Prediction of Sea Surface Chlorophyll-a Concentrations by Remote Sensing and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Data
2.2. Methods
2.2.1. ConvLSTM Neural Network
2.2.2. Structure of the Chlorophyll-a Concentration Prediction Model
2.2.3. Methodology and Process
2.2.4. Data Preprocessing
2.2.5. Evaluation Indicators
3. Results
3.1. Spatiotemporal Evaluation of the Chl-a Prediction Model
3.2. Analysis of the Prediction Performance at Different Step Lengths
4. Discussion
4.1. Advantages and Contributions of the Models
4.1.1. Limitations and Drawbacks of Existing Models
4.1.2. Role of Periodic Characteristics and Spatial Denoising in Chl-a Prediction
4.2. Generalizability and Limitations of the Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.J.; Matrai, P.A.; Friedrichs, M.A.M.; Saba, V.S.; Antoine, D.; Ardyna, M.; Asanuma, I.; Babin, M.; Bélanger, S.; Benoît-Gagné, M.; et al. An Assessment of Phytoplankton Primary Productivity in the Arctic Ocean from Satellite Ocean Color/in Situ Chlorophyll- a Based Models. JGR Oceans 2015, 120, 6508–6541. [Google Scholar] [CrossRef]
- Wu, J.; Goes, J.I.; Do Rosario Gomes, H.; Lee, Z.; Noh, J.-H.; Wei, J.; Shang, Z.; Salisbury, J.; Mannino, A.; Kim, W.; et al. Estimates of Diurnal and Daily Net Primary Productivity Using the Geostationary Ocean Color Imager (GOCI) Data. Remote Sens. Environ. 2022, 280, 113183. [Google Scholar] [CrossRef]
- Sharada, M.K.; Yajnik, K.S. Seasonal Variation of Chlorophyll and Primary Productivity in Central Arabian Sea: A Macrocalibrated Upper Ocean Ecosystem Model. Proc. Indian Acad. Sci. (Earth Planet Sci.) 1997, 106, 33–42. [Google Scholar] [CrossRef]
- Iriarte, J.L.; González, H.E.; Liu, K.K.; Rivas, C.; Valenzuela, C. Spatial and Temporal Variability of Chlorophyll and Primary Productivity in Surface Waters of Southern Chile (41.5–43° S). Estuar. Coast. Shelf Sci. 2007, 74, 471–480. [Google Scholar] [CrossRef]
- Hao, Y.; Tang, D.; Yu, L.; Xing, Q. Nutrient and Chlorophyll a Anomaly in Red-Tide Periods of 2003–2008 in Sishili Bay, China. Chin. J. Ocean. Limnol. 2011, 29, 664–673. [Google Scholar] [CrossRef]
- Yu, P.; Gao, R.; Zhang, D.; Liu, Z.-P. Predicting Coastal Algal Blooms with Environmental Factors by Machine Learning Methods. Ecol. Indic. 2021, 123, 107334. [Google Scholar] [CrossRef]
- Liu, R.; Xiao, Y.; Ma, Y.; Cui, T.; An, J. Red Tide Detection Based on High Spatial Resolution Broad Band Optical Satellite Data. ISPRS J. Photogramm. Remote Sens. 2022, 184, 131–147. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Hickman, A.E.; Jahn, O.; Henson, S.; Beaulieu, C.; Monier, E. Ocean Colour Signature of Climate Change. Nat. Commun. 2019, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Ren, S.; Xie, B.; Zhang, S.; Lu, J.; Fu, G. Interaction between Sea Surface Chlorophyll a and Seawater Indicators in the Sea Ranching Area: A Case Study in Haizhou Bay. Reg. Stud. Mar. Sci. 2022, 56, 102687. [Google Scholar] [CrossRef]
- Park, T.G.; Lim, W.A.; Park, Y.T.; Lee, C.K.; Jeong, H.J. Economic Impact, Management and Mitigation of Red Tides in Korea. Harmful Algae 2013, 30, S131–S143. [Google Scholar] [CrossRef]
- Hamilton, D.P.; Schladow, S.G. Prediction of Water Quality in Lakes and Reservoirs. Part I—Model Description. Ecol. Model. 1997, 96, 91–110. [Google Scholar] [CrossRef]
- Los, F.J.; Villars, M.T.; Van Der Tol, M.W.M. A 3-Dimensional Primary Production Model (BLOOM/GEM) and Its Applications to the (Southern) North Sea (Coupled Physical–Chemical–Ecological Model). J. Mar. Syst. 2008, 74, 259–294. [Google Scholar] [CrossRef]
- Allen, M.; Frame, D.; Kettleborough, J.; Stainforth, D. Model Error in Weather and Climate Forecasting. In Predictability of Weather and Climate; Palmer, T., Hagedorn, R., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 391–427. ISBN 978-0-521-84882-4. [Google Scholar]
- Li, H.; Li, X.; Song, D.; Nie, J.; Liang, S. Prediction on Daily Spatial Distribution of Chlorophyll-a in Coastal Seas Using a Synthetic Method of Remote Sensing, Machine Learning and Numerical Modeling. Sci. Total Environ. 2024, 910, 168642. [Google Scholar] [CrossRef]
- Uddameri, V.; Silva, A.; Singaraju, S.; Mohammadi, G.; Hernandez, E. Tree-Based Modeling Methods to Predict Nitrate Exceedances in the Ogallala Aquifer in Texas. Water 2020, 12, 1023. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D. Improved Prediction of Harmful Algal Blooms in Four Major South Korea’s Rivers Using Deep Learning Models. Int. J. Environ. Res. Public Health 2018, 15, 1322. [Google Scholar] [CrossRef]
- Bourel, M.; Crisci, C.; Martínez, A. Consensus Methods Based on Machine Learning Techniques for Marine Phytoplankton Presence–Absence Prediction. Ecol. Inform. 2017, 42, 46–54. [Google Scholar] [CrossRef]
- Mamun, M.; Kim, J.-J.; Alam, M.A.; An, K.-G. Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches. Water 2019, 12, 30. [Google Scholar] [CrossRef]
- Kruk, M. Prediction of Environmental Factors Responsible for Chlorophyll A-Induced Hypereutrophy Using Explainable Machine Learning. Ecol. Inform. 2023, 75, 102005. [Google Scholar] [CrossRef]
- Tian, W.; Liao, Z.; Zhang, J. An Optimization of Artificial Neural Network Model for Predicting Chlorophyll Dynamics. Ecol. Model. 2017, 364, 42–52. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C. Spatial-Temporal Process Simulation and Prediction of Chlorophyll-a Concentration in Dianchi Lake Based on Wavelet Analysis and Long-Short Term Memory Network. J. Hydrol. 2020, 582, 124488. [Google Scholar] [CrossRef]
- Waqas, M.; Humphries, U.W. A Critical Review of RNN and LSTM Variants in Hydrological Time Series Predictions. MethodsX 2024, 13, 102946. [Google Scholar] [CrossRef]
- Karevan, Z.; Suykens, J.A.K. Transductive LSTM for Time-Series Prediction: An Application to Weather Forecasting. Neural Netw. 2020, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote Chlorophyll-a Retrieval in Turbid, Productive Estuaries: Chesapeake Bay Case Study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Shen, F.; Tang, R.; Sun, X.; Liu, D. Simple Methods for Satellite Identification of Algal Blooms and Species Using 10-Year Time Series Data from the East China Sea. Remote Sens. Environ. 2019, 235, 111484. [Google Scholar] [CrossRef]
- Indolia, S.; Goswami, A.K.; Mishra, S.P.; Asopa, P. Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Comput. Sci. 2018, 132, 679–688. [Google Scholar] [CrossRef]
- Liu, R.; Cui, B.; Dong, W.; Fang, X.; Xiao, Y.; Zhao, X.; Cui, T.; Ma, Y.; Wang, Q. A Refined Deep-Learning-Based Algorithm for Harmful-Algal-Bloom Remote-Sensing Recognition Using Noctiluca Scintillans Algal Bloom as an Example. J. Hazard. Mater. 2024, 467, 133721. [Google Scholar] [CrossRef]
- Na, L.; Shaoyang, C.; Zhenyan, C.; Xing, W.; Yun, X.; Li, X.; Yanwei, G.; Tingting, W.; Xuefeng, Z.; Siqi, L. Long-Term Prediction of Sea Surface Chlorophyll-a Concentration Based on the Combination of Spatio-Temporal Features. Water Res. 2022, 211, 118040. [Google Scholar] [CrossRef]
- Yao, L.; Wang, X.; Zhang, J.; Yu, X.; Zhang, S.; Li, Q. Prediction of Sea Surface Chlorophyll-a Concentrations Based on Deep Learning and Time-Series Remote Sensing Data. Remote Sens. 2023, 15, 4486. [Google Scholar] [CrossRef]
- Ye, M.; Li, B.; Nie, J.; Wen, Q.; Wei, Z.; Yang, L.-L. Graph Convolutional Network-Assisted SST and Chl-a Prediction With Multicharacteristics Modeling of Spatio-Temporal Evolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4209214. [Google Scholar] [CrossRef]
- Chen, J.; Ma, T.; Xiao, C. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. arXiv 2018, arXiv:1801.10247. [Google Scholar]
- Liu, X.; Xiao, W.; Landry, M.R.; Chiang, K.-P.; Wang, L.; Huang, B. Responses of Phytoplankton Communities to Environmental Variability in the East China Sea. Ecosystems 2016, 19, 832–849. [Google Scholar] [CrossRef]
- Kim, D.; Shim, J.; Yoo, S. Seasonal Variations in Nutrients and Chlorophyll-a Concentrations in the Northern East China Sea. Ocean Sci. J. 2006, 41, 125–137. [Google Scholar] [CrossRef]
- Jiang, Q.; He, J.; Wu, J.; Hu, X.; Ye, G.; Christakos, G. Assessing the Severe Eutrophication Status and Spatial Trend in the Coastal Waters of Zhejiang Province (China). Limnol. Oceanogr. 2019, 64, 3–17. [Google Scholar] [CrossRef]
- Guo, S.; Feng, Y.; Wang, L.; Dai, M.; Liu, Z.; Bai, Y.; Sun, J. Seasonal Variation in the Phytoplankton Community of a Continental-Shelf Sea: The East China Sea. Mar. Ecol. Prog. Ser. 2014, 516, 103–126. [Google Scholar] [CrossRef]
- Gong, G.-C.; Wen, Y.-H.; Wang, B.-W.; Liu, G.-J. Seasonal Variation of Chlorophyll a Concentration, Primary Production and Environmental Conditions in the Subtropical East China Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 1219–1236. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiao, X.; Wang, F.; Xing, L.; Wang, Z.; Zhang, H.; Xiang, R.; Zhou, L.; Zhao, M. Spatiotemporal Temperature Variations in the East China Sea Shelf during the Holocene in Response to Surface Circulation Evolution. Quat. Int. 2018, 482, 46–55. [Google Scholar] [CrossRef]
- Wang, X.H.; Cho, Y.-K.; Guo, X.; Wu, C.-R.; Zhou, J. The Status of Coastal Oceanography in Heavily Impacted Yellow and East China Sea: Past Trends, Progress, and Possible Futures. Estuar. Coast. Shelf Sci. 2015, 163, 235–243. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, P.; Zheng, G.; Wang, D.; Yang, J.; Li, X.; Luo, D. Fine Spatio-Temporal Prediction of Fishing Time Using Big Data. Front. Mar. Sci. 2024, 11, 1421188. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, W.; Wei, W. Effect of Sea Surface Temperature and Precipitation on Annual Frequency of Harmful Algal Blooms in the East China Sea over the Past Decades. Environ. Pollut. 2021, 270, 116224. [Google Scholar] [CrossRef]
- Lou, X.; Hu, C. Diurnal Changes of a Harmful Algal Bloom in the East China Sea: Observations from GOCI. Remote Sens. Environ. 2014, 140, 562–572. [Google Scholar] [CrossRef]
- Peng, D.; Yang, Q.; Yang, H.-J.; Liu, H.; Zhu, Y.; Mu, Y. Analysis on the Relationship between Fisheries Economic Growth and Marine Environmental Pollution in China’s Coastal Regions. Sci. Total Environ. 2020, 713, 136641. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 1. [Google Scholar]
- Kim, S.; Hong, S.; Joh, M.; Song, S. DeepRain: ConvLSTM Network for Precipitation Prediction Using Multichannel Radar Data. arXiv 2017, arXiv:1711.02316. [Google Scholar]
- Desai, P.; Sujatha, C.; Chakraborty, S.; Ansuman, S.; Bhandari, S.; Kardiguddi, S. Next Frame Prediction Using ConvLSTM. J. Phys. Conf. Ser. 2022, 2161, 012024. [Google Scholar] [CrossRef]
- Ahmad, R.; Yang, B.; Ettlin, G.; Berger, A.; Rodríguez-Bocca, P. A Machine-learning Based ConvLSTM Architecture for NDVI Forecasting. Int. Trans. Oper. Res. 2023, 30, 2025–2048. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, H. Spatiotemporal Distribution of Chlorophyll-a Concentration in the South China Sea and Its Possible Environmental Regulation Mechanisms. Mar. Environ. Res. 2025, 204, 106902. [Google Scholar] [CrossRef]
- Hilborn, A.; Costa, M. Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region. Remote Sens. 2018, 10, 1449. [Google Scholar] [CrossRef]
- Cen, H.; Jiang, J.; Han, G.; Lin, X.; Liu, Y.; Jia, X.; Ji, Q.; Li, B. Applying Deep Learning in the Prediction of Chlorophyll-a in the East China Sea. Remote Sens. 2022, 14, 5461. [Google Scholar] [CrossRef]
- Zhai, F.; Wu, W.; Gu, Y.; Li, P.; Song, X.; Liu, P.; Liu, Z.; Chen, Y.; He, J. Interannual-Decadal Variation in Satellite-Derived Surface Chlorophyll-a Concentration in the Bohai Sea over the Past 16 Years. J. Mar. Syst. 2021, 215, 103496. [Google Scholar] [CrossRef]
Model | Metric | 1-Step | 3-Step | 6-Step |
---|---|---|---|---|
LSTM | RMSE (mg·m−3) | 1.120 | 1.267 | 1.279 |
MAE (mg·m−3) | 0.416 | 0.477 | 0.486 | |
MAPE (%) | 0.730 | 0.935 | 0.925 | |
CNN-LSTM | RMSE (mg·m−3) | 1.754 | 1.752 | 1.740 |
MAE (mg·m−3) | 0.612 | 0.611 | 0.614 | |
MAPE (%) | 1.191 | 1.203 | 1.225 | |
RSTFE | RMSE (mg·m−3) | 1.789 | 1.901 | 1.916 |
MAE (mg·m−3) | 0.449 | 0.550 | 0.590 | |
MAPE (%) | 0.615 | 0.859 | 0.978 | |
RSTFE+PFE | RMSE (mg·m−3) | 0.893 | 1.021 | 1.045 |
MAE (mg·m−3) | 0.307 | 0.301 | 0.278 | |
MAPE (%) | 0.343 | 0.445 | 0.517 | |
ChlaPM | RMSE (mg·m−3) | 0.826 | 0.883 | 0.963 |
MAE (mg·m−3) | 0.250 | 0.272 | 0.303 | |
MAPE (%) | 0.368 | 0.455 | 0.487 |
Model | RMSE (mg·m−3) | MAE (mg·m−3) | MAPE (%) |
---|---|---|---|
RSTFE | 1.187 | 0.349 | 1.378 |
RSTFE+PFE | 0.717 | 0.194 | 0.915 |
ChlaPM | 0.604 | 0.185 | 0.412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Q.; Pan, D.; Wang, D.; He, X.; Gong, F.; Tian, Q. Prediction of Sea Surface Chlorophyll-a Concentrations by Remote Sensing and Deep Learning. Remote Sens. 2025, 17, 1755. https://doi.org/10.3390/rs17101755
Ruan Q, Pan D, Wang D, He X, Gong F, Tian Q. Prediction of Sea Surface Chlorophyll-a Concentrations by Remote Sensing and Deep Learning. Remote Sensing. 2025; 17(10):1755. https://doi.org/10.3390/rs17101755
Chicago/Turabian StyleRuan, Qingfeng, Delu Pan, Difeng Wang, Xianqiang He, Fang Gong, and Qingjiu Tian. 2025. "Prediction of Sea Surface Chlorophyll-a Concentrations by Remote Sensing and Deep Learning" Remote Sensing 17, no. 10: 1755. https://doi.org/10.3390/rs17101755
APA StyleRuan, Q., Pan, D., Wang, D., He, X., Gong, F., & Tian, Q. (2025). Prediction of Sea Surface Chlorophyll-a Concentrations by Remote Sensing and Deep Learning. Remote Sensing, 17(10), 1755. https://doi.org/10.3390/rs17101755