Aerosol Distribution Due to Wildfire in Sumatra, Indonesia Considered from Model Simulation
Abstract
:1. Introduction
2. Methods
2.1. Target Area
2.2. Model Simulation
2.3. Observations
3. Results
3.1. Comparison of Simulations with Different Injection Heights
3.2. A Sensitivity Analysis of the Injection Height
3.3. Validation of Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BBAs | Biomass burning aerosols |
SCALE | Scalable Computing for Advanced Library and the Environmental Regional Model |
GCOM-C | Global Change Observation Mission-Climate |
SGLI | Second-Generation global Imager |
NASA | The National Aeronautics and Space Administration |
AERONET | AErosol RObotic NETwork |
IR | InfraRed |
AOT | Aerosol optical thickness |
References
- Global Peatland Initiative, World Peatland Map. 2002. Available online: https://globalpeatlands.org/resource-library/global-peatland-map-20 (accessed on 4 March 2025).
- Hooijer, A.; Silvius, M.; Wösten, H.; Page, S. PEAT-CO2, Assessment of CO2 Emissions from Drained Peatlands in SE Asia; Delft Hydraulics Report Q3943, in Cooperation with Wetlands International and Alterra; Delft Hydraulics: Delft, The Netherlands, 2006. [Google Scholar]
- Wetlands International. Maps of Peatland Distribution and Carbon Content in Sumatera, 1990–2002. 2003. Available online: https://www.yumpu.com/id/document/read/23366016/atlas-sebaran-gambut-sumatera (accessed on 4 March 2025).
- Wetlands International, Maps of Peatland Distribution and Carbon Content in Kalimantan, 2000–2002. 2004. Available online: https://www.academia.edu/24344060/Atlas_Sebaran_Gambut_Kalimantan (accessed on 4 March 2025).
- Hooijer, A.; Page, S.; Canadell, J.G.; Silvius, M.; Kwadijk, J.; Wosten, H.; Jauhiainen, J. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosci. Discuss. 2009, 6, 7207–7230. Available online: https://www.biogeosciences-discuss.net/6/7207/2009/ (accessed on 4 March 2025). [CrossRef]
- Susetyo, K.E.; Kusin, K.; Nina, Y.; Jagau, Y.; Kawasaki, M.; Naito, D. 2019 Peatland and Forest Fires in Central Kalimantan, Indonesia. Newsl. Trop. Peatl. Soc. Proj. 2020, 8, 1–4. [Google Scholar]
- Osawa, T.; Kajita, R. News of Indonesian Fires in 2019. Newsl. Trop. Peatl. Soc. Proj. 2020, 8, 8–10. [Google Scholar]
- Freitas, S.R.; Longo, K.M.; Andreae, M.O. Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophys. Res. Lett. 2006, 33, L17808. [Google Scholar] [CrossRef]
- Fromm, M.; Bevilacqua, R.; Servranckx, R.; Rosen, J.; Thayer, J.P.; Herman, J.; Larko, D. Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of a super blowup in northwestern Canada on 3–4 August 1998. J. Geophys. Res.-Atmos. 2005, 110, D08205. [Google Scholar] [CrossRef]
- Kahn, R.A.; Chen, Y.; Nelson, D.L.; Leung, F.-Y.; Li, Q.; Diner, D.J.; Logan, J.A. Wildfire smoke injection heights: Two perspectives from space. Geophys. Res. Lett. 2008, 35, L04809. [Google Scholar] [CrossRef]
- Amiridis, V.; Giannakaki, E.; Balis, D.S.; Gerasopoulos, E.; Pytharoulis, I.; Zanis, P.; Kazadzis, S.; Melas, D.; Zerefos, C. Smoke injection heights from agricultural burning in Eastern Europe as seen by CALIPSO. Atmos. Chem. Phys. 2010, 10, 11567–11576. [Google Scholar] [CrossRef]
- Wooster, M.J.; Perry, G.L.W.; Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 2012, 9, 317–340. [Google Scholar] [CrossRef]
- Leung, F.-Y.T.; Logan, J.A.; Park, R.; Hyer, E.; Kasischke, E.; Streets, D.; Yurganov, L. Impacts of enhanced biomass burning in the boreal forests in 1998 on tropospheric chemistry and the sensitivity of model results to the injection height of emissions. J. Geophys. Res. 2007, 112, D10313. [Google Scholar] [CrossRef]
- Zhu, L.; Val Martin, M.; Gatti, L.V.; Kahn, R.; Hecobian, A.; Fischer, E.V. Development and implementation of a new biomass burning emissions injection height scheme (BBEIH v1.0) for the GEOS-Chem model (v9-01-01). Geosci. Model Dev. 2018, 11, 4103–4116. [Google Scholar] [CrossRef]
- Reid, J.; Hyer, E.; Prins, E.; Westphal, D.; Zhang, J.; Wang, J.; Christopher, S.; Curtis, C.; Schmidt, C.; Eleuterio, D.; et al. Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 144–162. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997 2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- Trentmann, J.; Luderer, G.; Winterrath, T.; Fromm, M.D.; Servranckx, R.; Textor, C.; Herzog, M.; Graf, H.-F.; Andreae, M.O. Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): Reference simulation. Atmos. Chem. Phys. 2006, 6, 5247–5260. [Google Scholar] [CrossRef]
- Hyer, E.J.; Chew, B.N. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmos. Environ. 2010, 44, 1422–1427. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Silva Dias, M.A.F.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.A., Jr. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398. [Google Scholar] [CrossRef]
- Rio, C.; Hourdin, F.; Chédin, A. Numerical simulation of tropospheric injection of biomass burning products by pyro-thermal plumes. Atmos. Chem. Phys. 2010, 10, 3463–3478. [Google Scholar] [CrossRef]
- Sofiev, M.; Ermakova, T.; Vankevich, R. Evaluation of the smoke-injection height from wild-land fires using remote-sensing data. Atmos. Chem. Phys. 2012, 12, 1995–2006. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Silva Dias, M.A.F.; Chatfield, R.; Silva Dias, P.; Artaxo, P.; Andreae, M.O.; Grell, G.; Rodrigues, L.F.; Fazenda, A.; et al. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)–Part 1: Model description and evaluation. Atmos. Chem. Phys. 2009, 9, 2843–2861. [Google Scholar] [CrossRef]
- Longo, K.M.; Freitas, S.R.; Andreae, M.O.; Setzer, A.; Prins, E.; Artaxo, P. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)–Part 2: Model sensitivity to the biomass burning inventories. Atmos. Chem. Phys. 2010, 10, 5785–5795. [Google Scholar] [CrossRef]
- Paugam, R.; Wooster, M.; Freitas, S.; Val Martin, M. A re view of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmos. Chem. Phys. 2016, 16, 907–925. [Google Scholar] [CrossRef]
- Val Martin, M.; Kahn, R.A.; Logan, J.A.; Paugam, R.; Wooster, M.; Ichoku, C. Space-based observational constraints for 1 D fire smoke plume-rise models. J. Geophys. Res.-Atmos. 2012, 117, D22204. [Google Scholar] [CrossRef]
- Kajino, M.; Deushi, M.; Sekiyama, T.T.; Oshima, N.; Yumimoto, K.; Tanaka, T.Y.; Ching, J.; Hashimoto, A.; Yamamoto, T.; Ikegami, M.; et al. Comparison of three aerosol representations of NHM-Chem (v1.0) for the simulations of air quality and climate-relevant variables. Geosci. Model Dev. 2021, 14, 2235–2264. [Google Scholar] [CrossRef]
- Nakata, M.; Kajino, M.; Sato, Y. Effects of mountains on aerosols determined by AERONET/DRAGON/JALPS measurements and regional model simulations. Earth Space Sci. 2021, 8, e2021EA001972. [Google Scholar] [CrossRef]
- Nishizawa, S.; Yashiro, H.; Sato, Y.; Miyamoto, Y.; Tomita, H. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev. 2015, 8, 3393–3419. [Google Scholar] [CrossRef]
- Sato, Y.; Nishizawa, S.; Yashiro, H.; Miyamoto, Y.; Kajikawa, Y.; Tomita, H. Impacts of cloud microphysics on trade wind cumulus: Which cloud microphysics processes contribute to the diversity in a large eddy simulation? Prog. Earth Planet. Sci. 2015, 2, 23. [Google Scholar] [CrossRef]
- Labonne, L.; Bre’on, F.-M.; Chevallier, F. Injection height of biomass burning aerosols as seen from a spaceborne lidar. Geophys. Res. Lett. 2007, 34, L11806. [Google Scholar] [CrossRef]
- Fromm, M.D.; Alfred, J.; Hoppel, K.; Hornstein, J.; Bevilacqua, R.; Shet-tle, E.; Servranckx, R.; Li, Z.; Stocks, B. Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998. Geophys. Res. Lett. 2000, 27, 1407–1410. [Google Scholar] [CrossRef]
- Takemura, T.; Okamoto, H.; Maruyama, Y.; Numaguti, A.; Higurashi, A.; Nakajima, T. Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res. 2000, 105, 17853–17873. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B.N.; Menzel, P.; Pereira, M.C.; Rasmussen, R. Biomass burning airborne and space borne experiment in the Amazonas (BASE-A). J. Geophys. Res. 1992, 97, 14581–14599. [Google Scholar] [CrossRef]
- Browell, E.V.; Fenn, M.A.; Butler, C.F.; Grant, W.B.; Clayton, M.B.; Fishman, J.; Bachmeier, A.S.; Anderson, B.E.; Gregory, G.L.; Fuelberg, H.E.; et al. Ozone and aerosol distributions and air mass characteristics over the South Atlantic Basin during the burning season. J. Geophys. Res. 1996, 101, 24043–24068. [Google Scholar] [CrossRef]
- Liu, X.; Penner, J.E.; Herzog, M. Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res. 2005, 110, D18206. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrumentnetwork and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Technol. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Mukai, S.; Hioki, S.; Nakata, M. Biomass Burning Plume from Simultaneous Observations of Polarization and Radiance at Different Viewing Directions with SGLI. Remote Sens. 2023, 15, 5405. [Google Scholar] [CrossRef]
- Nakata, M.; Sano, I.; Mukai, S.; Kokhanovsky, A. Characterization of wildfire smoke over complex terrain using satellite observations, ground-based observations, and meteorological models. Remote Sens. 2022, 14, 2344. [Google Scholar] [CrossRef]
- Nakata, M.; Mukai, S.; Fujito, T. Direct Detection of Severe Biomass Burning Aerosols from Satellite. Atmosphere 2022, 13, 913. [Google Scholar] [CrossRef]
- Hioki, S.; Funatomi, T.; Nakata, M.; Mukai, S.; Kidode, M. Stereoscopic height estimation of biomass burning aerosol and volcanic ash plumes by the second-generation global imager (SGLI). Proc. SPIE 2024, 13193, 131930B. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakata, M.; Mukai, S. Aerosol Distribution Due to Wildfire in Sumatra, Indonesia Considered from Model Simulation. Remote Sens. 2025, 17, 1657. https://doi.org/10.3390/rs17101657
Nakata M, Mukai S. Aerosol Distribution Due to Wildfire in Sumatra, Indonesia Considered from Model Simulation. Remote Sensing. 2025; 17(10):1657. https://doi.org/10.3390/rs17101657
Chicago/Turabian StyleNakata, Makiko, and Sonoyo Mukai. 2025. "Aerosol Distribution Due to Wildfire in Sumatra, Indonesia Considered from Model Simulation" Remote Sensing 17, no. 10: 1657. https://doi.org/10.3390/rs17101657
APA StyleNakata, M., & Mukai, S. (2025). Aerosol Distribution Due to Wildfire in Sumatra, Indonesia Considered from Model Simulation. Remote Sensing, 17(10), 1657. https://doi.org/10.3390/rs17101657