LPFFNet: Lightweight Prior Feature Fusion Network for SAR Ship Detection
Abstract
:1. Introduction
- A perception lightweight backbone network (PLBNet) is designed to improve the feature extraction ability of the model while making the model lightweight. In addition, a multi-channel feature enhancement module (MFEM) is introduced to enhance the SAR ship localization capability and obtain more feature information.
- To more effectively address the scale diversity of SAR ship targets, a channel prior feature fusion network (CPFFNet) is proposed to enhance the perception ability of ships with different sizes by fusing multi-scale feature information. Meanwhile, the residual channel focused attention module (RCFA) and multi-kernel adaptive pooling local attention network (MKAP-LAN) are integrated to achieve more refined feature extraction and efficient feature fusion.
- To enhance the expression ability of deep features and avoid semantic information loss, the conventional convolution in the auxiliary reversible branch is replaced by enhanced ghost convolution (EGConv). This substitution can generate more reliable gradient information, allowing deep features to maintain key features while effectively reducing semantic loss during target task execution.
2. Materials and Methods
2.1. Overall Network Structure
2.2. The Structure of PLBNet
2.3. The Structure of CPFFNet
2.4. The Structure of EGConv
2.5. SWF Loss Function
3. Results
3.1. Experimental Setup
3.2. Experiments on Datasets
3.3. Ablation Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Liu, H.; Ma, F.; Pan, Z.; Zhang, F. A sidelobe-aware small ship detection network for synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Shan, H.; Fu, X.; Lv, Z.; Zhang, Y. SAR ship detection algorithm based on deep dense sim attention mechanism network. IEEE Sens. J. 2023, 23, 16032–16041. [Google Scholar] [CrossRef]
- Sun, Z.; Dai, M.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. An anchor-free detection method for ship targets in high-resolution SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7799–7816. [Google Scholar] [CrossRef]
- Shi, Y.; Du, L.; Guo, Y.; Du, Y. Unsupervised domain adaptation based on progressive transfer for ship detection: From optical to SAR images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Wang, C.; Bi, F.; Zhang, W.; Chen, L. An intensity-space domain CFAR method for ship detection in HR SAR images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 529–533. [Google Scholar] [CrossRef]
- Joshi, S.K.; Baumgartner, S.V.; da Silva, A.B.; Krieger, G. Range-Doppler based CFAR ship detection with automatic training data selection. Remote Sens. 2019, 11, 1270. [Google Scholar] [CrossRef]
- Wan, C.; Si, W.; Deng, Z. Research on modulation recognition method of multi-component radar signals based on deep convolution neural network. IET Radar Sonar Navig. 2023, 17, 1313–1326. [Google Scholar] [CrossRef]
- Chen, F.; Deng, M.; Gao, H.; Yang, X.; Zhang, D. AP-Net: A metallic surface defect detection approach with lightweight adaptive attention and enhanced feature pyramid. Clust. Comput.-J. Netw. Tools Appl. 2024, 27, 3837–3851. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Sun, Z.; Liu, C.; Sun, Y.; Ji, K.; Kuang, G. Cross-sensor SAR image target detection based on dynamic feature discrimination and center-aware calibration. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5209417. [Google Scholar] [CrossRef]
- Jiang, P.; Xu, X.; Tao, H.; Zhao, L.; Zou, C. Convolutional-recurrent neural networks with multiple attention mechanisms for speech emotion recognition. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 1564–1573. [Google Scholar] [CrossRef]
- Fu, H.; Li, Q.; Tao, H.; Zhu, C.; Xie, Y.; Guo, R. Cross-corpus speech emotion recognition based on causal emotion information representation. IEICE Trans. Inf. Syst. 2024, E107.D, 1097–1100. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Soomro, N.; Han, G.; Liu, W. Content-sensitive superpixel segmentation via self-organization-map neural network. J. Vis. Commun. Image Represent. 2019, 63, 102572. [Google Scholar] [CrossRef]
- Liu, W.; Luo, J.; Yang, Y.; Wang, W.; Deng, J.; Yu, L. Automatic lung segmentation in chest X-ray images using improved U-Net. Sci. Rep. 2022, 12, 8649. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, B.; Chen, T.; Gao, Z.; Li, H. Multiple instance learning-based two-stage metric learning network for whole slide image classification. Vis. Comput. 2024, 40, 5717–5732. [Google Scholar] [CrossRef]
- Zhu, Y.; Ai, J.; Wu, L.; Guo, D.; Jia, W.; Hong, R. An active multi-target domain adaptation strategy: Progressive class prototype rectification. IEEE Trans. Multimed. 2025, 27, 1874–1886. [Google Scholar] [CrossRef]
- Li, Y.; Jin, J.; Geng, Y.; Xiao, Y.; Liang, J.; Chen, C. Discriminative elastic-net broad learning systems for visual classification. Appl. Soft Comput. 2024, 155, 111445. [Google Scholar] [CrossRef]
- Ai, J.; Tian, R.; Luo, Q.; Jin, J.; Tang, B. Multi-scale rotation-invariant haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10070–10087. [Google Scholar] [CrossRef]
- Sun, Z.; Leng, X.; Zhang, X.; Zhou, Z.; Xiong, B.; Ji, K.; Kuang, G. Arbitrary-direction SAR ship detection method for multiscale imbalance. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5208921. [Google Scholar] [CrossRef]
- Bai, L.; Yao, C.; Ye, Z.; Xue, D.; Lin, X.; Hui, M. Feature enhancement pyramid and shallow feature reconstruction network for SAR ship detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1042–1056. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, H.; Wang, C.; Wu, F.; Gu, F. MW-ACGAN: Generating multiscale high-resolution SAR images for ship detection. Sensors 2020, 20, 6673. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Qi, R. Multilevel pyramid feature extraction and task decoupling network for SAR ship detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3560–3570. [Google Scholar] [CrossRef]
- Qin, C.; Wang, X.; Li, G.; He, Y. A semi-soft label-guided network with self-distillation for SAR inshore ship detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Tan, X.; Leng, X.; Luo, R.; Sun, Z.; Ji, K.; Kuang, G. YOLO-RC: SAR ship detection guided by characteristics of range-compressed domain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18834–18851. [Google Scholar] [CrossRef]
- Ju, M.; Niu, B.; Zhang, J. SAR image generation method for oriented ship detection via generative adversarial networks. Signal Image Video Process. 2024, 18, 589–596. [Google Scholar] [CrossRef]
- Du, Y.; Du, L.; Guo, Y.; Shi, Y. Semisupervised SAR ship detection network via scene characteristic learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Chen, H.; Xue, J.; Wen, H.; Hu, Y.; Zhang, Y. EfficientShip: A hybrid deep learning framework for ship detection in the River. CMES-Comput. Model. Eng. Sci. 2024, 138, 301–320. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Wang, J.; Liu, Y. Ship Grid: A novel anchor-free ship detection algorithm. IEEE Intell. Syst. 2024, 39, 47–56. [Google Scholar] [CrossRef]
- Mou, F.; Fan, Z.; Ge, Y.; Wang, L.; Li, X. An efficient ship detection method based on YOLO and ship wakes using high-resolution optical Jilin1 satellite imagery. Sensors 2024, 24, 6708. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, X.; Zhu, S.; Xu, F.; Liu, J. LMSD-Net: A lightweight and high-performance ship detection network for optical remote sensing images. Remote Sens. 2023, 15, 4358. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, L.; Ji, K.; Kuang, G. A domain adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5216318. [Google Scholar] [CrossRef]
- Tang, G.; Zhao, H.; Claramunt, C.; Zhu, W.; Wang, S.; Wang, Y.; Ding, Y. PPA-Net: Pyramid Pooling Attention Network for Multi-Scale Ship Detection in SAR Images. Remote Sens. 2023, 15, 2855. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Ren, H.; Hu, J.; Zou, L.; Wang, X. Multi-level feature-refinement anchor-free framework with consistent label-assignment mechanism for ship detection in SAR imagery. Remote Sens. 2024, 16, 975. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, D.; Deng, Y.; Yuan, W.; Wei, M. 3SD-Net: SAR small ship detection neural network. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5221613. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhao, W.; Wang, X.; Li, G.; He, Y. Frequency-adaptive learning for SAR ship detection in clutter scenes. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Sun, Z.; Leng, X.; Zhang, X.; Xiong, B.; Ji, K.; Kuang, G. Ship recognition for complex SAR images via dual-branch transformer fusion network. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4009905. [Google Scholar] [CrossRef]
- Chen, X.; Wu, H.; Han, B.; Liu, W.; Montewka, J.; Liu, R.W. Orientation-aware ship detection via a rotation feature decoupling supported deep learning approach. Eng. Appl. Artif. Intell. 2023, 125, 106686. [Google Scholar] [CrossRef]
- Min, L.; Dou, F.; Zhang, Y.; Shao, D.; Li, L.; Wang, B. CM-YOLO: Context modulated representation learning for ship detection. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4202414. [Google Scholar] [CrossRef]
- Dong, T.; Wang, T.; Li, X.; Hong, J.; Jing, M.; Wei, T. A large ship detection method based on component model in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 4108–4123. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, P.; Wang, H.; Jin, Y. NPA2Net: A nested path aggregation attention network for oriented SAR ship detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 9772–9789. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.H.; Xu, N. SAR ship detection in complex background based on multi-feature fusion and non-local channel attention mechanism. Int. J. Remote Sens. 2021, 42, 7519–7550. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Lv, Y.; Li, S. Scattering information fusion network for oriented ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4013105. [Google Scholar] [CrossRef]
- Yang, Y.; Ju, Y.; Zhou, Z. A super lightweight and efficient SAR image ship detector. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Xiao, J. Ellipse Polar Encoding for Oriented SAR Ship Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3502–3515. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Gao, Y. Rotating-YOLO: A novel YOLO model for remote sensing rotating object detection. Image Vis. Comput. 2025, 154, 105397. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Hu, R.; Yu, Y. ESarDet: An efficient SAR ship detection method based on context information and large effective receptive field. Remote Sens. 2023, 15, 3018. [Google Scholar] [CrossRef]
- Man, S.; Yu, W. ELSD-Net: A novel efficient and lightweight ship detection network for SAR images. IEEE Geosci. Remote Sens. Lett. 2025, 22, 4003505. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.; Li, S.; Liu, H.; Hu, Q. YOLO-Ships: Lightweight ship object detection based on feature enhancement. J. Vis. Commun. Image Represent. 2024, 101, 104170. [Google Scholar] [CrossRef]
- Kong, W.; Liu, S.; Xu, M.; Yasir, M.; Wang, D.; Liu, W. Lightweight algorithm for multi-scale ship detection based on high-resolution SAR images. Int. J. Remote Sens. 2023, 44, 1390–1415. [Google Scholar] [CrossRef]
- Lv, J.; Chen, J.; Huang, Z.; Wan, H.; Zhou, C.; Wang, D.; Wu, B.; Sun, L. An anchor-free detection algorithm for SAR ship targets with deep saliency representation. Remote Sens. 2022, 15, 103. [Google Scholar] [CrossRef]
- Meng, F.; Qi, X.; Fan, H. LSR-Det: A lightweight detector for ship detection in SAR images based on oriented bounding box. Remote Sens. 2024, 16, 3251. [Google Scholar] [CrossRef]
- Fang, M.; Gu, Y.; Peng, D. FEVT-SAR: Multi-category oriented SAR ship detection based on feature enhancement vision transformer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 2704–2717. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. Yolov9: Learning what you want to learn using programmable gradient information. In Proceedings of the Computer Vision—ECCV 2024, Proceeding of European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024; Springer Nature: Cham, Switzerland, 2024; pp. 1–21. [Google Scholar]
- Wang, Y.; Başar, T. Gradient-tracking-based distributed optimization with guaranteed optimality under noisy information sharing. IEEE Trans. Autom. Control 2022, 68, 4796–4811. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, H.; Chen, W.; Su, Y.; Liu, Y.; Wang, X. Yolo-facev2: A scale and occlusion aware face detector. arXiv 2022, arXiv:2208.02019. [Google Scholar] [CrossRef]
- Akhtar, M.; Tanveer, M.; Arshad, M. RoBoSS: A robust, bounded, sparse, and smooth loss function for supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 149–160. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR ship detection dataset (SSDD): Official release and comprehensive data analysis. Remote Sens. 2021, 13, 3690. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016, Proceeding of 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6569–6578. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 16965–16974. [Google Scholar]
Method | P (%) | R (%) | mAP@0.5 | mAP@0.5:0.95 | Params (M) | FPS |
---|---|---|---|---|---|---|
SSD [58] | 91.12 | 64.87 | 86.94 | 56.25 | 23.7 | 22.1 |
RetinaNet [59] | 89.54 | 89.53 | 91.75 | 58.77 | 37.5 | 19.8 |
CenterNet [60] | 92.97 | 68.7 | 88.56 | 57.64 | 34.4 | 21.9 |
YOLOv7 [61] | 93.73 | 91.17 | 92.18 | 62.18 | 37.9 | 29.1 |
YOLOv8 | 95.28 | 93.31 | 95.21 | 65.83 | 45.7 | 27.2 |
RT-DETR [62] | 95.76 | 93.28 | 95.59 | 70.24 | 32.9 | 25.3 |
YOLOv9 [52] | 96.16 | 93.84 | 95.74 | 72.62 | 50.7 | 28.4 |
LPFFNet | 97.25 | 94.97 | 97.86 | 75.21 | 43.5 | 36.7 |
Method | P (%) | R (%) | mAP@0.5 | mAP@0.5:0.95 | Params (M) | FPS |
---|---|---|---|---|---|---|
SSD | 89.53 | 63.19 | 84.87 | 56.04 | 23.7 | 21.5 |
RetinaNet | 88.13 | 86.91 | 86.65 | 57.26 | 37.5 | 19.2 |
CenterNet | 89.67 | 65.42 | 85.19 | 56.47 | 34.4 | 20.8 |
YOLOv7 | 92.16 | 81.56 | 88.27 | 59.61 | 37.9 | 28.6 |
YOLOv8 | 93.77 | 86.69 | 93.28 | 64.91 | 45.7 | 26.5 |
RT-DETR | 92.08 | 84.14 | 92.09 | 67.78 | 32.9 | 24.6 |
YOLOv9 | 93.96 | 88.26 | 94.32 | 69.72 | 50.7 | 27.9 |
LPFFNet | 96.31 | 91.69 | 95.61 | 74.03 | 43.5 | 36.1 |
Method | Performance | ||||||
---|---|---|---|---|---|---|---|
PLBNet | CPFFNet | EGConv | SWF Loss | P | mAP@0.5 | Params(M) | FPS |
× | × | × | × | 96.16 | 95.74 | 50.7 | 28.4 |
√ | × | × | × | 96.71 | 96.23 | 42.9 | 34.8 |
× | √ | × | × | 96.68 | 95.89 | 50.9 | 31.7 |
× | × | √ | × | 96.47 | 96.04 | 50.5 | 32.6 |
× | × | × | √ | 96.55 | 95.91 | 50.7 | 30.5 |
√ | √ | × | × | 96.97 | 96.51 | 43.7 | 35.7 |
√ | √ | √ | × | 97.12 | 97.03 | 43.5 | 36.1 |
√ | √ | √ | √ | 97.25 | 97.86 | 43.5 | 36.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Zhou, P.; Fan, X.; Feng, C.; Li, P. LPFFNet: Lightweight Prior Feature Fusion Network for SAR Ship Detection. Remote Sens. 2025, 17, 1698. https://doi.org/10.3390/rs17101698
Ren X, Zhou P, Fan X, Feng C, Li P. LPFFNet: Lightweight Prior Feature Fusion Network for SAR Ship Detection. Remote Sensing. 2025; 17(10):1698. https://doi.org/10.3390/rs17101698
Chicago/Turabian StyleRen, Xiaozhen, Peiyuan Zhou, Xiaqiong Fan, Chengguo Feng, and Peng Li. 2025. "LPFFNet: Lightweight Prior Feature Fusion Network for SAR Ship Detection" Remote Sensing 17, no. 10: 1698. https://doi.org/10.3390/rs17101698
APA StyleRen, X., Zhou, P., Fan, X., Feng, C., & Li, P. (2025). LPFFNet: Lightweight Prior Feature Fusion Network for SAR Ship Detection. Remote Sensing, 17(10), 1698. https://doi.org/10.3390/rs17101698