Analysis and Validation of the Signal-to-Noise Ratio for an Atmospheric Humidity Profiling Spectrometer Based on 1D-Imaging Spatial Heterodyne Spectroscopy
Abstract
:1. Introduction
2. 1D Imaging Principles and SNR Analysis
2.1. Imaging Principles
2.2. SNR Analysis
2.2.1. SNR of Interferogram Binning
2.2.2. SNR of Recovered Spectrum Binning
3. Simulation of the SNR for Spectrometers
3.1. Selection of Sensitive Spectral Channels
3.2. Instrument Model
3.3. Calculation of Spectral SNR
3.4. Simulation Analysis
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Müller, R.; Kunz, A.; Hurst, D.F.; Rolf, C.; Krämer, M.; Riese, M. The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage. Earths Future 2016, 4, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Hegglin, M.I.; Tegtmeier, S.; Anderson, J.; Froidevaux, L.; Fuller, R.A.; Funke, B.; Jones, A.G.; Lingenfelser, G.; Lumpe, J.D.; Pendlebury, D.; et al. SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders. J. Geophys. Res. Atmos. 2013, 118, 11824–11846. [Google Scholar] [CrossRef]
- Hegglin, M.I.; Tegtmeier, S.; Anderson, J.; Bourassa, A.E.; Brohede, S.; Degenstein, D.; Froidevaux, L.; Funke, B.; Gille, J.; Kasai, Y.; et al. Overview and update of the SPARC Data Initiative: Comparison of stratospheric composition measurements from satellite limb sounders. Earth Syst. Sci. Data 2021, 13, 1855–1903. [Google Scholar] [CrossRef]
- Rong, P.; Russell, J.M.; Marshall, B.T.; Gordley, L.L.; Mlynczak, M.G.; Walker, K.A. Validation of water vapor measured by SABER on the TIMED satellite. J. Atmos. Sol. Terr. Phys. 2019, 194, 105099. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Wagner, P.A.; Froidevaux, L.; Lambert, A.; Manney, G.L.; Valle, L.M.; Pumphrey, H.C.; Santee, M.L.; Schwartz, M.J.; et al. Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 4.2x Level 2 and 3 Data Quality and Description Document; Techical Report JPL D-33509; Jet Propulsion Laboratory: Pasadena, CA, USA, 2020. [Google Scholar]
- Rong, P.; Russell, J.M.; Gordley, L.L.; Hervig, M.E.; Deaver, L.E.; Bernath, P.F.; Walker, K.A. Validation of v1.022 mesospheric water vapor observed by the Solar Occultation for Ice Experiment instrument on the Aeronomy of Ice in the Mesosphere satellite. J. Geophys. Res. 2010, 115, D24314. [Google Scholar] [CrossRef]
- World Meteorological Organization. The 2022 GCOS ECVs Requirements; GCOS-245; World Meteorological Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Wulfmeyer, V.; Hardesty, R.M.; Turner, D.D.; Behrendt, A.; Cadeddu, M.P.; Di Girolamo, P.; Schlüssel, P.; Van Baelen, J.; Zus, F. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys. 2015, 53, 819–895. [Google Scholar] [CrossRef]
- Dupont, F.; Grandmont, F.J.; Solheim, B.H.; Bourassa, A.E.; Degenstein, D.; Lloyd, N.D.; Cooney, R. Spatial Heterodyne Spectrometer for Observation of Water for a Balloon Flight: Overview of the Instrument & Preliminary Flight Data Results. In Proceedings of the Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, Lake Arrowhead, CA, USA, 1–4 March 2015. [Google Scholar] [CrossRef]
- Langille, J.; Letros, D.; Bourassa, A.; Solheim, B.; Degenstein, D.; Dupont, F.; Zawada, D.; Lloyd, N.D. Spatial heterodyne observations of water (SHOW) from a high-altitude airplane: Characterization, performance, and first results. Atmos. Meas. Tech. 2019, 12, 431–455. [Google Scholar] [CrossRef]
- Langille, J.A.; Letros, D.; Zawada, D.; Bourassa, A.E.; Degenstein, D.; Solheim, B.H. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis. J. Quant. Spectrosc. Radiat. Transf. 2018, 209, 137–149. [Google Scholar] [CrossRef]
- Englert, C.R.; Harlander, J.M.; Marr, K.D.; Harding, B.J.; Makela, J.J.; ToriFae Brown, C.M.; Venkat Ratnam, M.; Vijaya Bhaskara Rao, S.; Immel, T.J. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) On-Orbit Wind Observations: Data Analysis and Instrument Performance. Space Sci. Rev. 2023, 219, 27. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Feng, Y.; Wang, Q.; Gao, C.; Wu, Y.; Han, B.; Chang, C.; Li, J.; Li, Y.; Zhao, H.; et al. Research on near-infrared spatial heterodyne Raman spectrometer. Acta Photonica Sin. 2022, 51, 0530001. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, S.; Liu, F.; Zhang, Y.; Yi, F. Laboratory fabrication of monolithic interferometers for one and two-dimensional spatial heterodyne spectrometers. Opt. Express 2017, 25, 29121–29134. [Google Scholar] [CrossRef]
- Luo, H.; Fang, X.; Hu, G.; Shi, H.; Xiong, W. Hyper-resolution spatial heterodyne spectrometer for hydroxyl radical OH. Acta Opt. Sin. 2018, 38, 369–375. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, H.; Li, Z.; Ding, Y.; Xiong, W. Analysis of Signal-to-Noise Ratio of Spatial Heterodyne Spectroscopy. Measurement 2024, 237, 115180. [Google Scholar] [CrossRef]
- Baudiquez, A.; Lantz, E.; Rubiola, E.; Vernotte, F. Cross-Spectrum Measurement Statistics: Uncertainties and Detection Limit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Augason, G.C.; Lumb, D.R. Some aspects of noise analysis of interferometer spectrometers. Mem. Soc. R. Sci. Liège 1964, 9, 132. [Google Scholar]
- Stüber, G.L. Principles of Mobile Communication, 4th ed.; Springer: Berlin, Germany, 2017; pp. 679–680. [Google Scholar]
- Bourassa, A.E.; Degenstein, D.A.; Llewellyn, E.J. SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight. J. Quant. Spectrosc. Ra. 2008, 109, 52–73. [Google Scholar] [CrossRef]
- Zawada, D.J.; Dueck, S.R.; Rieger, L.A.; Bourassa, A.E.; Lloyd, N.D.; Degenstein, D.A. High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model. Atmos. Meas. Tech. 2015, 8, 2609–2623. [Google Scholar] [CrossRef]
- Coddington, O.M.; Richard, E.C.; Harber, D.; Pilewskie, P.; Woods, T.N.; Chance, K.; Liu, X.; Sun, K. The TSIS-1 hybrid solar reference spectrum. Geophys. Res. Lett. 2021, 48, e2020GL091709. [Google Scholar] [CrossRef] [PubMed]
- Rieger, L.A.; Zawada, D.J.; Bourassa, A.E.; Degenstein, D.A. A multiwavelength retrieval approach for improved OSIRIS aerosol extinction retrievals. J. Geophys. Res. Atmos. 2019, 124, 7286–7307. [Google Scholar] [CrossRef]
- Palchetti, L.; Brindley, H.E.; Bantges, R.J.; Buehler, S.A.; Camy-Peyret, C.; Carli, B.; Cortesi, U.; Bianco, S.D.; Natale, G.D.; Dinelli, B.M.; et al. FORUM: Unique far-infrared satellite observations to better understand how earth radiates energy to space. Bull. Am. Meteorol. Soc. 2020, 101, E2030–E2046. [Google Scholar] [CrossRef]
Specification | Value |
---|---|
Observer location | 3.24° N, 119.93° W, 705 km |
Atmosphere model | MSIS-90 |
Water vapor number density | MLS V4.2 |
Aerosol extinction | OSIRIS V7.2 |
Tangent point location | 28.18° N, 123.80° W, 10~80 km |
Time | 14 June 2017 |
Spectral range | 1360~1373 nm |
Specification | Value |
---|---|
(per pixel) | 1.959 × 10−7 cm2·sr |
24.09° | |
Littrow wavelength | 1360.5 nm |
Spectral resolution (unapodized) | 0.03 nm |
Modulation | 0.9 |
0.7 | |
0.121 | |
300 ms | |
Grating density | 600 lines/mm |
FPA dimensions | 640 × 512 (@ 20 μm) |
Dark current | 3000 e |
Read noise | 165 e |
Waveband | 1360.5 nm~1368.5 nm |
Specification | Value |
---|---|
13.10875° | |
Littrow wavelength | 756 nm |
Spectral resolution | 0.033 nm |
t | 120 ms |
Grating density | 600 line/mm |
FPA dimensions | 1024 × 1024 (@ 13 μm) |
Waveband | 756 nm~772.9 nm |
Full-well capacity | 100 K e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Luo, H.; Li, Z.; Jin, W.; Wu, Q.; Hu, M.; Hong, Y.; Xiong, W. Analysis and Validation of the Signal-to-Noise Ratio for an Atmospheric Humidity Profiling Spectrometer Based on 1D-Imaging Spatial Heterodyne Spectroscopy. Remote Sens. 2025, 17, 1810. https://doi.org/10.3390/rs17111810
Xie S, Luo H, Li Z, Jin W, Wu Q, Hu M, Hong Y, Xiong W. Analysis and Validation of the Signal-to-Noise Ratio for an Atmospheric Humidity Profiling Spectrometer Based on 1D-Imaging Spatial Heterodyne Spectroscopy. Remote Sensing. 2025; 17(11):1810. https://doi.org/10.3390/rs17111810
Chicago/Turabian StyleXie, Shaochun, Haiyan Luo, Zhiwei Li, Wei Jin, Qiong Wu, Mai Hu, Yang Hong, and Wei Xiong. 2025. "Analysis and Validation of the Signal-to-Noise Ratio for an Atmospheric Humidity Profiling Spectrometer Based on 1D-Imaging Spatial Heterodyne Spectroscopy" Remote Sensing 17, no. 11: 1810. https://doi.org/10.3390/rs17111810
APA StyleXie, S., Luo, H., Li, Z., Jin, W., Wu, Q., Hu, M., Hong, Y., & Xiong, W. (2025). Analysis and Validation of the Signal-to-Noise Ratio for an Atmospheric Humidity Profiling Spectrometer Based on 1D-Imaging Spatial Heterodyne Spectroscopy. Remote Sensing, 17(11), 1810. https://doi.org/10.3390/rs17111810