüe, Argentina. Remote Sens. 2021, 13, 4818. [Google Scholar] [CrossRef]
- Wapenaar, K.; Van Der Neut, J.; Ruigrok, E.; Draganov, D.; Hunziker, J.; Slob, E.; Thorbecke, J.; Snieder, R. Seismic Interferometry by Crosscorrelation and by Multidimensional Deconvolution: A Systematic Comparison: Seismic Interferometry. Geophys. J. Int. 2011, 185, 1335–1364. [Google Scholar] [CrossRef]
- Luiken, N.; Van Leeuwen, T. Seismic Wavefield Redatuming with Regularized Multi-Dimensional Deconvolution. Inverse Probl. 2020, 36, 095010. [Google Scholar] [CrossRef]
- Ravasi, M.; Selvan, T.; Luiken, N. Stochastic Multi-Dimensional Deconvolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Vargas, D.; Vasconcelos, I.; Ravasi, M.; Luiken, N. Time-Domain Multidimensional Deconvolution: A Physically Reliable and Stable Preconditioned Implementation. Remote Sens. 2021, 13, 3683. [Google Scholar] [CrossRef]
- Lee, Y. Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks. Neural Comput. 1991, 3, 440–449. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 978-3-319-24573-7. [Google Scholar]
- Wang, Q.; Yan, W.; Yuan, Y.; Tang, H.; Ding, L. Study of a Deep Learning Reconstruction Algorithm for Displaying Small- and Medium-Sized Blood Vessels in Upper Abdominal Energy Spectrum CT. CT Theory Appl. 2025, 34, 37–43. (In Chinese) [Google Scholar] [CrossRef]
- Cao, J.; Gao, K.; Xu, Y.; Wang, N.; Zhang, C.; Zhu, Y. Seismic data de-noising method based on an attention mechanism U-Net. Oil Geophys. Prospect. 2024, 59, 724–735. (In Chinese) [Google Scholar] [CrossRef]
- Yang, W.; Chen, X.; Rao, Y. Seismic Random Noise Attenuation Using DnCNN with Stratigraphic Dip Constraint. J. Geophys. Eng. 2023, 20, 1172–1179. [Google Scholar] [CrossRef]
- Na, D.; Lee, D.; Kim, Y.S.; Chung, W. Low-Frequency Reconstruction of Seismic Data Using Stacked-BiLSTM Networks. J. Geophys. Eng. 2025, 22, 238–249. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, R.; Ma, J. Improving Seismic Fault Recognition with Self-Supervised Pre-Training: A Study of 3D Transformer Based with Multi-Scale Decoding and Fusion. Remote Sens. 2024, 16, 922. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Zhang, Y.; Wen, X.; Chen, Y. Fault recognition method and application based on 3D U-Net++ convolution neural network. Comput. Tech. Geophys. Geochem. Explor. 2024, 46, 1001–1749. (In Chinese) [Google Scholar]
- Tao, L.; Ren, H.; Gu, Z. Acoustic Impedance Inversion from Seismic Imaging Profiles Using Self Attention U-Net. Remote Sens. 2023, 15, 891. [Google Scholar] [CrossRef]
- Richardson, A. Seismic Full-Waveform Inversion Using Deep Learning Tools and Techniques. arXiv 2018, arXiv:1801.07232. [Google Scholar]
- Sun, H.; Demanet, L. Seismic Interferometry with Neural Networks. In Proceedings of the First International Meeting for Applied Geoscience & Energy Expanded Abstracts; Society of Exploration Geophysicists, Denver, CO, USA, 1 September 2021; pp. 1384–1389. [Google Scholar]
- Sun, H.; Demanet, L. Beyond Correlations: Deep Learning for Seismic Interferometry. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3385–3396. [Google Scholar] [CrossRef]
- Zhao, B.; Han, L.; Zhang, P.; Feng, Q.; Ma, L. Randomly Distributed Passive Seismic Source Reconstruction Record Waveform Rectification Based on Deep Learning. Appl. Sci. 2024, 14, 2206. [Google Scholar] [CrossRef]
- Zhang, P.; Han, L.; Liu, Q.; Zhang, Y.; Chen, X. Interpolation of Active and Passive Source Seismic Data and Joint Data Imaging. Chin. J. Geophys. 2015, 58, 1754–1766. (In Chinese) [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Computer Vision—ECCV 2018: 15th European Conference, Munich, Germany, 8–14 September 2018, Proceedings, Part VII; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11211, pp. 3–19. ISBN 978-3-030-01233-5. [Google Scholar]
- Minato, S.; Matsuoka, T.; Tsuji, T.; Draganov, D.; Hunziker, J.; Wapenaar, K. Application of Seismic Interferometry by Multidimensional Deconvolution to Crosswell Seismic Reflection Using Singular-value Decomposition. In SEG Technical Program Expanded Abstracts 2009; Society of Exploration Geophysicists: Houston, TX, USA, 2009; pp. 1688–1692. [Google Scholar]
Model | NCC ↑ | MSE ↓ | SSIM ↑* |
---|---|---|---|
Modified MDD | 0.1815 | 0.013330 | 0.8854 |
U-Net | 0.9211 | 0.00041 | 0.9812 |
Enhanced U-Net | 0.9726 | 0.000024 | 0.9985 |
Model | NCC ↑ | MSE ↓ | SSIM ↑* |
---|---|---|---|
Modified MDD | 0.1442 | 0.014629 | 0.9097 |
U-Net | 0.9022 | 0.000489 | 0.982 |
Enhanced U-Net | 0.9459 | 0.000064 | 0.9954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Zhang, P.; Zhao, B.; Zhang, D.; Han, L. Retrieval of Passive Seismic Virtual Source Data Under Non-Ideal Illumination Conditions Based on Enhanced U-Net. Remote Sens. 2025, 17, 1813. https://doi.org/10.3390/rs17111813
Huang W, Zhang P, Zhao B, Zhang D, Han L. Retrieval of Passive Seismic Virtual Source Data Under Non-Ideal Illumination Conditions Based on Enhanced U-Net. Remote Sensing. 2025; 17(11):1813. https://doi.org/10.3390/rs17111813
Chicago/Turabian StyleHuang, Wensha, Pan Zhang, Binghui Zhao, Donghao Zhang, and Liguo Han. 2025. "Retrieval of Passive Seismic Virtual Source Data Under Non-Ideal Illumination Conditions Based on Enhanced U-Net" Remote Sensing 17, no. 11: 1813. https://doi.org/10.3390/rs17111813
APA StyleHuang, W., Zhang, P., Zhao, B., Zhang, D., & Han, L. (2025). Retrieval of Passive Seismic Virtual Source Data Under Non-Ideal Illumination Conditions Based on Enhanced U-Net. Remote Sensing, 17(11), 1813. https://doi.org/10.3390/rs17111813