An Explainable Machine Learning Model for Predicting Macroseismic Intensity for Emergency Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Methods
2.2.1. Predictive Machine Learning Framework and XGBoost Model
2.2.2. SHAP Method: Explaining ML Model Predictions
3. Results
3.1. Model Performance
3.2. SHAP Analysis: Model Explanation
3.2.1. Global Analysis: Feature Ranking Across the Entire Dataset (Figure 4)
3.2.2. Local Analysis: Insights from the 30 October 2016 Earthquake (Figure 5)
3.2.3. Synthesizing Global and Local Perspectives: The SHAP Heatmap (Figure 6 and Table 5)
Importance Ranking | Light Damage I_MCS 6.5–7.0 | Moderate Damage I_MCS 7.5–8.0 | Severe Damage I_MCS 8.5–11 |
---|---|---|---|
1 | Log_Max_ia | Log_Max_ia | Log_Max_ia |
2 | Log_Max_T2_000 | Log_Max_T2_000 | Log_Max_T2_000 |
3 | Log_Max_T0_600 | Log_Max_T0_400 | vs30_loc |
4 | Log_Max_PGA | Log_Max_T0_600 | Log_Max_T0_600 |
5 | Log_Max_T0_150 | vs30_loc | Log_Max_T0_400 |
6 | Log_Max_T0_400 | Log_Max_PGA | slope_loc |
7 | slope_loc | Log_Max_T0_150 | Log_Max_PGV |
8 | Log_Max_PGV | slope_loc | Log_Max_PGA |
9 | vs30_loc | Log_Max_PGV | Log_Max_T0_150 |
4. Discussion
- 2.0 s spectral period remains a stable driver across all damage levels, reflecting deep-seated impedance contrasts that regulate seismic motion amplification at regional scales.
- intermediate periods (0.4 s–0.6 s) capture the transition to velocity-based damage mechanics, marking the shift between acceleration-sensitive and deformation-driven effects.
- Short-period (0.15 s) spectral accelerations and PGA govern light to moderate structural damage, where acceleration-driven forces dominate the response.
5. Conclusions
- Expanding the macroseismic dataset to enhance the model’s ability to generalize across a wider range of seismic contexts.
- Incorporating building vulnerability metrics, such as construction type, age, and material, to better account for structural differences in damage response.
- Integrating physical seismological metrics, including magnitude, fault distance, and other relevant factors, to improve the accuracy and robustness of damage prediction.
- Macroseismic intensity prediction model for assessing direct earthquake damage to buildings and infrastructure.
- Landslide and liquefaction predictive models, calibrated with ground motion parameters and geospatial predictors.
- Network-based impact assessments, considering disruptions to transportation and emergency response logistics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
I_MCS | Macroseismic Intensity |
EMS-98 | European Macroseismic Scale 1998 |
GMP | Ground Motion Parameter |
PGA | Peak Ground Acceleration |
PGV | Peak Ground Velocity |
IA | Arias Intensity |
Vs30 | Time-averaged shear wave velocity over the top 30 m of soil |
GMICE | Ground Motion to Intensity Conversion Equations |
DBMI15 | Database Macrosismico Italiano 2015 |
CPTI15 | Catalogo Parametrico dei Terremoti Italiani 2015 |
ITACA | Italian Accelerometric Archive |
SHAP | Shapley Additive Explanations |
XGBoost | eXtreme Gradient Boosting |
LightGBM | Light Gradient Boosting Machine |
CatBoost | Categorical Boosting |
ML | Machine Learning |
RMSE | Root Mean Square Error |
R2 | Coefficient of Determination |
AutoML | Automated Machine Learning |
INGe | Intensity-ground Motion Dataset for Italy |
MLJAR | Machine Learning Jar (AutoML Platform) |
σr | Standard Deviation |
T0_150, T0_400, T0_600, T2_000 | Spectral acceleration periods (0.15 s, 0.4 s, 0.6 s, 2 s) |
DEM | Digital Elevation Model |
MERIT | Multi-Error-Removed Improved-Terrain DEM |
References
- Cito, P.; Chioccarelli, E.; Iervolino, I. Macroseismic intensity hazard maps for Italy based on a recent grid source model. Bull. Earthq. Eng. 2022, 20, 2245–2258. [Google Scholar] [CrossRef]
- Galli, P.; Bosi, V.; Piscitelli, S.; Giocoli, A.; Scionti, V. Late Holocene earthquakes in southern Apennine: Paleoseismology of the Caggiano fault. Int. J. Earth Sci. 2006, 95, 855–870. [Google Scholar] [CrossRef]
- Galli, P.; Molin, D. Il Terremoto del 1905 Della Calabria Meridionale. Studio Analitico Degli Effetti ed Ipotesi Sismogenetiche; IlMioLibro: Perugia, Italy, 2007; 124p, Available online: https://emidius.mi.ingv.it/ASMI/study/GALMO007 (accessed on 18 February 2025).
- Faenza, L.; Michelini, A. Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap. Geophys. J. Int. 2010, 180, 1138–1152. [Google Scholar] [CrossRef]
- Rotondi, R.; Varini, E.; Brambilla, C. Probabilistic modelling of macroseismic attenuation and forecast of damage scenarios. Bull. Earthq. Eng. 2016, 14, 1777–1796. [Google Scholar] [CrossRef]
- Rossi, A.; Tertulliani, A.; Azzaro, R.; Graziani, L.; Rovida, A.; Maramai, A.; Pessina, V.; Hailemikael, S.; Buffarini, G.; Bernardini, F.; et al. The 2016–2017 earthquake sequence in Central Italy: Macroseismic survey and damage scenario through the EMS-98 intensity assessment. Bull. Earthq. Eng. 2019, 17, 2407–2431. [Google Scholar] [CrossRef]
- Del Mese, S.; Graziani, L.; Meroni, F.; Pessina, V.; Tertulliani, A. Considerations on using MCS and EMS-98 macroseismic scales for the intensity assessment of contemporary Italian earthquakes. Bull. Earthq. Eng. 2023, 21, 4167–4189. [Google Scholar] [CrossRef]
- Locati, M.; Camassi, R.; Rovida, A.; Ercolani, E.; Bernardini, F.; Castelli, V.; Caracciolo, C.H.; Tertulliani, A.; Rossi, A.; Azzaro, R.; et al. Database Macrosismico Italiano (DBMI15); Versione 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Italian Parametric Earthquake Catalogue (CPTI15); Vers. 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H. Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthq. Spectra 1999, 15, 557–564. [Google Scholar] [CrossRef]
- Masi, A.; Chiauzzi, L.; Nicodemo, G.; Manfredi, V. Correlations between macroseismic intensity estimations and ground motion measures of seismic events. Bull. Earthq. Eng. 2020, 18, 1899–1932. [Google Scholar] [CrossRef]
- Vannucci, G.; Lolli, B.; Gasperini, P. A theoretical comparison among macroseismic scales used in Italy. Bull. Earthq. Eng. 2024, 22, 4245–4263. [Google Scholar] [CrossRef]
- Cataldi, L.; Tiberi, L.; Costa, G. Estimation of MCS intensity for Italy from high quality accelerometric data, using GMICEs and Gaussian Naïve Bayes Classifiers. Bull. Earthq. Eng. 2021, 19, 2325–2342. [Google Scholar] [CrossRef]
- Oliveti, I.; Faenza, L.; Michelini, A. New reversible relationships between ground motion parameters and macroseismic intensity for Italy and their application in ShakeMap. Geophys. J. Int. 2022, 231, 1117–1137. [Google Scholar] [CrossRef]
- Arias, A. A measure of earthquake intensity. In Seismic Design for Nuclear Power Plants; Hansen, R.J., Ed.; MIT Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Trifunac, M.D.; Brady, A.G. A study on the duration of strong earthquake ground motion. Bull. Seismol. Soc. Am. 1975, 65, 581–626. [Google Scholar]
- Kramer, S.L. Geotechnical Earthquake Engineering; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Bertero, V.V.; Mahin, S.A.; Herrera, R.A. Aseismic design implications of strong-motion records. Earthq. Eng. Struct. Dyn. 1978, 6, 31–42. [Google Scholar] [CrossRef]
- Papageorgiou, A.S.; Aki, K. A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. Bull. Seismol. Soc. Am. 1983, 73, 693–722. [Google Scholar] [CrossRef]
- Bard, P.Y.; Bouchon, M. The two-dimensional resonance of sediment-filled valleys. Bull. Seismol. Soc. Am. 1985, 75, 519–541. [Google Scholar] [CrossRef]
- Boore, D.M.; Joyner, W.B. Site amplifications for generic rock sites. Bull. Seismol. Soc. Am. 1997, 87, 327–341. [Google Scholar] [CrossRef]
- Spudich, P.; Hellweg, M.; Lee, W.H.K. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bull. Seismol. Soc. Am. 1996, 86, S193–S208. [Google Scholar] [CrossRef]
- Ashford, S.A.; Sitar, N. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bull. Seismol. Soc. Am. 1997, 87, 692–700. [Google Scholar] [CrossRef]
- Borcherdt, R.D. Estimates of site-dependent response spectra for design (methodology and justification). Earthq. Spectra. 1994, 10, 617–653. [Google Scholar] [CrossRef]
- Boore, D.M.; Thompson, E.M.; Cadet, H. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 m. Bull. Seismol. Soc. Am. 2011, 101, 3046–3059. [Google Scholar] [CrossRef]
- Grünthal, G. (Ed.) European Macroseismic Scale 1998 (EMS-98); Cahiers du Centre Européen de Géodynamique et de Séismologie: Luxembourg, 1998; Volume 15. [Google Scholar]
- Worden, C.B.; Gerstenberger, M.C.; Rhoades, D.A.; Wald, D.J. Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California. Bull. Seismol. Soc. Am. 2012, 102, 204–221. [Google Scholar] [CrossRef]
- Oliveti, I.; Faenza, L.; Michelini, A. INGe: Intensity-Ground Motion Dataset for Italy [Dataset] Version 2. Zenodo. 2021. Available online: https://zenodo.org/records/4623732 (accessed on 13 May 2025).
- Felicetta, C.; Russo, E.; D’Amico, M.; Sgobba, S.; Lanzano, G.; Mascandola, C.; Pacor, F.; Luzi, L. ITACA: The Italian Accelerometric Archive. 2023. Available online: https://itaca.mi.ingv.it (accessed on 13 May 2025).
- Yamazaki, D. MERIT DEM: A global DEM derived from multiple datasets. Water Resour. Res. 2017, 53, 5549–5573, Dataset Availability 1987-01-01T00:00:00Z–2017-01-01T00:00:00Z. [Google Scholar]
- Mori, F.; Mendicelli, A.; Moscatelli, M.; Romagnoli, G.; Peronace, E.; Naso, G. A new Vs30 map for Italy based on the seismic microzonation dataset. Eng. Geol. 2020, 275, 105745. [Google Scholar] [CrossRef]
- Mori, F.; Mendicelli, A.; Moscatelli, M.; Varone, C. Shear Wave Velocity Profiles Dataset. Zenodo. 2024. Available online: https://zenodo.org/records/11263471 (accessed on 13 May 2025).
- Gomez-Capera, A.A.; D’Amico, M.; Lanzano, G.; Locati, M.; Santulin, M. Relationships between ground motion parameters and macroseismic intensity for Italy. Bull. Earthq. Eng. 2020, 18, 5143–5164. [Google Scholar] [CrossRef]
- Cornou, C.; Bard, P.-Y.; Dietrich, M. Contribution of dense array analysis to the identification and quantification of basin-edge-induced waves. Part I: Methodology. Bull. Seismol. Soc. Am. 2003, 93, 2604–2623. [Google Scholar] [CrossRef]
- Bard, P.Y.; Brian, E.; Tucker, E. Underground and ridge site effects: A comparison of observation and theory. Bull. Seismol. Soc. Am. 1985, 75, 905–922. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 6638–6648. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Shapley, L. A theoretical framework for n-person cooperative games. In Contributions to the Theory of Games II; Kuhn, H., Tucker, A., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–317. [Google Scholar] [CrossRef]
- Bruno, P.P.G.; Villani, F.; Improta, L. High-resolution seismic imaging of fault-controlled basins: A case study from the 2009 Mw 6.1 central Italy earthquake. Tectonics 2022, 41, e2022TC007207. [Google Scholar] [CrossRef]
- Buttinelli, M.; Petracchini, L.; Maesano, F.E.; D’Ambrogi, S.; Scrocca, D.; Marino, M.; Capotorti, F.; Bigi, S.; Cavinato, G.P.; Mariucci, M.T.; et al. The impact of structural complexity, fault segmentation, and reactivation on seismotectonics: Constraints from the upper crust of the 2016–2017 Central Italy seismic sequence area. Tectonophysics 2021, 810, 228861. [Google Scholar] [CrossRef]
- Mori, F.; Gena, A.; Mendicelli, A.; Naso, G.; Spina, D. Seismic emergency system evaluation: The role of seismic hazard and local effects. Eng. Geol. 2020, 270, 105587. [Google Scholar] [CrossRef]
- Lawal, A.; Yang, Y.; He, H.; Baisa, N.L. Machine Learning in Oil and Gas Exploration: A Review. IEEE Access 2024, 12, 19035–19058. [Google Scholar] [CrossRef]
Datasets Feature Label (Type) | Description (in Bold as Cited in the Text) | Role on Earthquake Damage Potential |
---|---|---|
Max_ia (Physical) | Maximum among the two horizontal components of the Arias Intensity (IA) measured at the station | Governs damage intensity at all scales; represents the total energy released by seismic shaking [15,16] |
Max_PGA (Physical) | Maximum among the two horizontal components of the Peak Ground Acceleration (PGA) measured at the station | More relevant for light damage; peak accelerations dominate the elastic response of structures and are associated with short-period spectral components [17] |
Max_PGV (Physical) | Maximum among the two horizontal components of the Peak Ground Velocity (PGV) measured at the station | More important for severe damage and collapses; accumulated deformation plays important role, especially in longer-duration shaking [18,19] |
Max_Tx_xx (Physical) | Maximum among the two horizontal components of the spectral acceleration at specific periods (e.g., 0.15 s, 0.40 s, 0.60 s, 2.00 s spectral periods) measured at the station | Indicator of impedance contrasts at different depths, corresponding to various seismic horizons that regulate wave propagation [20,21] |
slope_loc (accelerometric station-locality correction) | Slope correction at the locality, sampled from the MERIT Digital Elevation Model at 3 arcsecond resolution (~90 m at the equator) | Correction factor accounting for topographic effects in local intensity estimations. Topographic amplification is more pronounced on steep slopes and rigid substrates [22,23] |
vs30_loc (accelerometric station-locality correction) | Vs30 correction at the locality, representing the time-averaged shear wave velocity over the top 30 m of soil (m/s), predicted with kriging from Vs dataset (https://zenodo.org/records/11263471, accessed on 18 February 2025) | Correction factor adjusting the ground motion recorded at the station to reflect site-specific shear wave velocity conditions. Soil stiffness modulates the local seismic response and influences ground motion amplification [24,25] |
int_dec (OUTPUT) | Decimal value of macroseismic intensity (I_MCS) at the locality, based on the DBMI15 manual | Macroseismic intensity (I_MCS) estimated at the locality, integrating ground shaking, site effects, and structural vulnerability [26,27] |
Parameter | Optuna Range | Best Value |
---|---|---|
learning_rate | 0.02–0.5 | 0.05 |
max_depth | 3–10 | 5 |
min_child_weight | 0.5–6 | 1 |
subsample | 0.6–1.0 | 0.8 |
colsample_bytree | 0.6–1.0 | 0.8 |
gamma | 0–2 | 0 |
lambda | 0.1–5.0 | 1 |
Dataset: Features | Model | RMSE | R2 |
---|---|---|---|
Dataset 1: Max_PGA, Max_PGV, Max_T0_300, Max_T1_000, Max T3_000 | Linear regression | 0.965 | 0.581 |
LightGBM | 0.830 | 0.680 | |
Xgboost | 0.810 | 0.710 | |
CatBoost | 0.823 | 0.685 | |
Neural Network | 0.956 | 0.588 | |
Random Forest | 0.888 | 0.640 | |
Dataset 2: Max_ia, Max_PGA, Max_PGV, Max_T0_300, Max T1_000, Max T3_000 slope_loc, vs30_loc | Linear regression | 0.900 | 0.648 |
LightGBM | 0.792 | 0.714 | |
Xgboost | 0.770 | 0.740 | |
CatBoost | 0.793 | 0.713 | |
Neural Network | 0.877 | 0.666 | |
Random Forest | 0.794 | 0.726 | |
Dataset 3: Max_ia, Max_PGA, Max_PGV, Max_T0_150, Max_T0_400, Max_T0_600 Max_T2_000, slope_loc, vs30_loc | Linear regression | 0.895 | 0.652 |
LightGBM | 0.743 | 0.760 | |
Xgboost | 0.732 | 0.767 | |
CatBoost | 0.747 | 0.758 | |
Neural Network | 0.905 | 0.644 | |
Random Forest | 0.812 | 0.729 |
Feature | RMSE (XGBoost) | R2 (XGBoost) |
---|---|---|
Max_T0_600 | 0.86 | 0.67 |
Max_ia | 0.88 | 0.66 |
Max_T0_150 | 0.89 | 0.64 |
Max_PGV | 0.9 | 0.64 |
Max_PGA | 0.91 | 0.63 |
Max_T0_400 | 0.91 | 0.63 |
Max_T2_000 | 0.92 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, F.; Naso, G. An Explainable Machine Learning Model for Predicting Macroseismic Intensity for Emergency Management. Remote Sens. 2025, 17, 1754. https://doi.org/10.3390/rs17101754
Mori F, Naso G. An Explainable Machine Learning Model for Predicting Macroseismic Intensity for Emergency Management. Remote Sensing. 2025; 17(10):1754. https://doi.org/10.3390/rs17101754
Chicago/Turabian StyleMori, Federico, and Giuseppe Naso. 2025. "An Explainable Machine Learning Model for Predicting Macroseismic Intensity for Emergency Management" Remote Sensing 17, no. 10: 1754. https://doi.org/10.3390/rs17101754
APA StyleMori, F., & Naso, G. (2025). An Explainable Machine Learning Model for Predicting Macroseismic Intensity for Emergency Management. Remote Sensing, 17(10), 1754. https://doi.org/10.3390/rs17101754