A Localization Method for UAV Aerial Images Based on Semantic Topological Feature Matching
Abstract
:1. Introduction
- A semantic topological feature-matching-based localization framework is proposed and applied to the navigation and localization of UAVs.
- The needs of scale invariance, rotation invariance, and semantic recognition are fully considered, and the image-based localization problem is transformed into a topological relational feature matching problem, providing stable matching results while accurately understanding the complex environment.
2. The Localization Method Based on Semantic Topological Feature Matching
2.1. Basic Framework
- (1)
- Preprocess the aerial image using semantic segmentation technology to generate a base map containing visual reference object labels and position coordinates.
- (2)
- Considering the rotation and scale change of the aerial image, extract the configuration information of the visual references through the center of gravity algorithm, and design the extraction pattern feature vector by using the relative position relationship between the visual references as the pattern features.
- (3)
- Find the image most similar to the current image in the map database by the pattern-matching algorithm, so as to realize the matching from image to map.
- (4)
- According to the matching results, information such as the position of the UAV on the map can be obtained to realize the visual navigation of the airway.
2.2. Design of the Method
2.2.1. Design of Feature Vectors for High-Level Semantic Topological Relations
- (1)
- Distance ratio
- (2)
- Angle difference
- (3)
- Semantic label
2.2.2. Destruction Resistance Analysis
- (1)
- Semantic Segmentation Algorithm
- (2)
- Method of Center-of-Gravity Calculation
2.2.3. Perform Matching and Positioning Based on the Feature Vectors
3. Experiments
3.1. Data Preparation and Processing
3.2. Matching Results
4. Discussion
4.1. Analysis of Scale Invariance
4.2. Analysis of Rotation Invariance
4.3. Analysis of Storage Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butila, E.V.; Boboc, R.G. Urban Traffic Monitoring and Analysis Using Unmanned Aerial Vehicles (UAVs): A Systematic Literature Review. Remote Sens. 2022, 14, 620. [Google Scholar] [CrossRef]
- Yang, J.; Qin, D.; Tang, H.; Tao, S.; Bie, H.; Ma, L. DINOv2-Based UAV Visual Self-Localization in Low-Altitude Urban Environments. IEEE Robot. Autom. Lett. 2025, 10, 2080–2087. [Google Scholar] [CrossRef]
- Couturier, A.; Akhloufi, M.A. A review on absolute visual localization for UAV. Robot. Auton. Syst. 2021, 135, 10366. [Google Scholar] [CrossRef]
- Wilson, D.; Zhang, X.; Sultani, W.; Wshah, S. Visual and Object Geo-localization: A Comprehensive Survey. arXiv 2023, arXiv:2112.15202. Available online: http://arxiv.org/abs/2112.15202 (accessed on 11 October 2023).
- Ding, L.; Zhou, J.; Meng, L.; Long, Z. A practical Cross-View Image Matching Method between UAV and Satellite for UAV-Based Geo-localization. Remote Sens. 2020, 13, 47. [Google Scholar] [CrossRef]
- Dai, M.; Hu, J.; Zhuang, J.; Zheng, E. A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-localization. IEEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4376–4389. [Google Scholar] [CrossRef]
- Liu, R.; Liu, H.; Meng, X.; Li, T.; Hancock, C.M. Detecting GNSS Spoofing and Re-localization on UAV based on Imagery Matching. Meas. Sci. Technol. 2025, 36, 016320. [Google Scholar] [CrossRef]
- Babenko, A.; Slesarev, A.; Chigorin, A.; Lempitsky, V. Neurl Codes for Image Retrieval. arXiv 2014, arXiv:1404.1777. Available online: http://arxiv.org/abs/1404.1777 (accessed on 7 July 2014).
- Hao, Y.; Meng, Z.Y.; Ai, J.W.; Wu, Y.Q. Localization method by aerial image matching in urban environment based on semantic segmentation. J. Huazhong Univ. Sci. Technol. 2022, 50, 79–84. [Google Scholar]
- Yang, X.W.; Wang, W.; Wang, Y.J. Research on UAV Target Fast Searching Method Based on Scene Matching Research on UAV Target Fast Searching Method Based on Scene Matching. Geomat. Spat. Inf. Technol. 2023, 46, 206–208+211. [Google Scholar]
- Zheng, K.; Yin, S.M.; Zheng, X.M.; Lin, H.X.; Chen, G.W. A UAV Matching Positioning Approach with High Accuracy Based on POS Data. Fire Control Command. Control 2023, 48, 160–166. [Google Scholar]
- Shan, M.; Wang, F.; Lin, F.; Gao, Z.; Tang, Y.Z.; Chen, B.M. Google Map Aided Visual Navigation for UAVs in GPS-denied Environment. arXiv 2017, arXiv:1703.10125. [Google Scholar]
- Hou, H.; Xu, Q.; Lan, C.; Lu, W.; Zhang, Y.; Cui, Z.; Qin, J. UAV Pose Estimation in GNSS-Denied Environment Assisted by Satellite Imagery Deep Learning Features. IEEE Access 2021, 9, 6358–6367. [Google Scholar] [CrossRef]
- Luo, J.; Ye, Q. UAV Large Oblique Image Geo-localization Using Satellite Images in the Dense Buildings Area. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 10, 1065–1072. [Google Scholar] [CrossRef]
- Masadeh, A.; Alhafnawi, M.; Salameh, H.A.B.; Musa, A.; Jararweh, Y. Reinforcement Learning-Based Security/Safety UAV System for Intrusion Detection Under Dynamic and Uncertain Target Movement. IEEE Trans. Eng. Manag. 2024, 71, 12498–12508. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Sun, Z.; Liu, C.; Sun, Y.; Ji, K.; Kuang, G. Cross-Sensor SAR Image Target Detection Based on Dynamic Feature Discrimination and Center-Aware Calibration. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5209417. [Google Scholar] [CrossRef]
- Sun, Z.; Leng, X.; Zhang, X.; Zhou, Z.; Xiong, B.; Ji, K.; Kuang, G. Arbitrary-Direction SAR Ship Detection Method for Multi-Scale Imbalance. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5208921. [Google Scholar] [CrossRef]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. arXiv 2018, arXiv:1805.10180v3. [Google Scholar]
Parameters | Results |
---|---|
Pattern feature vector | [ [1.000000 0.925630 0.001234 0.716060 0.732092 0.165848 0.342144 0.343756 0.033705 0.380274] [0.073462 0.026459 0.013638 0.305121 0.399297 1.000000 0.317741 0.338328 0.454024 0.024538] [0.333333 1.000000 0.333333 1.000000 0.666667 0.333333 0.333333 1.000000 1.000000 1.000000] ] |
Result of matching | 0_1400.png |
Euclidean Distance | 0.0 |
Position coordinates(pixel) | (640, 2040) |
Confidence level | 1.0 |
Parameters | Results |
---|---|
Pattern feature vector | [ [1.000000 0.184404 0.411843 0.352495 0.086955 0.291872 0.927204 0.041038 0.627555 0.159472] [0.227083 0.487791 0.274062 0.371198 0.394118 1.000000 0.254501 0.496597 0.472215 0.187912] [0.333333 0.333333 1.000000 0.333333 1.000000 0.333333 0.333333 0.333333 1.000000 0.333333] ] |
Result of matching | 5950_2100.png |
Euclidean Distance | 0.0 |
Position coordinates(pixel) | (6590, 2740) |
Confidence level | 1.0 |
Parameters | Results |
---|---|
Pattern feature vector | [ [1.000000 0.247319 0.056410 0.120420 0.470764 0.292487 0.816305 0 0 0] [0.625164 0.393803 0.617070 0.511061 1.000000 0.079733 0.045671 0 0 0] [0.666667 0.333333 0.666667 0.666667 1.000000 0.333333 1.000000 0 0 0] ] |
Result of matching | 3150_3150.png |
Euclidean Distance | 0.0 |
Position coordinates(pixel) | (3790, 3790) |
Confidence level | 1.0 |
Scale of Change (Times) | 2 | 1.8 | 1.5 | 1.2 | 1 |
---|---|---|---|---|---|
Minimum Euclidean distance | 2.674882 | 1.650056 | 1.404390 | 0.209932 | 0 |
Result of matching | Matching failed | Matching succeeded | Matching succeeded | Matching succeeded | Matching succeeded |
Confidence level | 0 | 0.17 | 0.30 | 0.90 | 1 |
Scale of Change (times) | 0.8 | 0.75 | 0.65 | 0.6 | 0.5 |
Minimum Euclidean distance | 0.086993 | 0.151239 | 0.276655 | 0.303107 | 2.720949 |
Result of matching | Matching succeeded | Matching succeeded | Matching succeeded | Matching succeeded | Matching failed |
Confidence level | 0.96 | 0.92 | 0.86 | 0.85 | 0 |
Rotation Angle (°) | 0 | 30 | 60 | 90 | 120 | 150 |
---|---|---|---|---|---|---|
Minimum Euclidean distance | 0 | 0.031209 | 0.103701 | 0.000403 | 0.059721 | 0.108878 |
Result of matching | Matching succeeded | Matching succeeded | Matching succeeded | Matching succeeded | Matching succeeded | Matching succeeded |
Confidence level | 1 | 0.98 | 0.95 | 1 | 0.97 | 0.95 |
Rotation Angle (°) | 180 | 210 | 240 | 270 | 300 | 330 |
Minimum Euclidean distance | 0.000754 | 0.044473 | 0.10018 | 0.000679 | 0.042100 | 0.107759 |
Result of matching | Matching succeeded | Matching succeeded | Matching succeeded | Matching succeeded | Matching succeeded | Matching succeeded |
Confidence level | 1 | 0.98 | 0.95 | 1 | 0.98 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Wu, Q. A Localization Method for UAV Aerial Images Based on Semantic Topological Feature Matching. Remote Sens. 2025, 17, 1671. https://doi.org/10.3390/rs17101671
He J, Wu Q. A Localization Method for UAV Aerial Images Based on Semantic Topological Feature Matching. Remote Sensing. 2025; 17(10):1671. https://doi.org/10.3390/rs17101671
Chicago/Turabian StyleHe, Jing, and Qian Wu. 2025. "A Localization Method for UAV Aerial Images Based on Semantic Topological Feature Matching" Remote Sensing 17, no. 10: 1671. https://doi.org/10.3390/rs17101671
APA StyleHe, J., & Wu, Q. (2025). A Localization Method for UAV Aerial Images Based on Semantic Topological Feature Matching. Remote Sensing, 17(10), 1671. https://doi.org/10.3390/rs17101671