A Review of Machine Learning Applications in Ocean Color Remote Sensing
Abstract
:1. Introduction
2. Fundamentals of Ocean Color Remote Sensing
2.1. Principles of Ocean Color Remote Sensing
2.2. Traditional Challenges in Data Interpretation and Analysis
3. Machine Learning Models and Algorithms
4. Machine Learning-Enhanced Ocean Color Remote Sensing
4.1. Atmospheric and Optical Correction Innovations
4.2. Applications in Bio-Optical Property Retrieval
4.3. Enhanced Analysis of the Ocean Carbon Cycle
4.4. Development of Data Reconstruction Methods Based on Machine Learning
5. Challenges and Opportunities
5.1. Challenges
5.1.1. Limitations in Generalization and Model Adaptability
5.1.2. Data Availability and Quality
5.1.3. Computational Complexity and Resource Limitations
5.1.4. Model Interpretability and Transparency
5.1.5. Explainable AI for Ocean Color Remote Sensing
5.2. Opportunities and the Way Forward
5.2.1. Harnessing Technological Innovation and Computational Advances
5.2.2. Leveraging Open Data and Interdisciplinary Collaboration
5.2.3. The Use of Hybrid Models for Scientific and Practical Applications
5.2.4. Building Capacity for Uncertainty-Aware Models
5.2.5. Data Fusion and Integration from Multiple Platforms
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, Y.; Yang, S.; Zhao, D.; Hu, C.; Xu, W.; Anderson, D.; Li, Y.; Song, X.-P.; Boyce, D.; Gibson, L.; et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 2023. [Google Scholar] [CrossRef]
- Ferreira, A.; Mendes, C.R.B.; Costa, R.R.; Brotas, V.; Tavano, V.M.; Guerreiro, C.V.; Secchi, E.R.; Brito, A.C. Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula. Nat. Commun. 2024, 15, 6536. [Google Scholar] [CrossRef]
- Lewis, K.M.; van Dijken, G.L.; Arrigo, K.R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 2020, 369, 198–202. [Google Scholar] [CrossRef]
- Westberry, T.K.; Silsbe, G.M.; Behrenfeld, M.J. Gross and net primary production in the global ocean: An ocean color remote sensing perspective. Earth-Sci. Rev. 2023, 237, 104322. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Kulk, G.; Rio, M.-H.; Concha, J.A.; Bell, T.G.; Bracher, A.; Fichot, C.; Frölicher, T.L.; Galí, M.; et al. Ocean carbon from space: Current status and priorities for the next decade. Earth-Sci. Rev. 2023, 240, 104386. [Google Scholar] [CrossRef]
- Balch, W.M.; Mitchell, C. Remote sensing algorithms for particulate inorganic carbon (PIC) and the global cycle of PIC. Earth-Sci. Rev. 2023, 239, 104363. [Google Scholar] [CrossRef]
- Hopkins, J.; Henson, S.A.; Poulton, A.J.; Balch, W.M. Regional Characteristics of the Temporal Variability in the Global Particulate Inorganic Carbon Inventory. Glob. Biogeochem. Cycles 2019, 33, 1328–1338. [Google Scholar] [CrossRef]
- Cael, B.B.; Bisson, K.; Boss, E.; Dutkiewicz, S.; Henson, S. Global climate-change trends detected in indicators of ocean ecology. Nature 2023, 619, 551–554. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Hickman, A.E.; Jahn, O.; Henson, S.; Beaulieu, C.; Monier, E. Ocean colour signature of climate change. Nat. Commun. 2019, 10, 578. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Ishizaka, J.; Li, X. Global estimation of phytoplankton pigment concentrations from satellite data using a deep-learning-based model. Remote Sens. Environ. 2023, 294, 113628. [Google Scholar] [CrossRef]
- Kolluru, S.; Gedam, S.S.; Inamdar, A.B. A machine learning approach for deriving spectral absorption coefficients of optically active oceanic constituents. Comput. Geosci. 2021, 155, 104879. [Google Scholar] [CrossRef]
- Laruelle, G.G.; Landschützer, P.; Gruber, N.; Tison, J.L.; Delille, B.; Regnier, P. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation. Biogeosciences 2017, 14, 4545–4561. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Martinez, E.; Fablet, R.; Jamet, C. Editorial: AI and remote sensing in ocean sciences. Front. Mar. Sci. 2024, 10, 1248591. [Google Scholar] [CrossRef]
- Niu, J.; Feng, Z.; He, M.; Xie, M.; Lv, Y.; Zhang, J.; Sun, L.; Liu, Q.; Hu, B.X. Incorporating marine particulate carbon into machine learning for accurate estimation of coastal chlorophyll-a. Mar. Pollut. Bull. 2023, 192, 115089. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Song, J.; Li, X.; Zhong, G.; Zhang, B. Reconstruction of pCO2 Data in the Southern Ocean Based on Feedforward Neural Network. Springer: Singapore, 2023; pp. 189–208. [Google Scholar]
- Zhang, S.; Chen, P.; Zhang, Z.; Pan, D. Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020. Remote Sens. 2022, 14, 6196. [Google Scholar] [CrossRef]
- Schroeder, T.; Schaale, M.; Lovell, J.; Blondeau-Patissier, D. An ensemble neural network atmospheric correction for Sentinel-3 OLCI over coastal waters providing inherent model uncertainty estimation and sensor noise propagation. Remote Sens. Environ. 2022, 270, 112848. [Google Scholar] [CrossRef]
- He, X.; Pan, T.; Bai, Y.; Shanmugam, P.; Wang, D.; Li, T.; Gong, F. Intelligent Atmospheric Correction Algorithm for Polarization Ocean Color Satellite Measurements Over the Open Ocean. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–22. [Google Scholar] [CrossRef]
- Song, Z.; He, X.; Bai, Y.; Dong, X.; Wang, D.; Li, T.; Zhu, Q.; Gong, F. Atmospheric correction of absorbing aerosols for satellite ocean color remote sensing over coastal waters. Remote Sens. Environ. 2023, 290, 113552. [Google Scholar] [CrossRef]
- Friedrich, T.; Oschlies, A. Neural network-based estimates of North Atlantic surface pCO2 from satellite data: A methodological study. J. Geophys. Res. Ocean. 2009, 114, C03020. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Behrenfeld, M.J.; Chen, P.; Jamet, C.; Di Girolamo, P.; Dionisi, D.; Hu, Y.; Lu, X.; Pan, Y.; et al. Combining deep learning with physical parameters in POC and PIC inversion from spaceborne lidar CALIOP. ISPRS J. Photogramm. Remote Sens. 2024, 212, 193–211. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, P.; Jamet, C.; Dionisi, D.; Hu, Y.; Lu, X.; Pan, D. Retrieving bbp and POC from CALIOP: A deep neural network approach. Remote Sens. Environ. 2023, 287, 113482. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Zhao, Z.; Zhang, S.; Zhang, Z.; Wang, J.; Pan, D. Current Applications of Ocean Color Remote Sensing Machine Learning Models and Prospects for Calibration, Validation. Oceanol. Limnol. Sin. 2025, 56, 3–24. [Google Scholar]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Emberton, S.; Chittka, L.; Cavallaro, A.; Wang, M. Sensor Capability and Atmospheric Correction in Ocean Colour Remote Sensing. Remote Sens. 2016, 8, 1. [Google Scholar] [CrossRef]
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters. J. Plankton Res. 2002, 24, 947–951. [Google Scholar] [CrossRef]
- Gordon, H.R.; Boynton, G.C.; Balch, W.M.; Groom, S.B.; Harbour, D.S.; Smyth, T.J. Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery. Geophys. Res. Lett. 2001, 28, 1587–1590. [Google Scholar] [CrossRef]
- Stramski, D.; Reynolds, R.A.; Kahru, M.; Mitchell, B.G. Estimation of Particulate Organic Carbon in the Ocean from Satellite Remote Sensing. Science 1999, 285, 239–242. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Blix, K.; Eltoft, T. Machine Learning Automatic Model Selection Algorithm for Oceanic Chlorophyll-a Content Retrieval. Remote Sens. 2018, 10, 775. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. Int. J. Remote Sens. 2009, 30, 2061–2074. [Google Scholar] [CrossRef]
- Gong, J.; Xiao, Y.; Cai, X.; Mu, B.; Qin, P.; Liu, R.; Cui, T. Impact of the Spatial Resolution of Satellite Image on the Remote Sensing Monitoring of Green Macroalgae Bloom. Acta Laser Biol. Sin. 2014, 6, 579–584. [Google Scholar] [CrossRef]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Behrenfeld, M.J. Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption. J. Geophys. Res. Ocean. 2005, 110, C07011. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Smith, R.C. Bio-optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters. J. Geophys. Res. Ocean. 2000, 105, 26301–26312. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-H.; Kim, H.-c.; Kim, B.-K.; Bae, D.; Jo, Y.-H.; Jo, N.; Lee, S.H. Reconstruction of Ocean Color Data Using Machine Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea. Remote Sens. 2019, 11, 1366. [Google Scholar] [CrossRef]
- Ahmed, E.-H.; Sam, A.; Michael, E.O.; Vincent, L. Analyses of satellite ocean color retrievals show advantage of neural network approaches and algorithms that avoid deep blue bands. J. Appl. Remote Sens. 2019, 13, 024509. [Google Scholar] [CrossRef]
- Aguilera, H.; Guardiola-Albert, C.; Serrano-Hidalgo, C. Estimating extremely large amounts of missing precipitation data. J. Hydroinform. 2020, 22, 578–592. [Google Scholar] [CrossRef]
- Zhou, L.; Gao, C.; Zhang, R.-H. A spatiotemporal 3D convolutional neural network model for ENSO predictions: A test case for the 2020/21 La Niña conditions. Atmos. Ocean. Sci. Lett. 2023, 16, 100330. [Google Scholar] [CrossRef]
- Zhao, N.; Huang, B.; Zhang, X.; Ge, L.; Chen, G. Intelligent identification of oceanic eddies in remote sensing data via Dual-Pyramid UNet. Atmos. Ocean. Sci. Lett. 2023, 16, 100335. [Google Scholar] [CrossRef]
- Ouyang, L.; Ling, F.; Li, Y.; Bai, L.; Luo, J.-J. Wave forecast in the Atlantic Ocean using a double-stage ConvLSTM network. Atmos. Ocean. Sci. Lett. 2023, 16, 100347. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Yuan, Y. 3D DBSCAN detection and parameter sensitivity of the 2022 Yangtze river summertime heatwave and drought. Atmos. Ocean. Sci. Lett. 2023, 16, 100324. [Google Scholar] [CrossRef]
- Frouin, R.; Pelletier, B. Bayesian methodology for inverting satellite ocean-color data. Remote Sens. Environ. 2015, 159, 332–360. [Google Scholar] [CrossRef]
- Amani, M.; Moghimi, A.; Mirmazloumi, S.M.; Ranjgar, B.; Ghorbanian, A.; Ojaghi, S.; Ebrahimy, H.; Naboureh, A.; Nazari, M.E.; Mahdavi, S.; et al. Ocean Remote Sensing Techniques and Applications: A Review (Part I). Water 2022, 14, 3400. [Google Scholar] [CrossRef]
- Hong, Z.; Long, D.; Li, X.; Wang, Y.; Zhang, J.; Hamouda, M.A.; Mohamed, M.M. A global daily gap-filled chlorophyll-a dataset in open oceans during 2001–2021 from multisource information using convolutional neural networks. Earth Syst. Sci. Data 2023, 15, 5281–5300. [Google Scholar] [CrossRef]
- Stemina, S.; Raja, B. A Review of Machine Learning and It’s Method. Int. J. Emerg. Technol. Innov. Eng. 2019, 5, 1–7. [Google Scholar]
- Khan, Z. An insight on machine learning algorithms and its applications. Eur. Chem. Bull. 2023, 12, 6029–6034. [Google Scholar] [CrossRef]
- Lawatre, P.; Muzzammil, M.; Hingal, R. An efficient data pre-processing model for machine learning. Int. J. Adv. Res. Ideas Innov. Technol. 2021, 7, 1612–1614. [Google Scholar]
- Kang, M.; Tian, J. Machine Learning: Data Pre-processing. In Prognostics and Health Management of Electronics; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 111–130. [Google Scholar]
- Guruvayur, S.R.; Suchithra, R. A detailed study on machine learning techniques for data mining. In Proceedings of the 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May 2017; pp. 1187–1192. [Google Scholar]
- Priya, M. Guide on Way to approach a Machine Learning problem. In Proceedings of the Big Data Analytics 2020, Dubai, United Arab Emirates, 14 October 2020. [Google Scholar]
- Chatzilygeroudis, K.; Hatzilygeroudis, I.; Perikos, I. Machine Learning Basics. In Intelligent Computing for Interactive System Design: Statistics, Digital Signal Processing, and Machine Learning in Practice; Association for Computing Machinery: New York, NY, USA, 2021; Volume 34, pp. 143–193. [Google Scholar]
- Chegoonian, A.M.; Pahlevan, N.; Zolfaghari, K.; Leavitt, P.; Davies, J.-M.; Baulch, H.; Duguay, C. Comparative Analysis of Empirical and Machine Learning Models for Chl a Extraction Using Sentinel-2 and Landsat OLI Data: Opportunities, Limitations, and Challenges. Can. J. Remote Sens. 2023, 49, 215333. [Google Scholar] [CrossRef]
- Wattelez, G.; Dupouy, C.; Mangeas, M.; Lefèvre, J.; Touraivane, T.; Frouin, R. A Statistical Algorithm for Estimating Chlorophyll Concentration from MODIS Data; SPIE: Bellingham, WA, USA, 2014; Volume 9261. [Google Scholar]
- Boissieu, F.d.; Menkes, C.; Dupouy, C.; Rodier, M.; Bonnet, S.; Mangeas, M.; Frouin, R.J. Phytoplankton global mapping from space with a support vector machine algorithm. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Beijing, China, 13–16 October 2014; p. 92611R. [Google Scholar]
- Zhang, Z.; Chen, P.; Zhong, C.; Xie, C.; Sun, M.; Zhang, S.; Chen, S.; Wu, D. Chlorophyll and POC in polar regions derived from spaceborne lidar. Front. Mar. Sci. 2023, 10, 1050087. [Google Scholar] [CrossRef]
- Corcoran, F.; Parrish, C.E. Diffuse Attenuation Coefficient (Kd) from ICESat-2 ATLAS Spaceborne Lidar Using Random-Forest Regression. Photogramm. Eng. Remote Sens. 2021, 87, 831–840. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.C.; Bae, D.; Jo, Y.H. Data Reconstruction for Remotely Sensed Chlorophyll-a Concentration in the Ross Sea Using Ensemble-Based Machine Learning. Remote Sens. 2020, 12, 1898. [Google Scholar] [CrossRef]
- Cui, Z.; Du, D.; Zhang, X.; Yang, Q. Modeling and Prediction of Environmental Factors and Chlorophyll a Abundance by Machine Learning Based on Tara Oceans Data. J. Mar. Sci. Eng. 2022, 10, 1749. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, F.; Sun, X.; Tan, K. Marine big data-driven ensemble learning for estimating global phytoplankton group composition over two decades (1997–2020). Remote Sens. Environ. 2023, 294, 113596. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Gossn, J.; Frouin, R.; Dogliotti, A. Atmospheric Correction of Satellite Optical Imagery over the Río de la Plata Highly Turbid Waters Using a SWIR-Based Principal Component Decomposition Technique. Remote Sens. 2021, 13, 1050. [Google Scholar] [CrossRef]
- Gross-Colzy, L.; Colzy, S.; Frouin, R.; Henry, P. A general ocean color atmospheric correction scheme based on principal components analysis: Part I. Performance on Case 1 and Case 2 waters. In Proceedings of the Optical Engineering + Applications, San Diego, CA, USA, 26–30 August 2007; p. 668002. [Google Scholar]
- Kolluru, S.; Tiwari, S.P. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning. Sci. Total Environ. 2022, 844, 157191. [Google Scholar] [CrossRef]
- Denvil-Sommer, A.; Gehlen, M.; Vrac, M.; Mejia, C. ffnn-lsce: A two-step neural network model for the reconstruction of surface ocean pco2 over the global ocean. Geosci. Model Dev. 2019, 12, 2091–2105. [Google Scholar] [CrossRef]
- Jo, Y.H.; Dai, M.; Zhai, W.; Yan, X.H.; Shang, S. On the variations of sea surface pCO2 in the northern South China Sea: A remote sensing based neural network approach. J. Geophys. Res. Ocean. 2012, 117, C08022. [Google Scholar] [CrossRef]
- Heinemann, T.; Fischer, J. Simultaneous Retrieval of Oceanic and Atmospheric Properties Using Satellite Remote Sensing Measurements; SPIE: Bellingham, WA, USA, 1997; Volume 2963. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Gross, L.; Thiria, S.; Frouin, R. Applying artificial neural network methodology to ocean color remote sensing. Ecol. Model. 1999, 120, 237–246. [Google Scholar] [CrossRef]
- Gross, L.; Frouin, R.; Dupouy, C.; André, J.M.; Thiria, S. Reducing variability that is due to secondary pigments in the retrieval of chlorophyll a concentration from marine reflectance: A case study in the western equatorial Pacific Ocean. Appl. Opt. 2004, 43, 4041–4054. [Google Scholar] [CrossRef]
- Jamet, C.; Loisel, H.; Dessailly, D. Retrieval of the spectral diffuse attenuation coefficient K(λ) in open and coastal ocean waters using a neural network inversion. J. Geophys. Res. Ocean. 2012, 117, C10023. [Google Scholar] [CrossRef]
- Ioannou, I.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Deriving ocean color products using neural networks. Remote Sens. Environ. 2013, 134, 78–91. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Bai, Y.; Shanmugam, P.; Park, Y.-J.; Liu, J.; Zhu, Q.; Gong, F.; Wang, D.; Huang, H. Atmospheric correction of geostationary satellite ocean color data under high solar zenith angles in open oceans. Remote Sens. Environ. 2020, 249, 112022. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, Y.; Xiao, Y.; Liu, J.; Ding, J.; Ye, X.; Liu, R. Atmospheric correction algorithm based on deep learning with spatial-spectral feature constraints for broadband optical satellites: Examples from the HY-1C Coastal Zone Imager. ISPRS J. Photogramm. Remote Sens. 2023, 205, 147–162. [Google Scholar] [CrossRef]
- Durkee, P.A.; Jensen, D.R.; Hindman, E.E.; Haar, T.H.V. The relationship between marine aerosol particles and satellite-detected radiance. J. Geophys. Res. Atmos. 1986, 91, 4063–4072. [Google Scholar] [CrossRef]
- Allam, M.; Meng, Q.; Elhag, M.; Giardino, C.; Ghirardi, N.; Su, Y.; Al-Hababi, M.A.M.; Menenti, M. Atmospheric Correction Algorithms Assessment for Sentinel-2A Imagery over Inland Waters of China: Case Study, Qiandao Lake. Earth Syst. Environ. 2024, 8, 105–119. [Google Scholar] [CrossRef]
- Cuartero, A.; Cáceres-Merino, J.; Torrecilla-Pinero, J.A. An application of C2-Net atmospheric corrections for chlorophyll-a estimation in small reservoirs. Remote Sens. Appl. Soc. Environ. 2023, 32, 101021. [Google Scholar] [CrossRef]
- Men, J.; Feng, L.; Chen, X.; Tian, L. Atmospheric correction under cloud edge effects for Geostationary Ocean Color Imager through deep learning. ISPRS J. Photogramm. Remote Sens. 2023, 201, 38–53. [Google Scholar] [CrossRef]
- Shen, M.; Luo, J.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Feng, L.; Duan, H. Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties. J. Hydrol. 2022, 615, 128685. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S.; Liu, N.; Townsend, P.A.; Jiang, C.; Peng, B.; Verhoef, W.; Guan, K. Towards operational atmospheric correction of airborne hyperspectral imaging spectroscopy: Algorithm evaluation, key parameter analysis, and machine learning emulators. ISPRS J. Photogramm. Remote Sens. 2023, 196, 386–401. [Google Scholar] [CrossRef]
- Gao, M.; Franz, B.A.; Knobelspiesse, K.; Zhai, P.W.; Martins, V.; Burton, S.; Cairns, B.; Ferrare, R.; Gales, J.; Hasekamp, O.; et al. Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model. Atmos. Meas. Tech. 2021, 14, 4083–4110. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Lee, Z.; Wang, D.; Chen, S.; Lai, W. A revision of NASA SeaDAS atmospheric correction algorithm over turbid waters with artificial Neural Networks estimated remote-sensing reflectance in the near-infrared. ISPRS J. Photogramm. Remote Sens. 2022, 194, 235–249. [Google Scholar] [CrossRef]
- Sun, J.; Xu, F.; Cervone, G.; Gervais, M.; Wauthier, C.; Salvador, M. Automatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network. ISPRS J. Photogramm. Remote Sens. 2021, 174, 117–131. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; Volume 740. [Google Scholar]
- Rusia, P.; Bhateja, Y.; Misra, I.; Moorthi, S.M.; Dhar, D. An Efficient Machine Learning Approach for Atmospheric Correction. J. Indian Soc. Remote Sens. 2021, 49, 2539–2548. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Chen, N.; Ahn, J.-H.; Park, Y.-J.; Kratzer, S.; Schroeder, T.; Ishizaka, J.; Chang, R.; Stamnes, K. OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sens. Environ. 2021, 253, 112236. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sens. Environ. 2020, 239, 111648. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.; Duan, H.; Shen, M.; Boss, E.; Cao, Z. Inversion of inherent optical properties in optically complex waters using sentinel-3A/OLCI images: A case study using China’s three largest freshwater lakes. Remote Sens. Environ. 2019, 225, 328–346. [Google Scholar] [CrossRef]
- Simis, S.G.H.; Gons, P.H.J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology and Oceanography. Limnol. Oceanogr. 2005, 50, 237–245. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens. Environ. 2005, 96, 176–187. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- Dekker, A.G. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1993. [Google Scholar]
- Liu, X.; Steele, C.; Simis, S.; Warren, M.; Tyler, A.; Spyrakos, E.; Selmes, N.; Hunter, P. Retrieval of Chlorophyll-a concentration and associated product uncertainty in optically diverse lakes and reservoirs. Remote Sens. Environ. 2021, 267, 112710. [Google Scholar] [CrossRef]
- Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. Interdiscip. J. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Bi, S.; Li, Y.; Xu, J.; Liu, G.; Xu, J. Optical classification of inland waters based on an improved Fuzzy C-Means method. Opt. Express 2019, 27, 34838. [Google Scholar] [CrossRef] [PubMed]
- Schiller, H.; Doerffer, R. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. Int. J. Remote Sens. 1999, 20, 1735–1746. [Google Scholar] [CrossRef]
- Tanaka, A.; Kishino, M.; Oishi, T.; Doerffer, R.; Schiller, H. Application of the Neural Network Method to Case II Water. In Remote Sensing of Oceanand Sea Ice 2000, Proceedings of the Europto Remote Sensing Barcelona, Spain, 25–29 September 2000; SPIE: Bellingham, WA USA; Volume 4172. [CrossRef]
- Cao, Z.; Ma, R.; Pahlevan, N.; Liu, M.; Melack, J.; Duan, H.; Xue, K.; Shen, M. Evaluating and Optimizing VIIRS Retrievals of Chlorophyll-a and Suspended Particulate Matter in Turbid Lakes Using a Machine Learning Approach. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4211417. [Google Scholar] [CrossRef]
- Gao, M.; Franz, B.; Zhai, P.; Knobelspiesse, K.; Sayer, A.; Xu, X.; Martins, V.; Cairns, B.; Castellanos, P.; Fu, G.; et al. Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models. Atmos. Meas. Tech. 2023, 16, 5863–5881. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Binding, C.; Gurlin, D.; Li, L.; Bresciani, M.; Giardino, C. Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 253, 112200. [Google Scholar] [CrossRef]
- Smith, B.; Pahlevan, N.; Schalles, J.; Ruberg, S.; Errera, R.; Ma, R.; Giardino, C.; Bresciani, M.; Barbosa, C.; Moore, T.; et al. A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks. Front. Remote Sens. 2021, 1, 623678. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Alikas, K.; Anstee, J.; Barbosa, C.; Binding, C.; Bresciani, M.; Cremella Palmerini, B.; Giardino, C.; Gurlin, D.; et al. Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens. Environ. 2022, 270, 112860. [Google Scholar] [CrossRef]
- Saranathan, A.; Werther, M.; Balasubramanian, S.V.; Odermatt, D.; Pahlevan, N. Assessment of advanced neural networks for the dual estimation of water quality indicators and their uncertainties. Front. Remote Sens. 2024, 5, 1383147. [Google Scholar] [CrossRef]
- Gross-Colzy, L.S.; Frouin, R.J. Remote sensing of chlorophyll concentration from space via principal component analysis of atmospheric effects. In Proceedings of the Optical Science and Technology, SPIE’S 48th Annual Meeting, San Diego, CA, USA, 3–8 August 2003; pp. 112–123. [Google Scholar]
- Correa, K.; Machu, E.; Brajard, J.; Diouf, D.; Sall, S.M.; Demarcq, H. Adaptation of a Neuro-Variational Algorithm from SeaWiFS to MODIS-Aqua Sensor for the Determination of Atmospheric and Oceanic Variables. Remote Sens. 2023, 15, 3613. [Google Scholar] [CrossRef]
- Puissant, A.; El Hourany, R.; Charantonis, A.A.; Bowler, C.; Thiria, S. Inversion of Phytoplankton Pigment Vertical Profiles from Satellite Data Using Machine Learning. Remote Sens. 2021, 13, 1445. [Google Scholar] [CrossRef]
- Yala, K.; Niang, N.D.; Brajard, J.; Mejia, C.; Ouattara, M.; El Hourany, R.; Crépon, M.; Thiria, S. Estimation of phytoplankton pigments from ocean-color satellite observations in the Senegalo–Mauritanian region by using an advanced neural classifier. Ocean Sci. 2020, 16, 513–533. [Google Scholar] [CrossRef]
- El Hourany, R.; Abboud-Abi Saab, M.; Faour, G.; Mejia, C.; Crépon, M.; Thiria, S. Phytoplankton Diversity in the Mediterranean Sea From Satellite Data Using Self-Organizing Maps. J. Geophys. Res. Ocean. 2019, 124, 5827–5843. [Google Scholar] [CrossRef]
- El Hourany, R.; Abboud-Abi Saab, M.; Faour, G.; Aumont, O.; Crépon, M.; Thiria, S. Estimation of Secondary Phytoplankton Pigments From Satellite Observations Using Self-Organizing Maps (SOMs). J. Geophys. Res. Ocean. 2019, 124, 1357–1378. [Google Scholar] [CrossRef]
- Charantonis, A.A.; Badran, F.; Thiria, S. Retrieving the evolution of vertical profiles of Chlorophyll-a from satellite observations using Hidden Markov Models and Self-Organizing Topological Maps. Remote Sens. Environ. 2015, 163, 229–239. [Google Scholar] [CrossRef]
- Farikou, O.; Sawadogo, S.; Niang, A.; Diouf, D.; Brajard, J.; Mejia, C.; Dandonneau, Y.; Gasc, G.; Crépon, M.; Thiria, S. Inferring the seasonal evolution of phytoplankton groups in the Senegalo-Mauritanian upwelling region from satellite ocean-color spectral measurements. J. Geophys. Res. Ocean. 2015, 120, 6581–6601. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Zheng, G.; Stramski, D.; DiGiacomo, P.M. A model for partitioning the light absorption coefficient of natural waters into phytoplankton, nonalgal particulate, and colored dissolved organic components: A case study for the Chesapeake Bay. J. Geophys. Res. Ocean. 2015, 120, 2601–2621. [Google Scholar] [CrossRef]
- Chami, M.; Defoin-Platel, M. Sensitivity of the retrieval of the inherent optical properties of marine particles in coastal waters to the directional variations and the polarization of the reflectance. J. Geophys. Res. Ocean. 2007, 112, C05037. [Google Scholar] [CrossRef]
- Ibrahim, A.; Harmel, T.; Tonizzo, A.; Ioannou, I.; Gilerson, A.; Ahmed, S. Exploring the Relation Between Polarized Light Fields and Physical-Optical Characteristics of the Ocean for Remote Sensing Applications. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 21–25 August 2011; Volume 8160, p. 81600H. [Google Scholar]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Liu, H.; Li, Q.; Bai, Y.; Yang, C.; Wang, J.; Zhou, Q.; Hu, S.; Shi, T.; Liao, X.; Wu, G. Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods. Remote Sens. Environ. 2021, 256, 112316. [Google Scholar] [CrossRef]
- Liu, H.; Lin, L.; Wang, Y.; Du, L.; Wang, S.; Zhou, P.; Yu, Y.; Gong, X.; Lu, X. Reconstruction of Monthly Surface Nutrient Concentrations in the Yellow and Bohai Seas from 2003–2019 Using Machine Learning. Remote Sens. 2022, 14, 5021. [Google Scholar] [CrossRef]
- Sadaiappan, B.; Balakrishnan, P.; C.R., V.; Vijayan, N.T.; Subramanian, M.; Gauns, M.U. Applications of Machine Learning in Chemical and Biological Oceanography. ACS Omega 2023, 8, 15831–15853. [Google Scholar] [CrossRef]
- Stephens, M.P.; Samuels, G.; Olson, D.B.; Fine, R.A.; Takahashi, T. Sea-air flux of CO2 in the North Pacific using shipboard and satellite data. J. Geophys. Res. Ocean. 1995, 100, 13571–13583. [Google Scholar] [CrossRef]
- Sarma, V.V.S.S. Monthly variability in surface pCO2 and net air-sea CO2 flux in the Arabian Sea. J. Geophys. Res. Ocean. 2003, 108, 3255. [Google Scholar] [CrossRef]
- Jamet, C.; Moulin, C.; Lefèvre, N. Estimation of the oceanic pCO2 in the North Atlantic from VOS lines in-situ measurements: Parameters needed to generate seasonally mean maps. Ann. Geophys. 2007, 25, 2247–2257. [Google Scholar] [CrossRef]
- Ono Corresponding author, T.; Saino†, T.; Kurita, N.; Sasaki, K. Basin-scale extrapolation of shipboard pCO2 data by using satellite SST and Chla. Int. J. Remote Sens. 2004, 25, 3803–3815. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, Y.; He, X.; Yu, S.; Song, Z.; Gong, F.; Zhu, Q.; Pan, D. The carbon sink of the Coral Sea, the world’s second largest marginal sea, weakened during 2006–2018. Sci. Total Environ. 2023, 872, 162219. [Google Scholar] [CrossRef]
- Rödenbeck, C.; Bakker, D.C.; Gruber, N.; Iida, Y.; Jacobson, A.R.; Jones, S.; Landschützer, P.; Metzl, N.; Nakaoka, S.-I.; Olsen, A. Data-based estimates of the ocean carbon sink variability–first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences 2015, 12, 7251–7278. [Google Scholar] [CrossRef]
- Rödenbeck, C.; Bakker, D.C.E.; Metzl, N.; Olsen, A.; Sabine, C.; Cassar, N.; Reum, F.; Keeling, R.F.; Heimann, M. Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences 2014, 11, 4599–4613. [Google Scholar] [CrossRef]
- Lefèvre, N.; Watson, A.J.; Watson, A.R. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data. Tellus B Chem. Phys. Meteorol. 2005, 57, 375–384. [Google Scholar] [CrossRef]
- Telszewski, M.; Chazottes, A.; Schuster, U.; Watson, A.; Moulin, C.; Bakker, D.; González-Dávila, M.; Johannessen, T.; Körtzinger, A.; Lüger, H. Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Biogeosciences 2009, 6, 1405–1421. [Google Scholar] [CrossRef]
- Landschützer, P.; Gruber, N.; Bakker, D.C.; Schuster, U.; Nakaoka, S.-I.; Payne, M.R.; Sasse, T.P.; Zeng, J. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 2013, 10, 7793–7815. [Google Scholar] [CrossRef]
- Nakaoka, S.-i.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique. Biogeosciences 2013, 10, 6093–6106. [Google Scholar] [CrossRef]
- Zeng, J.; Nojiri, Y.; Landschützer, P.; Telszewski, M.; Nakaoka, S.-I. A global surface ocean f CO2 climatology based on a feed-forward neural network. J. Atmos. Ocean. Technol. 2014, 31, 1838–1849. [Google Scholar] [CrossRef]
- Chau, T.T.T.; Gehlen, M.; Chevallier, F. A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans. Biogeosciences 2022, 19, 1087–1109. [Google Scholar] [CrossRef]
- Landschützer, P.; Gruber, N.; Bakker, D.C.; Schuster, U. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 2014, 28, 927–949. [Google Scholar] [CrossRef]
- Hales, B.; Strutton, P.G.; Saraceno, M.; Letelier, R.; Takahashi, T.; Feely, R.; Sabine, C.; Chavez, F. Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific. Prog. Oceanogr. 2012, 103, 1–15. [Google Scholar] [CrossRef]
- Zeng, J.; Matsunaga, T.; Saigusa, N.; Shirai, T.; Nakaoka, S.-I.; Tan, Z.-H. Evaluation of three machine learning models for surface ocean CO2 mapping. Ocean Sci. 2017, 13, 303–313. [Google Scholar] [CrossRef]
- Zeng, J.; Nojiri, Y.; Nakaoka, S.i.; Nakajima, H.; Shirai, T. Surface ocean CO2 in 1990–2011 modelled using a feed-forward neural network. Geosci. Data J. 2015, 2, 47–51. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, P.; Hu, Y.; Zhang, Z.; Jamet, C.; Lu, X.; Dionisi, D.; Pan, D. Diurnal global ocean surface p CO2 and air-sea CO2 flux reconstructed from spaceborne LiDAR data. PNAS Nexus 2023, 3, pgad432. [Google Scholar] [CrossRef]
- Ćatipović, L.; Matić, F.; Kalinić, H. Reconstruction Methods in Oceanographic Satellite Data Observation—A Survey. J. Mar. Sci. Eng. 2023, 11, 340. [Google Scholar] [CrossRef]
- Sanikommu, S.; Langodan, S.; Dasari, H.P.; Zhan, P.; Krokos, G.; Abualnaja, Y.O.; Asfahani, K.; Hoteit, I. Making the Case for High-Resolution Regional Ocean Reanalyses: An Example with the Red Sea. Bull. Am. Meteorol. Soc. 2023, 104, E1241–E1264. [Google Scholar] [CrossRef]
- Meng, L.; Yan, X.-H. Remote Sensing for Subsurface and Deeper Oceans: An Overview and a Future Outlook. IEEE Geosci. Remote Sens. Mag. 2022, 10, 72–92. [Google Scholar] [CrossRef]
- Yang, M.; Khan, F.A.; Tian, H.; Liu, Q. Analysis of the Monthly and Spring-Neap Tidal Variability of Satellite Chlorophyll-a and Total Suspended Matter in a Turbid Coastal Ocean Using the DINEOF Method. Remote Sens. 2021, 13, 632. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Liu, L. Reconstruction of Three-Dimensional Ocean Structure From Sea Surface Data: An Application of isQG Method in the Southwest Indian Ocean. J. Geophys. Res. Ocean. 2020, 125, e2020JC016351. [Google Scholar] [CrossRef]
- Azcarate, A.; Barth, A.; Sirjacobs, D.; Lenartz, F.; Beckers, J.-M. Data Interpolating Empirical Orthogonal Functions (DINEOF): A tool for geophysical data analyses. Mediter. Mar. Sci. 2011, 12. [Google Scholar] [CrossRef]
- Siswanto, E.; Tanaka, K. Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends. Remote Sens. 2014, 6, 2718–2742. [Google Scholar] [CrossRef]
- Ganzedo, U.; Alvera-Azcarate, A.; Esnaola, G.; Ezcurra, A.; Saenz, J. Reconstruction of sea surface temperature by means of DINEOF: A case study during the fishing season in the Bay of Biscay. Int. J. Remote Sens. 2011, 32, 933–950. [Google Scholar] [CrossRef]
- Hong, T.; Qin, R.; Xu, Z. An Improved Data Interpolating Empirical Orthogonal Function Method for Data Reconstruction: A Case Study of the Chlorophyll-a Concentration in the Bohai Sea, China. Appl. Sci. 2024, 14, 2803. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Vanhellemont, Q.; Ruddick, K.; Barth, A.; Beckers, J.-M. Analysis of high frequency geostationary ocean colour data using DINEOF. Estuar. Coast. Shelf Sci. 2015, 159, 28–36. [Google Scholar] [CrossRef]
- Schneegans, S.; Straza, T.; Lewis, J.; Gluckman, P.; Amaradasa, R. UNESCO Science Report: The Race Against Time for Smarter Development; UNESCO: Paris, France, 2021. [Google Scholar]
- Cutolo, E.; Pascual, A.; Ruiz, S.; Zarokanellos, N.D.; Fablet, R. CLOINet: Ocean state reconstructions through remote-sensing, in-situ sparse observations and deep learning. Front. Mar. Sci. 2024, 11, 1151868. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, N.; Chen, L. Fusion SST from Infrared and Microwave Measurement of FY-3D Meteorological Satellite. J. Trop. Meteorol. 2024, 30, 89–96. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Ren, K.; Zhao, Y.; Deng, K.; Wang, L. A Spatial Downscaling Approach for WindSat Satellite Sea Surface Wind Based on Generative Adversarial Networks and Dual Learning Scheme. Remote Sens. 2022, 14, 769. [Google Scholar] [CrossRef]
- Mohebzadeh, H.; Mokari, E.; Daggupati, P.; Biswas, A. A machine learning approach for spatiotemporal imputation of MODIS chlorophyll-a. Int. J. Remote Sens. 2021, 42, 7381–7404. [Google Scholar] [CrossRef]
- Ouala, S.; Fablet, R.; Herzet, C.; Chapron, B.; Pascual, A.; Collard, F.; Gaultier, L. Neural Network Based Kalman Filters for the Spatio-Temporal Interpolation of Satellite-Derived Sea Surface Temperature. Remote Sens. 2018, 10, 1864. [Google Scholar] [CrossRef]
- Barth, A.; Alvera-Azcárate, A.; Troupin, C.; Beckers, J.M. DINCAE 2.0: Multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations. Geosci. Model Dev. 2021, 15, 2183–2196. [Google Scholar] [CrossRef]
- Hirahara, N.; Sonogashira, M.; Kasahara, H.; Iiyama, M. Denoising and Inpainting of Sea Surface Temperature Image with Adversarial Physical Model Loss. In Proceedings of the Asian Conference on Pattern Recognition, Auckland, New Zealand, 26–29 November 2019. [Google Scholar]
- Jouini, M.; Lévy, M.; Crépon, M.; Thiria, S. Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method. Remote Sens. Environ. 2013, 131, 232–246. [Google Scholar] [CrossRef]
- Ćatipović, L.; Matić, F.; Kalinić, H.; Sathyendranath, S.; Županović, T.; Dingle, J.; Jackson, T. CCGAN as a Tool for Satellite-Derived Chlorophyll a Concentration Gap Reconstruction. J. Mar. Sci. Eng. 2023, 11, 1814. [Google Scholar] [CrossRef]
- Archambault, T.; Filoche, A.; Charantonis, A.A.; Béréziat, D. Multimodal Unsupervised Spatio-Temporal Interpolation of Satellite Ocean Altimetry Maps. In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023), Lisbon, Portugal, 19–21 February 2023. [Google Scholar]
- Martinez, E.; Gorgues, T.; Lengaigne, M.; Sauzède, R.; Menkes, C.; Uitz, J.; Lorenzo, E.; Fablet, R. Reconstructing Global Chlorophyll-a Variations Using a Non-linear Statistical Approach. Front. Mar. Sci. 2020, 7, 464. [Google Scholar] [CrossRef]
- Roussillon, J.; Fablet, R.; Gorgues, T.; Drumetz, L.; Littaye, J.; Martinez, E. A Multi-Mode Convolutional Neural Network to reconstruct satellite-derived chlorophyll-a time series in the global ocean from physical drivers. Front. Mar. Sci. 2023, 10, 1077623. [Google Scholar] [CrossRef]
- Gray, P.C.; Boss, E.; Prochaska, X.; Kerner, H.; Demeaux, C.B.; Lehahn, Y. The Promise and Pitfalls of Machine Learning in Ocean Remote Sensing. Oceanography 2024, 37, 52–63. [Google Scholar] [CrossRef]
- Bracco, A.; Brajard, J.; Dijkstra, H.; Hassanzadeh, P.; Lessig, C.; Monteleoni, C. Machine learning for the physics of climate. Nat. Rev. Phys. 2024, 7, 6–20. [Google Scholar] [CrossRef]
- Stock, A. Spatiotemporal distribution of labeled data can bias the validation and selection of supervised learning algorithms: A marine remote sensing example. ISPRS J. Photogramm. Remote Sens. 2022, 187, 46–60. [Google Scholar] [CrossRef]
- Stock, A.; Subramaniam, A. Iterative spatial leave-one-out cross-validation and gap-filling based data augmentation for supervised learning applications in marine remote sensing. GISci. Remote Sens. 2022, 59, 1281–1300. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Ndung’u, R.N. Data Preparation for Machine Learning Modelling. Int. J. Comput. Appl. Technol. Res. 2022, 11, 231–235. [Google Scholar]
- Vyas, T.K. Deep Learning with Tabular Data: A Self-supervised Approach. arXiv 2024, arXiv:2401.15238. [Google Scholar]
- Read, J.S.; Jia, X.; Willard, J.; Appling, A.P.; Zwart, J.A.; Oliver, S.K.; Karpatne, A.; Hansen, G.J.; Hanson, P.C.; Watkins, W. Process-guided deep learning predictions of lake water temperature. Water Resour. Res. 2019, 55, 9173–9190. [Google Scholar] [CrossRef]
- Sadler, J.M.; Koenig, L.E.; Gorski, G.; Carter, A.M.; Hall, R.O., Jr. Evaluating a process-guided deep learning approach for predicting dissolved oxygen in streams. Hydrol. Process. 2024, 38, e15270. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, R.J.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Cipollini, P.; Couto, A.B.; Dingle, J.; Doerffer, R. An ocean-colour time series for use in climate studies: The experience of the ocean-colour climate change initiative (OC-CCI). Sensors 2019, 19, 4285. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, B.; Mueller, D.; Doerffer, R.; Krasemann, H.; Mélin, F.; Brockmann, C.; Fomferra, N.; Peters, M.; Grant, M. Ocean colour climate change initiative—Approach and initial results. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2024–2027. [Google Scholar]
- Osman, A.I.; Nasr, M.; Farghali, M.; Bakr, S.S.; Eltaweil, A.S.; Rashwan, A.K.; Abd El-Monaem, E.M. Machine learning for membrane design in energy production, gas separation, and water treatment: A review. Environ. Chem. Lett. 2024, 22, 505–560. [Google Scholar] [CrossRef]
- Durlik, I.; Miller, T.; Dorobczyński, L.; Kozlovska, P.; Kostecki, T. Revolutionizing Marine Traffic Management: A Comprehensive Review of Machine Learning Applications in Complex Maritime Systems. Appl. Sci. 2023, 13, 8099. [Google Scholar] [CrossRef]
- Kulkarni, M.; Deshpande, P.; Nalbalwar, S.; Nandgaonkar, A. Cloud computing based workload prediction using cluster machine learning approach. In Proceedings of the International Conference on Computing in Engineering & Technology, Lonere, India, 12–13 February 2022; pp. 591–601. [Google Scholar]
- Chen, F.; Li, S.; Han, J.; Ren, F.; Yang, Z. Review of lightweight deep convolutional neural networks. Arch. Comput. Methods Eng. 2024, 31, 1915–1937. [Google Scholar] [CrossRef]
- Suganya, B.; Gopi, R.; Kumar, A.R.; Singh, G. Dynamic task offloading edge-aware optimization framework for enhanced UAV operations on edge computing platform. Sci. Rep. 2024, 14, 16383. [Google Scholar] [CrossRef]
- Cheng, C.; Hou, X.; Wang, C.; Wen, X.; Liu, W.; Zhang, F. A Pruning and Distillation Based Compression Method for Sonar Image Detection Models. J. Mar. Sci. Eng. 2024, 12, 1033. [Google Scholar] [CrossRef]
- Dramsch, J.S.; Kuglitsch, M.M.; Fernández-Torres, M.-Á.; Toreti, A.; Albayrak, R.A.; Nava, L.; Ghaffarian, S.; Cheng, X.; Ma, J.; Samek, W.; et al. Explainability can foster trust in artificial intelligence in geoscience. Nat. Geosci. 2025, 18, 112–114. [Google Scholar] [CrossRef]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Farea, A.; Yli-Harja, O.; Emmert-Streib, F. Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges. AI 2024, 5, 1534–1557. [Google Scholar] [CrossRef]
- Hojjati, H.; Ho, T.K.K.; Armanfard, N. Self-supervised anomaly detection in computer vision and beyond: A survey and outlook. Neural Netw. 2024, 172, 106106. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.R.; Kumar, A.; Ramaswamy, L.; Boddula, V.K.; Das, M.C.; Page, B.P.; Weber, S.J. CyanoTRACKER: A cloud-based integrated multi-platform architecture for global observation of cyanobacterial harmful algal blooms. Harmful Algae 2020, 96, 101828. [Google Scholar] [CrossRef]
- Sunagawa, S.; Acinas, S.G.; Bork, P.; Bowler, C.; Acinas, S.G.; Babin, M.; Bork, P.; Boss, E.; Bowler, C.; Cochrane, G.; et al. Tara Oceans: Towards global ocean ecosystems biology. Nat. Rev. Microbiol. 2020, 18, 428–445. [Google Scholar] [CrossRef] [PubMed]
- Pesant, S.; Not, F.; Picheral, M.; Kandels-Lewis, S.; Le Bescot, N.; Gorsky, G.; Iudicone, D.; Karsenti, E.; Speich, S.; Troublé, R.; et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2015, 2, 150023. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.P.S.; Wijffels, S.E.; Riser, S.C.; Pouliquen, S.; Hosoda, S.; Roemmich, D.; Gilson, J.; Johnson, G.C.; Martini, K.; Murphy, D.J.; et al. Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations from a Global Array of Profiling Floats. Front. Mar. Sci. 2020, 7, 700. [Google Scholar] [CrossRef]
- Johnson, K.; Claustre, H. Bringing biogeochemistry into the Argo age. Eos Trans. Am. Geophys. Union 2016, 97. [Google Scholar] [CrossRef]
- Fredston, A.L.; Lowndes, J.S.S. Welcoming More Participation in Open Data Science for the Oceans. Annu. Rev. Mar. Sci. 2024, 16, 537–549. [Google Scholar] [CrossRef]
- Shaw, S.; Sales, A. Using the Open Science Framework to promote Open Science in Education Research. In Proceedings of the Educational Data Mining, Durham, UK, 24–27 July 2022. [Google Scholar]
- Kong, Q.; Wang, R.; Walter, W.R.; Pyle, M.; Koper, K.; Schmandt, B. Combining Deep Learning with Physics Based Features in Explosion-Earthquake Discrimination. Geophys. Res. Lett. 2022, 49, e2022GL098645. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics–Informed Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Lee, H.; Kim, N.-W.; Lee, J.-G.; Lee, B.-T. Uncertainty-aware deep learning forecast using dropout-based ensemble method. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 16–18 October 2019; pp. 1120–1125. [Google Scholar]
- Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
Keywords | Occurrences | Keywords | Occurrences | Keywords | Occurrences |
---|---|---|---|---|---|
remote sensing | 104 | meris | 8 | chlorophyll-a (chl-a) | 5 |
ocean color | 69 | algorithm development | 7 | classification | 5 |
machine learning | 60 | artificial neural network | 7 | feature extraction | 5 |
neural network | 36 | cdom | 7 | inland and coastal waters | 5 |
atmospheric correction | 25 | chlorophyll-a concentration | 7 | normalized fluorescence height | 5 |
chlorophyll-a | 24 | ocean color | 7 | radiative transfer | 5 |
neural networks | 23 | random forest | 7 | arctic ocean | 4 |
water quality | 22 | satellite | 7 | artificial intelligence | 4 |
deep learning | 21 | satellites | 7 | Barents sea | 4 |
modis | 21 | seawifs | 7 | coastal water | 4 |
ocean color remote sensing | 20 | aerosols | 6 | geostationary ocean color imager (goci) | 4 |
phytoplankton | 17 | Baltic sea | 6 | hyperspectral | 4 |
chlorophyll | 14 | inherent optical properties | 6 | image color analysis | 4 |
remote sensing reflectance | 11 | karenia brevis | 6 | inland waters | 4 |
coastal waters | 10 | oceans | 6 | inversion | 4 |
harmful algal blooms | 10 | satellite remote sensing | 6 | machine learning algorithm | 4 |
olci | 9 | sea measurements | 6 | new Caledonia | 4 |
sentinel-3 | 9 | viirs | 6 | ocean color remote sensing reflectance | 4 |
chlorophyll a | 8 | west Florida shelf | 6 | ocean color remote sensing | 4 |
goci | 8 | algorithm | 5 | ocean optics | 4 |
Research Focus | Model Performance | ||
---|---|---|---|
(Gross et al., 1999) [68] | NN inversion for chlorophyll-a retrieval from satellite reflectances. | ANN achieved ±3% accuracy compared to 15–30% error in polynomial fits. | Used SeaWiFS simulated data. |
(Gross et al., 2004) [69] | NN to retrieve chlorophyll-a from marine reflectance in the Western Equatorial Pacific Ocean. | Improved performance by 75% compared to classical algorithms using reflectance ratios. | Model calibrated with synthetic and in situ data. |
(Jamet et al., 2012) [70] | NN to estimate Kd from SeaWiFS data. | ANN method has RMSE of 0.27 m−1 for Kd(490), significantly better than traditional methods: Kd(Werdell) RMSE = 1.41 m−1, Kd(Zhang) RMSE = 0.71 m−1, Kd(Morel) RMSE = 1.56 m−1. | Model trained with synthetic data and in situ data and evaluated with field measurement data. |
(Ioannou et al., 2013) [71] | NN for retrieving IOP and Chl from MODIS Rrs. | NN algorithms improve chlorophyll retrieval with R2 of ~0.90, compared to OC3 (~0.84). | Used both simulated and field data. |
(Fan et al., 2017) [24] | Atmospheric correction using NN for coastal waters. | NN algorithm reduced the Average Percentage Difference (APD) in AOD retrievals by up to 25% in the blue bands (412 nm and 443 nm) compared to SeaDAS NIR and NIR/SWIR algorithms. | Model trained with synthetic data and in situ data and evaluated with field measurement data. |
(Cao et al., 2020) [60] | XGBoost to estimate Chl-a in turbid inland lakes using Landsat-8 data. | BST performed well with MAPD = 24% compared to RF (MAPD = 30%) and band-ratio algorithms (MAPD = 64%). | Field data from 8 lakes in eastern China (N = 225) and SeaWiFS Bio-optical Archive (N = 97). |
(Li et al., 2020) [72] | NN for atmospheric correction of GOCI data at high solar zenith angles. | The NN AC algorithm yielded stable Rrs even at solar zenith angles ≥70° (APD = 30%), outperforming traditional NIR algorithms (APD = 87%). | Model trained with GOCI Rayleigh-corrected radiance and noontime Rrs matchups and evaluated with in situ data from AERONET-. |
(Pahlevan et al., 2020) [73] | MDN for estimating Chl-a from Sentinel-2 MSI and Sentinel-3 OLCI data in inland and coastal waters. | MDN outperformed OC algorithms (MAPE was improved by 2–3 times). | Model trained with 1000 co-located in situ Rrs–Chla pairs and evaluated with independent in situ data (n > 1900) from multiple regions, including lakes, rivers, and estuaries. |
(Zhao et al., 2023) [74] | ANN for HY-1C CZI atmospheric correction. | APD was reduced to 9.78% on average compared to ACAOD’s 105.48%. | Model trained with HY-1C CZI and Landsat 8 OLI spatio-temporally synchronized datasets and evaluated with in situ data and quasi-synchronous Landsat 8 Rrs data. |
(He et al., 2024) [18] | XGBoost for polarization atmospheric correction. | MAPE of Rrs(490) was reduced to 34.43 compared to GlobColour products (MAPE > 60%). | Model trained with simulated data and evaluated with field measurement data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Chen, P.; Zhang, S.; Huang, H.; Pan, Y.; Pan, D. A Review of Machine Learning Applications in Ocean Color Remote Sensing. Remote Sens. 2025, 17, 1776. https://doi.org/10.3390/rs17101776
Zhang Z, Chen P, Zhang S, Huang H, Pan Y, Pan D. A Review of Machine Learning Applications in Ocean Color Remote Sensing. Remote Sensing. 2025; 17(10):1776. https://doi.org/10.3390/rs17101776
Chicago/Turabian StyleZhang, Zhenhua, Peng Chen, Siqi Zhang, Haiqing Huang, Yuliang Pan, and Delu Pan. 2025. "A Review of Machine Learning Applications in Ocean Color Remote Sensing" Remote Sensing 17, no. 10: 1776. https://doi.org/10.3390/rs17101776
APA StyleZhang, Z., Chen, P., Zhang, S., Huang, H., Pan, Y., & Pan, D. (2025). A Review of Machine Learning Applications in Ocean Color Remote Sensing. Remote Sensing, 17(10), 1776. https://doi.org/10.3390/rs17101776