Simulation and Assessment of Extreme Precipitation in the Pearl River Delta Based on the WRF-UCM Model
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Sources
2.3. Model Settings
2.4. Experimental Design
3. Results and Analysis
3.1. Monsoon Rainstorm Simulation
3.2. Typhoon Rainstorm Simulation
3.3. Model Verification
4. Discussion
5. Conclusions
- (1)
- In the process of simulating the two rainstorm events, both schemes with and without the urban canopy model showed good simulation results. The introduction of urban canopy model has markedly enhanced the precision of simulating the spatial distribution of heavy rainfall in the Pearl River Delta urban agglomeration, especially in the simulation of the high and low value zones of heavy rainfall. Compared to the simulation results with farmland as the underlying surface, the simulation results were obviously improved.
- (2)
- In the process of urbanization, alterations in the underlying surface and the high intensity of human activities, air temperature, and humidity near the ground have been improved. The temperature during the two precipitation events increased by approximately 0.7 °C and 1 °C, respectively. The air-specific humidity of the two precipitation events increased by approximately 0.5 g/kg and 1.2 g/kg, respectively. The increase in temperature and water vapor content has contributed positively to the initiation and progression of precipitation, thereby amplifying the impact of urbanization on the occurrence of extreme precipitation events.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darshan, R. Linking downstream river water quality to urbanization signatures in subtropical climate. Sci. Total Environ. 2023, 870, 161902. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Wang, H.; Zhou, R.; Wu, W.; Wang, Y. Spatial distribution patterns and potential exposure risks of urban floods in Chinese megacities. J. Hydrol. 2022, 610, 127838. [Google Scholar] [CrossRef]
- Yang, M.; Xue, L.; Liu, Y.; Wang, W.; Han, Q.; Liu, S.; Fu, R. Runoff response to multiple land-use changes and climate perturbations. Hydrol. Process. 2024, 38, e15072. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Y.; Wang, K.; Wang, T. A study on the spatial and temporal evolution of multi-year extreme precipitation in the Huaihe River Basin. Theor. Appl. Climatol. 2023, 152, 397–405. [Google Scholar] [CrossRef]
- Cheng, S.; Li, S.; Qi, F. Research on the construction method of heat island network resistance surface based on county perspective. Atmosphere 2023, 14, 1740. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Lu, J.; Wang, J. Review on urban heat island in China: Methods, its impact on buildings energy demand and mitigation strategies. Sustainability 2021, 13, 762. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Zhang, Y.; Zhou, J.; Shao, W.; Yu, Y.; Jia, R. Seasonal variation of dry and wet islands in Beijing considering urban artificial water dissipation. Npj Clim. Atmos. Sci. 2021, 4, 58. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Wang, K. Climatology and changes in internal intensity distributions of global precipitation systems over 2001–2020 based on IMERG. J. Hydrol. 2023, 620, 129386. [Google Scholar] [CrossRef]
- Menon, G. We need to talk about water. Nature 2023, 624, S25. [Google Scholar] [CrossRef]
- Aaron, S.; Doerthe, T.; Christian, M.; Chris, S. Enhancing urban runoff modelling using water stable isotopes and ages in complex catchments. Hydrol. Process. 2023, 37, e14814. [Google Scholar] [CrossRef]
- Wiechman, A.; Vicario, S.; Anderies, J.; Garcia, M.; Azizi, K.; Hornberger, G. Institutional dynamics impact the response of urban socio-hydrologic systems to supply challenges. Water Resour. Res. 2024, 60, e2023WR035565. [Google Scholar] [CrossRef]
- Hu, C.; Tam, C.; Li, X.; Huang, K.; Ren, C.; Fung, K.; Wang, Z. Mega-city development impact on hourly extreme rainfall over the South China Greater Bay Area under near-future climate warming. Urban Clim. 2023, 48, 101389. [Google Scholar] [CrossRef]
- Shen, W.; Jin, Y.; Cong, P.; Li, G. Water environment response of urban water networks in the Pearl River Delta (China) under the influence of typhoon rain events. Water Supply 2023, 23, 4840–4854. [Google Scholar] [CrossRef]
- Golroudbary, V.; Zeng, Y.; Mannaerts, C.; Su, Z. Response of Extreme Precipitation to Urbanization over The Netherlands. J. Appl. Meteorol. Clim. 2019, 58, 645–661. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Kong, F.; Wang, G.; He, M.; Zhu, K. Spatio-temporal variation characteristics of precipitation extremes in Beijing. Adv. Water Sci. 2017, 28, 161–173. [Google Scholar] [CrossRef]
- Chen, X.; Leung, L.; Sun, N. Weather systems connecting modes of climate variability to regional hydroclimate extremes. Geophys. Res. Lett. 2023, 50, e2023GL105530. [Google Scholar] [CrossRef]
- Hu, X.; Huang, B.; Cherubini, F. Impacts of dealized land cover changes on climate extremes in Europe. Ecol. Indic. 2019, 104, 626–635. [Google Scholar] [CrossRef]
- Rahimian, M.; Siadatmousavi, S.; Saeedi, M. The influence of Urmia Lake desiccation on an extreme snowfall event. Atmos. Res. 2024, 303, 107327. [Google Scholar] [CrossRef]
- Kong, J.; Zhao, Y.; Strebel, D.; Gao, K.; Carmeliet, J.; Lei, C. Understanding the impact of heatwave on urban heat in greater sydney: Temporal surface energy budget change with land types. Sci. Total Environ. 2023, 903, 166374. [Google Scholar] [CrossRef]
- Marianna, A.; Mario, R.; Alfredo, R.; Paola, M. Investigation on potential and limitations of ERA5 Reanalysis downscaled on Italy by a convection-permitting model. Clim. Dyn. 2023, 61, 4319–4342. [Google Scholar] [CrossRef]
- Abhishek, G.; Michael, L.; Marianne, A. Effects of using different urban parametrization schemes and land-cover datasets on the accuracy of WRF model over the city of Ottawa. Urban Clim. 2021, 35, 100737. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Zhao, L.; Cao, J. A case application of WRF-UCM models to the simulation of urban wind speed profiles in a typhoon. J. Wind. Eng. Ind. Aerodyn. 2022, 220, 104874. [Google Scholar] [CrossRef]
- Cao, X.; Qi, Y.; Ni, G. Significant impacts of rainfall redistribution through the roof of buildings on urban hydrology. J. Hydrometeorol. 2021, 22, 1007–1023. [Google Scholar] [CrossRef]
- Zhou, D.; Li, D.; Sun, G.; Zhang, L.; Liu, Y.; Hao, L. Contrasting effects of urbanization and agriculture on surface temperature in eastern China. J. Geophys. Res.-Atmos. 2016, 121, 9597–9606. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, K.; Liu, C. Time distribution pattern and spatial heterogeneity of hourly scale event-based extreme precipitation in China. J. Hydrol. 2023, 622, 129712. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Zhang, S.; Shao, W.; Zhou, J.; Zhang, L. Impact of urbanization factors considering artificial water dissipation on extreme precipitation: A numerical simulation of rainfall in Shanghai. Q. J. R. Meteorol. Soc. 2023, 149, 2320–2332. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Li, J.; Zhang, L.; Feng, P. Numerical simulation study of urban hydrological effects under low impact development with a physical experimental basis. J. Hydrol. 2023, 618, 129191. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Shao, W.; Zhou, J.; Jia, R. Distribution of dry and wet islands in the Pearl River Delta urban agglomeration using numerical simulations. Atmos. Res. 2022, 273, 106170. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Wu, C.; Conallin, J.; Duong, T.; Anthony, E. Disentangling the relative impacts of climate change and human activities on fluvial sediment supply to the coast by the world’s large rivers: Pearl River Basin, China. Sci. Rep. 2019, 9, 9236. [Google Scholar] [CrossRef]
- Huang, G.; Chen, Y.; Yao, Z. Spatial and temporal evolution characteristics of extreme rainfall in the Pearl River Delta under high urbanization. Adv. Water Sci. 2021, 32, 161–170. [Google Scholar] [CrossRef]
- Sekertekin, A.; Abdikan, S.; Marangoz, A.M. The acquisition of impervious surface area from LANDSAT 8 satellite sensor data using urban indices: A comparative analysis. Environ. Monit. Assess. 2018, 190, 381. [Google Scholar] [CrossRef] [PubMed]
- Fasullo, J.; Trenberth, K. A less cloudy future: The role of subtropical subsidence in climate sensitivity. Science 2012, 338, 792–794. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Z.; Wu, X.; Lai, C.; Liu, W. Effect difference of climate change and urbanization on extreme precipitation over the Guangdong-Hong Kong-Macao Greater Bay Area. Adv. Meteorol. 2023, 282, 106514. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Y. Theory and study methodology of dualistic water cycle in river basins under changing conditions. J. Hydrol. Eng. 2016, 47, 1219–1226. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, T. Basic theory for urban water management and sponge city-review on urban hydrology. J. Hydrol. Eng. 2019, 50, 53–61. [Google Scholar] [CrossRef]
- Jia, R.; Wu, J.; Zhang, Y.; Luo, Z. Site prioritization and performance assessment of groundwater monitoring network by using information-based methodology. Environ. Res. 2022, 212, 113181. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, X.; Cheng, W. Water effects on urban heat islands in summer using WRF-UCM with gridded urban canopy parameters—A case study of Wuhan. Build. Environ. 2022, 225, 109528. [Google Scholar] [CrossRef]
- Shi, R.; Chen, J.; He, Y.; Song, W.; Li, D.; Shu, Y.; Wang, D. Evaluation of the performance of the latest WRF model (V4.5) in simulating surface elements and its sensitivity to the diurnal SST cycle in the South China Sea. Clim. Dyn. 2024, 62, 1567–1584. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Yan, D.; Wang, H.; Wang, Z.; Shao, W.; Luan, Y. Dissipation of water in urban area, mechanism and modelling with the consideration of anthropogenic impacts: A Case Study in Xiamen. J. Hydrol. 2019, 570, 356–365. [Google Scholar] [CrossRef]
- Li, X.; Koh, T.; Panda, J.; Norford, L. Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. J. Geophys. Res.-Atmos. 2016, 121, 4386–4403. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Smith, J.A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 2018, 563, 384. [Google Scholar] [CrossRef]
- Jerez, S.; López-Romero, M.; Turco, M.; Lorente-Plazas, R.; Gómez-Navarro, J.; Jiménez-Guerrero, P.; Montávez, J. On the Spin-Up Period in WRF Simulations Over Europe: Trade-Offs Between Length and Seasonality. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001945. [Google Scholar] [CrossRef]
- Mlawer, E.; Taubman, S.; Brown, P.; Iacono, M.; Clough, S. Radiative transfer for inhomogeneous atmosphere: RRTM. J. Geophys. Res.-Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Khamees, A.; Sayad, T.; Morsy, M.; Rahoma, U. Evaluation of three radiation schemes of the WRF-Solar model for global surface solar radiation forecast: A case study in Egypt. Adv. Space Res. 2024, 73, 2880–2891. [Google Scholar] [CrossRef]
- Achugbu, I.; Dudhia, J.; Olufayo, A.; Balogun, I.; Adefisan, E.; Gbode, I. Assessment of WRF land surface model performance over West Africa. Adv. Meteorol. 2020, 2020, 6205308. [Google Scholar] [CrossRef]
- Hong, S.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Kain, J. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. Clim. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Ding, Y.; Liang, P.; Liu, Y.; Zhang, Y. Multiscale Variability of Meiyu and Its Prediction: A New Review. J. Geophys. Res.-Atmos. 2020, 125, e2019JD031496. [Google Scholar] [CrossRef]
- Wang, Z.; Bou-Zeid, E.; Smith, J. A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Q. J. R. Meteorol. Soc. 2013, 139, 1643–1657. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Chen, G.; Sha, W.; Luo, C.; Feng, Y.; Wen, Z.; Wang, B. Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China. Environ. Res. Lett. 2011, 6, 034020. [Google Scholar] [CrossRef]
- Liu, B.; Chen, S.; Tan, X.; Chen, X. Response of precipitation to extensive urbanization over the Pearl River Delta metropolitan region. Environ. Earth Sci. 2021, 80, 9. [Google Scholar] [CrossRef]
- Li, Z.; Chan, J.C.L.; Zhao, K.; Chen, X. Impacts of urban expansion on the diurnal variations of summer monsoon precipitation over the south China coast. J. Geophys. Res.-Atmos. 2021, 126, e2021JD035318. [Google Scholar] [CrossRef]
- Mou, Y.; Gao, X.; Yang, Z.; Xu, T.; Feng, J. Variation characteristics and the impact of urbanization of extreme precipitation in Shanghai. Sci. Rep. 2022, 12, 17618. [Google Scholar] [CrossRef] [PubMed]
Variable | Value | Unit |
---|---|---|
ZR (roof level) | 45 | m |
SIGMA_ZED (standard deviation of roof height) | 10 | m |
ROOF_WIDTH (roof width) | 16 | m |
ROAD_WIDTH (road width) | 16 | m |
CAPR (heat capacity of roof) | 2.0 × 106 | J m−3 K−1 |
CAPB (heat capacity of building wall) | 1.2 × 106 | J m−3 K−1 |
CAPG (heat capacity of ground) | 1.74 × 106 | J m−3 K−1 |
AKSR (thermal conductivity of roof) | 1.0 | J m−1 s−1 K−1 |
AKSB (thermal conductivity of building wall) | 1.3 | J m−1 s−1 K−1 |
AKSG (thermal conductivity of ground) | 1.5 | J m−1 s−1 K−1 |
ALBR (surface albedo of roof) | 0.3 | no unit |
ALBB (surface albedo of building wall) | 0.25 | no unit |
ALBG (surface albedo of ground) | 0.26 | no unit |
EPSR (surface emissivity of roof) | 0.95 | no unit |
EPSB (surface emissivity of building wall) | 0.95 | no unit |
EPSG (surface emissivity of ground) | 0.95 | no unit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Liu, J.; Zhang, S.; Ge, Y.; Wang, X.; Zhang, L.; Shao, W.; Dong, L. Simulation and Assessment of Extreme Precipitation in the Pearl River Delta Based on the WRF-UCM Model. Remote Sens. 2025, 17, 1728. https://doi.org/10.3390/rs17101728
Luo Z, Liu J, Zhang S, Ge Y, Wang X, Zhang L, Shao W, Dong L. Simulation and Assessment of Extreme Precipitation in the Pearl River Delta Based on the WRF-UCM Model. Remote Sensing. 2025; 17(10):1728. https://doi.org/10.3390/rs17101728
Chicago/Turabian StyleLuo, Zhuoran, Jiahong Liu, Shanghong Zhang, Yinxin Ge, Xianzhi Wang, Li Zhang, Weiwei Shao, and Lirong Dong. 2025. "Simulation and Assessment of Extreme Precipitation in the Pearl River Delta Based on the WRF-UCM Model" Remote Sensing 17, no. 10: 1728. https://doi.org/10.3390/rs17101728
APA StyleLuo, Z., Liu, J., Zhang, S., Ge, Y., Wang, X., Zhang, L., Shao, W., & Dong, L. (2025). Simulation and Assessment of Extreme Precipitation in the Pearl River Delta Based on the WRF-UCM Model. Remote Sensing, 17(10), 1728. https://doi.org/10.3390/rs17101728