Mapping Temperate Grassland Dynamics in China Inner Mongolia (1980s–2010s) Using Multi-Source Data and Deep Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overall Methodology
2.3. Data Sources and Pre-Processing
2.3.1. Field Survey Maps
2.3.2. Classification Features
2.4. Classification Methods of Temperate Grassland Type
2.4.1. Light Gradient Boosting Machine (LightGBM)
2.4.2. Deep Neural Network (DNN)
3. Results
3.1. Classification Accuracy Assessment
3.1.1. LightGBM
3.1.2. DNN
3.2. Field Reconnaissance Validation
3.3. Spatiotemporal Variation Analysis of Grassland Types in Grassland Types
3.4. Grassland Types Changes from the 1980s to 2010s
4. Discussion
4.1. Advantages of This Workflow
4.2. Patterns of Grassland Spatiotemporal Distributions and Changes
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAT | Annual Accumulated Temperature |
ARNCI | Accumulated Rate of NDVI Change Index |
DEM | Digital Elevation Model |
DL | Deep Learning |
DNN | Deep Neural Network |
GEE | Google Earth Engine |
Kappa | Kappa Coefficient |
LightGBM | Light Gradient Boosting Machine |
ML | Machine Learning |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
OA | Overall Accuracy |
PA | Producer’s Accuracy |
TDS | Temperate Desert Steppe |
TD | Temperate Desert |
TMS | Temperate Meadow Steppe |
TSD | Temperate Steppe Desert |
TTS | Temperate Typical Steppe |
TWI | Topographic wetness index |
UA | User’s Accuracy |
References
- Liu, Y.; Zhang, Z.; Tong, L.; Khalifa, M.; Wang, Q.; Gang, C.; Wang, Z.; Li, J.; Sun, Z. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G. Measuring the impacts of anthropogenic activities on Inner Mongolian temperate grassland. Land Degrad. Dev. 2018, 29, 2942–2950. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Huang, L.; Chen, C.; Lin, X.; Hu, Z.; Li, J. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 2017, 83, 303–313. [Google Scholar] [CrossRef]
- Hou, Q.; Ji, Z.; Yang, H.; Yu, X. Impacts of climate change and human activities on different degraded grassland based on NDVI. Sci. Rep. 2022, 12, 15918. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, R.; Hill, K. Emergence of Indigenous Vegetation Classifications Through Integration of Traditional Ecological Knowledge and Remote Sensing Analyses. Environ. Manag. 2006, 38, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Guan, H.; Hu, T.; Jin, S.; Su, Y.; Wang, X.J.; Sun, Q.H. Remote sensing-based mapping for the new generation of Vegetation Map of China (1:500,000). Sci. Sin. Vitae 2021, 51, 229–241. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Wang, H.; Ren, Z.; Han, T.; Sun, B.; Pan, D.; Wang, B. GIS-based analysis of the compatibility of two grassland classification systems in China. Acta Pratacult. Sin. 2019, 28, 1–18. (In Chinese) [Google Scholar]
- Su, Y.; Guo, Q.; Hu, T.; Guan, H.; Jin, S.; An, S.; Chen, X.; Guo, K.; Hao, Z.; Hu, Y.; et al. An updated Vegetation Map of China (1:1,000,000). Sci. Bull. 2020, 65, 1125–1136. [Google Scholar] [CrossRef]
- 1:1,000,000 China Grassland Resource Mapping Committee. 1:1 Million Atlas of Grassland Resources in China; China Cartographic Publishing House: Beijing, China, 1993. [Google Scholar]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Liu, X.; Shi, Q.; Zhuang, H.; Cai, Y.; He, D. An improved global land cover mapping in 2015 with 30 m resolution (GLC-2015) based on a multisource product-fusion approach. Earth Syst. Sci. Data 2023, 15, 2347–2373. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Xu, P.; Tsendbazar, N.E.; Herold, M.; de Bruin, S.; Koopmans, M.; Birch, T.; Carter, S.; Fritz, S.; Lesiv, M.; Mazur, E.; et al. Comparative validation of recent 10 m-resolution global land cover maps. Remote Sens. Environ. 2024, 311, 114316. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; de Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200 (Version v200). Zenodo 2022. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, w.; Wu, Q. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period. Ecol. Indic. 2022, 135, 108529. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS J. Photogramm. 2017, 128, 73–85. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F. Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecol. Indic. 2018, 95, 825–830. [Google Scholar] [CrossRef]
- Wei, D.; Liu, K.; Xiao, C.; Sun, W.; Liu, W.; Liu, L. A Systematic Classification Method for Grassland Community Division Using China’s ZY1-02D Hyperspectral Observations. Remote Sens. 2022, 14, 3751. [Google Scholar] [CrossRef]
- Yang, H.; Du, J.; Wang, Y.; Zhang, Y.; Zhang, X.; Kang, Y. Classification Method of Grassland Species Based on Unmanned Aerial Vehicle Remote Sensing and Convolutional Neural Network. Trans. Chin. Soc. Agric. Mach. 2019, 50, 188–195. (In Chinese) [Google Scholar]
- Schulze-Brüninghoff, D.; Wachendorf, M.; Astor, T. Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded by L. polyphyllus. Remote Sens. Ecol. Conserv. 2021, 7, 198–213. [Google Scholar] [CrossRef]
- Wang, W.; Tang, J.; Zhang, N.; Wang, Y.; Xu, X.; Zhang, A. Spatiotemporal Pattern of Invasive Pedicularis in the Bayinbuluke Land, China, during 2019–2021: An Analysis Based on PlanetScope and Sentinel-2 Data. Remote Sens. 2023, 15, 4383. [Google Scholar] [CrossRef]
- Liu, M.; Qu, Y.; Wang, J.; Liao, Y.; Zheng, G.; Guo, Y.; Liu, L. A 30-m annual grassland dataset from 1991 to 2020 for Inner Mongolia, China. Sci. Data 2024, 11, 1143. [Google Scholar] [CrossRef]
- Meng, B.; Yang, Z.; Yu, H.; Qin, Y.; Sun, Y.; Zhang, J.; Chen, J.; Wang, Z.; Wang, W.; Li, M.; et al. Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau. Remote Sens. 2021, 13, 2483. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, L.; Chen, Y.; Yue, Z.; Zhu, Y. Improving grassland classification accuracy using optimal spectral-phenological-topographic features in combination with machine learning algorithm. Ecol. Indic. 2024, 158, 111392. [Google Scholar] [CrossRef]
- Han, P.; Zhao, X.; Dong, Z.; Yan, Y.; Niu, J.; Zhang, Q. A new approach for the classification of grassland utilization in Inner Mongolia—Based on ecological sites and state-and-transition models. Ecol. Indic. 2022, 137, 108733. [Google Scholar] [CrossRef]
- Xu, X.; Tang, J.; Zhang, N.; Zhang, A.; Wang, W.; Sun, Q. Remote Sensing Classification of Temperate Grassland in Eurasia Based on Normalized Difference Vegetation Index (NDVI) Time-Series Data. Sustainability 2023, 15, 14973. [Google Scholar] [CrossRef]
- Meng, B.; Zhang, Y.; Yang, Z.; Lv, Y.; Chen, J.; Li, M.; Sun, Y.; Zhang, H.; Yu, H.; Zhang, J.; et al. Mapping Grassland Classes Using Unmanned Aerial Vehicle and MODIS NDVI Data for Temperate Grassland in Inner Mongolia, China. Remote Sens. 2022, 14, 2094. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Ullah, S.; Si, Y.; Schlerf, M.; Skidmore, A.K.; Shafique, M.; Iqbal, I.A. Estimation of grassland biomass and nitrogen using MERIS data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 196–204. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, T.; Batelaan, O.; Duan, L.; Wang, Y.; Li, X.; Li, M. Spatiotemporal fusion of multi-source remote sensing data for estimating aboveground biomass of grassland. Ecol. Indic. 2023, 146, 109892. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W.; Xie, H. Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Gong, J.; Li, S.; Dou, H.; Dang, D.; Xuan, X.; Wang, H. Remote-sensing inversion method for aboveground biomass of typical steppe in Inner Mongolia, China. Ecol. Indic. 2021, 120, 106883. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, J.; Li, X.; Perry, G.L.W.; Xu, T. Improving the accuracy of models to map alpine grassland above-ground biomass using Google earth engine. Grass Forage Sci. 2023, 78, 2. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, Z.; Liang, C.; Fang, J.; Baumann, F.; Kühn, P.; Scholten, T.; He, J. Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands. Glob. Ecol. Biogeogr. 2012, 21, 416–427. [Google Scholar] [CrossRef]
- Gibson, D.; Newman, J. Grasslands and Climate Change; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Ma, R.; Xia, C.; Liu, Y.; Wang, Y.; Zhang, J.; Shen, X.; Lu, X.; Jiang, M. Spatiotemporal Change of Net Primary Productivity and Its Response to Climate Change in Temperate Grasslands of China. Front. Plant Sci 2022, 13, 899800. [Google Scholar] [CrossRef]
- Guo, Q.; Li, S.; Hu, Z.; Zhao, W.; Yu, G.; Sun, X.; Liang, N.; Bai, W. Responses of gross primary productivity to different sizes of precipitation events in a temperate grassland ecosystem in Inner Mongolia, China. J. Arid. Land 2016, 8, 36–46. [Google Scholar] [CrossRef]
- Babbar-Sebens, M.; Barr, R.C.; Tedesco, L.P.; Anderson, M. Spatial identification and optimization of upland wetlands in agricultural watersheds. Ecol. Eng. 2013, 52, 130–142. [Google Scholar] [CrossRef]
- Guo, J.; Yang, X.; Chen, F.; Niu, J.; Luo, S.; Zhang, M.; Jin, Y.; Shen, G.; Chen, A.; Xing, X.; et al. Examining Relationships between Heat Requirement of Remotely Sensed Green-Up Date and Meteorological Indicators in the Hulun Buir Grassland. Remote Sens. 2021, 13, 1044. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Sun, Y.; Li, M.; An, Y.; Shi, F. Spatial differentiation of the NPP and NDVI and its influencing factors vary with grassland type on the Qinghai-Tibet Plateau. Environ. Monit. Assess. 2021, 193, 48. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.Z.; Hu, Z.Z.; Zhao, J.; Zhang, D.G.; Hou, F.J.; Lin, H.L.; Mu, X.D. A grassland classification system and its application in China. Rangel. J. 2008, 30, 199–209. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Deng, F.; Zhang, S.; Zhang, D.; Xun, L.; Javed, T.; Liu, G.; Liu, D.; Ji, M. Fusion of GF and MODIS Data for Regional-Scale Grassland Community Classification with EVI2 Time-Series and Phenological Features. Remote Sens. 2021, 13, 835. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; He, C.; Tan, X.; Han, Z. Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China. Sustainability 2019, 11, 4188. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Optimal spatial resolution of Unmanned Aerial Vehicle (UAV)-acquired imagery for species classification in a heterogeneous grassland ecosystem. GISci. Remote Sens. 2018, 55, 205–220. [Google Scholar] [CrossRef]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Li, Z.Y.; Zhang, N. Data Set of Soil Physical and Chemical Indexes of Temperate Grassland in Eurasia (1981–2019); National Tibetan Plateau Data Center: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 1–9. [Google Scholar]
- Bui, Q.-T.; Chou, T.-Y.; Hoang, T.-V.; Fang, Y.-M.; Mu, C.-Y.; Huang, P.-H.; Pham, V.-D.; Nguyen, Q.-H.; Anh, D.T.N.; Pham, V.-M.; et al. Gradient Boosting Machine and Object-Based CNN for Land Cover Classification. Remote Sens. 2021, 13, 2709. [Google Scholar] [CrossRef]
- Suthaharan, S. Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification; Integrated Series in Information Systems; Springer: Boston, MA, USA, 2016; Volume 36. [Google Scholar]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Rawat, A.; Kumar, A.; Upadhyay, P.; Kumar, S. Deep learning-based models for temporal satellite data processing: Classification of paddy transplanted fields. Ecol. Inform. 2021, 61, 101214. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Rodwell, J.S. The UK National Vegetation Classification. Phytocoenologia 2018, 48, 133–140. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, W.; Hao, H.; Liang, C. Probes on the Degeneration and Recovery Succession Mechanisms of Inner Mongolia Steppe. J. Arid. Land Resour. Environ. 2002, 1, 84–91. (In Chinese) [Google Scholar]
- Wiesmair, M.; Feilhauer, H.; Magiera, A.; Otte, A.; Waldhardt, R. Estimating vegetation cover from high-resolution satellite data to assess grassland degradation in the Georgian Caucasus. Mt. Res. Dev. 2016, 36, 56–65. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, T.; Zhang, W.; Song, C.; Zhang, Q.; Sun, W.; Yu, Y.; Yu, L.; Li, H.; Zhang, C.; et al. The implementation of ecological protection in Inner Mongolia has slowed down grassland degradation. Fundam. Res. 2024; in press. [Google Scholar] [CrossRef]
- Cao, F.; Liu, L.; Rong, Y.; Jiang, N.; Zhao, L.; Zhang, Q.; Wu, Z.; Zhao, W.; Li, S. Climate change enhances greening while human activities accelerate degradation in northern China’s grasslands. Sci. Total Environ. 2025, 966, 178570. [Google Scholar] [CrossRef]
Data Type | Data Subtype | Data Detail | Data Resource |
---|---|---|---|
Apparent factors | Remote sensing data | 2000~2019 NOAA/MODIS NDWI | NDWI = (Green − NIR)/(Green + NIR) |
1981~2019 NOAA/MODIS NDVI | NDVI = (NIR − RED)/(NIR + RED) | ||
1981~2019 NOAA/MODIS Multispectral reflectance | NOAA/MODIS | ||
Habitat factors | Meteorological data | 1981~2019 Soil temperature | ERA − 5 |
1981~2019 Precipitation | ERA − 5 | ||
1981~2019 ≥ 0 °C Annual accumulated temperature | ERA − 5 | ||
1981~2019 Moisture | K = R/(0.1 × ∑θ) | ||
Soil data | 1980~2019 Bulk weight | Download | |
1980~2019 Sand content | Download | ||
1980~2019 Organic matter | Download | ||
Topographic data | Digital elevation model | SRTM 90M Digital Elevation Database | |
Topographic wetness index | Calculated by DEM |
Parameters Name | 1980s DNN Model | 2000s DNN Model |
---|---|---|
Input dimension | 1 × 24 | 1 × 67 |
Hidden layers | 6 | 7 |
Neurons per layer | 256→128→64→32→16→16 | 512→256→128→64→32→16→16 |
Output classes | 5 | 5 |
Batch size | 256 | 256 |
Epoch | 25 | 20 |
Initial learning rate (LR) | 0.001 | 0.001 |
LR scheduler | ReduceLROnPlateau | ReduceLROnPlateau |
Activation function | ReLU | ReLU |
Dropout | Yes | Yes |
Batch normalization | Yes | Yes |
Normalization | Yes | Yes |
Optimizer | Adam | Adam |
Out layer activation function | Softmax | Softmax |
Training Accuracy | Testing Accuracy | OA | Kappa | |
---|---|---|---|---|
1980s | 91.07% | 90.86% | 73.41% | 64.6% |
2000s | 91.85% | 91.69% | 73.98% | 63.52% |
Type | TMS | TTS | TDS | TSD | TD | PA |
---|---|---|---|---|---|---|
TMS | 87,255 | 31,208 | 640 | 1396 | 52 | 72.4% |
TTS | 48,800 | 287,535 | 9590 | 329 | 13 | 83% |
TDS | 2224 | 66,300 | 166,183 | 20,796 | 957 | 64.8% |
TSD | 186 | 674 | 10,762 | 40,633 | 4512 | 71.6% |
TD | / | 26 | 2699 | 15,585 | 254,315 | 93.3% |
UA | 63% | 74.5% | 87.5% | 51.6% | 97.9% | / |
OA: 79.4%, Kappa: 0.73 |
Type | TMS | TTS | TDS | TSD | TD | PA |
---|---|---|---|---|---|---|
TMS | 74,356 | 5842 | 32 | 3 | / | 92.7% |
TTS | 62,785 | 385,610 | 8727 | 129 | 5 | 84.3% |
TDS | 5 | 26,889 | 87,986 | 2378 | 79 | 75% |
TSD | 17 | 3441 | 62,641 | 48,989 | 4567 | 40.9% |
TD | 1 | 1327 | 6621 | 14,056 | 263,365 | 92.2% |
UA | 54.2% | 91.1% | 53% | 74.7% | 98.2% | / |
OA: 81.1%, Kappa: 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Tang, J.; Zhang, N.; Zhang, A.; Wang, W.; Sun, Q. Mapping Temperate Grassland Dynamics in China Inner Mongolia (1980s–2010s) Using Multi-Source Data and Deep Neural Network. Remote Sens. 2025, 17, 1779. https://doi.org/10.3390/rs17101779
Xu X, Tang J, Zhang N, Zhang A, Wang W, Sun Q. Mapping Temperate Grassland Dynamics in China Inner Mongolia (1980s–2010s) Using Multi-Source Data and Deep Neural Network. Remote Sensing. 2025; 17(10):1779. https://doi.org/10.3390/rs17101779
Chicago/Turabian StyleXu, Xuefeng, Jiakui Tang, Na Zhang, Anan Zhang, Wuhua Wang, and Qiang Sun. 2025. "Mapping Temperate Grassland Dynamics in China Inner Mongolia (1980s–2010s) Using Multi-Source Data and Deep Neural Network" Remote Sensing 17, no. 10: 1779. https://doi.org/10.3390/rs17101779
APA StyleXu, X., Tang, J., Zhang, N., Zhang, A., Wang, W., & Sun, Q. (2025). Mapping Temperate Grassland Dynamics in China Inner Mongolia (1980s–2010s) Using Multi-Source Data and Deep Neural Network. Remote Sensing, 17(10), 1779. https://doi.org/10.3390/rs17101779