High-Resolution Estimation of Daily PM2.5 Levels in the Contiguous US Using Bi-LSTM with Attention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Model Architecture
2.3. Model Training
2.4. Model Evaluation
3. Results
3.1. Comparison Against Strong Baseline Methods
3.2. Spatiotemporal Analysis of Bi-LSTM Prediction Bias
3.3. Ablation Study of Wildfire Smoke Density Variable
3.4. Comparative Analysis with External Dataset
3.5. Case Study of the 2020 California August Complex Fire
4. Discussion
4.1. Advantages of Temporal Modeling
4.2. Computational Trade-Offs and Model Efficiency
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LSTM | Long Short-Term Memory |
PM | Particulate Matter |
LUR | Land Use Regression |
MODIS | Moderate Resolution Imaging Spectroradiomete |
AOD | Aerosol Optical Depth |
MAIAC | Multi-Angle Implementation of Atmospheric Correction |
EPA | Environmental Protection Agency |
AQS | Air Quality System |
NOAA | National Oceanic and Atmospheric Administration |
HMS | Hazard Mapping System |
NDVI | Normalized Difference Vegetation Index |
KNN | K-Nearest Neighbor |
IDW | Inverse Distance Weighting |
Bi-LSTM | Bidirectional Long Short-Term Memory |
RNN | Recurrent Neural Networks |
RMSE | Root Mean Squared Error |
MBE | Mean Bias Error |
WSD | Wildfire Smoke Density |
TEMPO | Tropospheric Emissions: Monitoring of Pollution |
Appendix A. AOD Imputation Methods and Results
Random Forest | XGBoost | |||
---|---|---|---|---|
Val RMSE | Val MBE | Val RMSE | Val MBE | |
AOD 047 with mean filters | 31.75 ± 0.81 | −0.02 ± 0.10 | 36.36 ± 0.74 | 0.01 ± 0.10 |
AOD 047 w/o mean filters | 101.52 ± 1.22 | −0.02 ± 0.33 | 82.08 ± 0.96 | 0.27 ± 0.34 |
AOD 055 with mean filters | 23.12 ± 0.43 | −0.01 ± 0.08 | 26.64 ± 0.47 | 0.00 ± 0.07 |
AOD 055 w/o mean filters | 75.13 ± 0.88 | −0.16 ± 0.24 | 60.63 ± 1.02 | 0.08 ± 0.14 |
References
- Basith, S.; Manavalan, B.; Shin, T.H.; Park, C.B.; Lee, W.S.; Kim, J.; Lee, G. The impact of fine particulate matter 2.5 on the cardiovascular system: A review of the invisible killer. Nanomaterials 2022, 12, 2656. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, S.; Fan, C.; Bai, Z.; Yang, K. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2016, 23, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Ebisu, K.; Bell, M.L. Airborne PM2.5 chemical components and low birth weight in the northeastern and mid-Atlantic regions of the United States. Environ. Health Perspect. 2012, 120, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Shi, Y.; Luo, Y.; Liu, R.; Sun, W.; Sun, M. Assessing spatiotemporal air environment degradation and improvement represented by PM2.5 in China using two-phase hybrid model. Sustain. Cities Soc. 2020, 59, 102180. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Lee, Y.C. Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Heo, J.B.; Hopke, P.; Yi, S.M. Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 2009, 9, 4957–4971. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar]
- Yang, L.; Li, C.; Tang, X. The impact of PM2.5 on the host defense of respiratory system. Front. Cell Dev. Biol. 2020, 8, 91. [Google Scholar] [CrossRef]
- Song, Y.; Huang, B.; He, Q.; Chen, B.; Wei, J.; Mahmood, R. Dynamic assessment of PM2.5 exposure and health risk using remote sensing and geo-spatial big data. Environ. Pollut. 2019, 253, 288–296. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Wang, J.; Dubovik, O.; Schwartz, J.; Sun, L.; Li, C.; Liu, S.; Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nat. Commun. 2023, 14, 8349. [Google Scholar] [CrossRef]
- Lim, C.H.; Ryu, J.; Choi, Y.; Jeon, S.W.; Lee, W.K. Understanding global PM2.5 concentrations and their drivers in recent decades (1998–2016). Environ. Int. 2020, 144, 106011. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Martin, R.V.; Li, C.; Boys, B.L.; van Donkelaar, A.; Meng, J.; Pierce, J.R. Development and evaluation of processes affecting simulation of diel fine particulate matter variation in the GEOS-Chem model. Atmos. Chem. Phys. 2023, 23, 12525–12543. [Google Scholar] [CrossRef]
- Yu, T.; Wang, Y.; Huang, J.; Liu, X.; Li, J.; Zhan, W. Study on the regional prediction model of PM2.5 concentrations based on multi-source observations. Atmos. Pollut. Res. 2022, 13, 101363. [Google Scholar] [CrossRef]
- Lee, S.J.; Serre, M.L.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T.; Jerrett, M. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States. Environ. Health Perspect. 2012, 120, 1727–1732. [Google Scholar] [CrossRef]
- Requia, W.J.; Coull, B.A.; Koutrakis, P. Evaluation of predictive capabilities of ordinary geostatistical interpolation, hybrid interpolation, and machine learning methods for estimating PM2.5 constituents over space. Environ. Res. 2019, 175, 421–433. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, H.; Huang, D.; Fu, C. High temporal resolution land use regression models with POI characteristics of the PM2.5 distribution in Beijing, China. Int. J. Environ. Res. Public Health 2021, 18, 6143. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2 concentration in China. Atmos. Environ. 2018, 192, 48–54. [Google Scholar] [CrossRef]
- Chang, H.H.; Hu, X.; Liu, Y. Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 398–404. [Google Scholar] [CrossRef]
- Berrocal, V.J.; Guan, Y.; Muyskens, A.; Wang, H.; Reich, B.J.; Mulholland, J.A.; Chang, H.H. A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5 concentration. Atmos. Environ. 2020, 222, 117130. [Google Scholar] [CrossRef]
- Harishkumar, K.; Yogesh, K.; Gad, I. Forecasting air pollution particulate matter (PM2.5) using machine learning regression models. Procedia Comput. Sci. 2020, 171, 2057–2066. [Google Scholar]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total. Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.; Childs, M.L.; de la Cuesta, B.; Qiu, M.; Li, J.; Gould, C.F.; Heft-Neal, S.; Wara, M. The contribution of wildfire to PM2.5 trends in the USA. Nature 2023, 622, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Considine, E.M.; Maestas, M.M.; Li, G. Daily PM2.5 concentration estimates by county, ZIP code, and census tract in 11 western states 2008–2018. Sci. Data 2021, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xu, J.; Fan, M.; Yu, C.; Letu, H.; Zeng, Q.; Zhu, H.; Wang, H.; Wang, Y.; Shi, J. Estimating near-surface concentrations of major air pollutants from space: A universal estimation framework LAPSO. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- deSouza, P.; Kinney, P.L. On the distribution of low-cost PM2.5 sensors in the US: Demographic and air quality associations. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 514–524. [Google Scholar] [CrossRef]
- Mullen, C.; Flores, A.; Grineski, S.; Collins, T. Exploring the distributional environmental justice implications of an air quality monitoring network in Los Angeles County. Environ. Res. 2022, 206, 112612. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Thornton, M.; Shrestha, R.; Wei, Y.; Thornton, P.; Kao, S.; Wilson, B. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4; ORNL DAAC: Oak Ridge, TN, USA, 1840.
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Rolph, G.D.; Draxler, R.R.; Stein, A.F.; Taylor, A.; Ruminski, M.G.; Kondragunta, S.; Zeng, J.; Huang, H.C.; Manikin, G.; McQueen, J.T.; et al. Description and verification of the NOAA smoke forecasting system: The 2007 fire season. Weather. Forecast. 2009, 24, 361–378. [Google Scholar] [CrossRef]
- McNamara, D.; Stephens, G.; Ruminski, M.; Kasheta, T. The Hazard Mapping System (HMS)–NOAA multi-sensor fire and smoke detection program using environmental satellites. In Proceedings of the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, USA, 20–23 September 2004; Volume 22. [Google Scholar]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); Technical Report; US Geological Survey: Reston, VA, USA, 2011.
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef]
- Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015, arXiv:1508.04025. [Google Scholar]
- Bahdanau, D. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Ahsan, M.M.; Mahmud, M.P.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. Proc. Int. Conf. Mach. Learn. PMLR 2013, 28, 1139–1147. [Google Scholar]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Considine, E.M.; Hao, J.; deSouza, P.; Braun, D.; Reid, C.E.; Nethery, R.C. Evaluation of model-based PM2.5 estimates for exposure assessment during wildfire smoke episodes in the western US. Environ. Sci. Technol. 2023, 57, 2031–2041. [Google Scholar] [CrossRef] [PubMed]
- AirNow. The AQI Equation. Available online: https://forum.airnowtech.org/t/the-aqi-equation/169 (accessed on 5 December 2024).
- Crimmins, A.R.; Avery, C.W.; Easterling, D.R.; Kunkel, K.E.; Stewart, B.C.; Maycock, T.K. Fifth National Climate Assessment; USDA: Washington, DC, USA, 2023.
- Yu, X.; Lary, D.J.; Simmons, C.S. PM2.5 modeling and historical reconstruction over the continental USA utilizing GOES-16 AOD. Remote. Sens. 2021, 13, 4788. [Google Scholar] [CrossRef]
- Bai, K.; Chang, N.B.; Zhou, J.; Gao, W.; Guo, J. Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5/AOD relationship in eastern China using radiosonde data. Environ. Pollut. 2019, 251, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.P.; Moniz, N. Imbalanced regression and extreme value prediction. Mach. Learn. 2020, 109, 1803–1835. [Google Scholar] [CrossRef]
- Moniz, N.; Ribeiro, R.; Cerqueira, V.; Chawla, N. Smoteboost for regression: Improving the prediction of extreme values. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 150–159. [Google Scholar]
- Sorensen, C.; House, J.A.; O’Dell, K.; Brey, S.J.; Ford, B.; Pierce, J.R.; Fischer, E.V.; Lemery, J.; Crooks, J.L. Associations between wildfire-related PM2.5 and intensive care unit admissions in the United States, 2006–2015. GeoHealth 2021, 5, e2021GH000385. [Google Scholar] [CrossRef]
- Liu, T.; Panday, F.M.; Caine, M.C.; Kelp, M.; Pendergrass, D.C.; Mickley, L. Is the smoke aloft? Caveats regarding the use of the Hazard Mapping System (HMS) smoke product as a proxy for surface smoke presence across the United States. Int. J. Wildland Fire 2024, 33, WF23148. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, W.; Zhu, L.; Qiao, Q.; Kang, Y. Deep-learning architecture for PM2.5 concentration prediction: A review. Environ. Sci. Ecotechnol. 2024, 21, 100400. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Serrano, S.; Smith, N.A. Is attention interpretable? arXiv 2019, arXiv:1906.03731. [Google Scholar]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Li, Z. GeoShapley: A Game Theory Approach to Measuring Spatial Effects in Machine Learning Models. Ann. Am. Assoc. Geogr. 2024, 114, 1365–1385. [Google Scholar] [CrossRef]
- Zoogman, P.; Liu, X.; Suleiman, R.; Pennington, W.; Flittner, D.; Al-Saadi, J.; Hilton, B.; Nicks, D.; Newchurch, M.; Carr, J.; et al. Tropospheric emissions: Monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; de Lima, R.P.; Crooks, J.L.; Regan, E.A.; Karimzadeh, M. Increasing the Spatial Coverage of Atmospheric Aerosol Depth Measurements using Random Forest and Mean Filters. In Proceedings of the IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 3928–3931. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
Variables | Source | Spatial Resolution | Temporal Resolution | Number of Variables |
---|---|---|---|---|
Satellite-derived AOD of Blue (0.47 µm) and Green (0.55 µm) Band. | MODIS MCD19A2.061 | 1 km | Daily | 2 |
Meteorological conditions: Day Length (dayl), Precipitation (prcp), Shortwave Radiation (srad), Maximum Air Temperature (tmax), Minimum Air Temperature (tmin), and Water Vapor Pressure (vp). | Daymet | 1 km | Daily | 6 |
Meteorological conditions: Wind Direction (th), and Wind Velocity (vs) | gridMET | ∼4 km, 1/24th degree | Daily | 2 |
Wildfire Smoke Density (WSD). | NOAA’s Hazard Mapping System (HMS) Smoke Product | Polygon | Daily | 1 |
Elevation. | GMTED2010 | 1 km | NA | 1 |
Combined 16-Day NDVI. | MODIS MCD43A4 | 500 m | 16-Day | 1 |
Inverse Distance Weighted PM2.5 | NA | Daily | 1 | |
Spatial Features: Latitude and Longitude. | NA | NA | 2 | |
Temporal Encodings: Cos/Sin(Day of the Year, Month of the Year), and Year. | NA | Daily | 5 |
Model | Cross-Validation | Testing | ||||
---|---|---|---|---|---|---|
R2 |
RMSE [µg/m3] |
MBE [µg/m3] | R2 |
RMSE [µg/m3] |
MBE [µg/m3] | |
Random Forest | 0.69 | 3.98 | 0.00 | 0.68 | 4.00 | 0.00 |
LSTM | 0.72 | 3.77 | −0.11 | 0.72 | 3.81 | −0.10 |
Bi-LSTM (ours) | 0.74 | 3.67 | −0.09 | 0.75 | 3.59 | −0.08 |
Category (PM2.5 Range [µg/m3]) | Num. Samples | Random Forest | Bi-LSTM | ||
---|---|---|---|---|---|
RMSE [µg/m3] | MBE [µg/m3] | RMSE [µg/m3] | MBE [µg/m3] | ||
Good (0.0–12.0) | 2,329,390 | 2.39 | 0.88 | 2.29 | 0.63 |
Moderate (12.1–35.4) | 629,680 | 4.93 | −2.63 | 4.58 | −1.76 |
Unhealthy for Sensitive Groups (35.5–55.4) | 15,850 | 18.00 | −13.70 | 14.50 | −8.17 |
Unhealthy (55.5–150.4) | 4830 | 36.93 | −26.62 | 32.83 | −16.91 |
Very Unhealthy (150.5–250.4) | 250 | 111.25 | −102.59 | 85.32 | −67.68 |
Hazardous (250.5–∞) | 90 | 216.36 | −190.13 | 156.76 | −126.66 |
Region | Spring | Summer | Autumn | Winter | Avg |
---|---|---|---|---|---|
Midwest | 0.248 | 0.249 | 0.187 | 0.355 | 0.260 |
Northeast | 0.159 | 0.177 | 0.143 | 0.243 | 0.181 |
Northern Great Plains | 0.075 | 0.084 | 0.114 | 0.200 | 0.118 |
Northwest | 0.430 | 0.200 | 0.367 | 0.636 | 0.408 |
Southeast | 0.138 | 0.167 | 0.120 | 0.180 | 0.151 |
Southern Great Plains | 0.086 | 0.246 | 0.160 | 0.219 | 0.178 |
Southwest | 0.315 | 0.175 | 0.097 | 0.656 | 0.311 |
Avg | 0.207 | 0.185 | 0.170 | 0.356 | – |
Model | R2 | RMSE [µg/m3] | MBE [µg/m3] | R2 (>35 µg/m3) [µg/m3] | RMSE (>35 µg/m3) [µg/m3] | MBE (>35 µg/m3) [µg/m3] |
---|---|---|---|---|---|---|
Bi-LSTM w/o WSD | 0.72 | 3.78 | −0.27 | 0.41 | 25.22 | −11.99 |
Bi-LSTM w/ WSD | 0.75 | 3.59 | −0.08 | 0.44 | 23.87 | −9.62 |
Di et al. [21] (2019) Dataset | Our Dataset | |||||||
---|---|---|---|---|---|---|---|---|
Year |
RMSE [µg/m3] |
MBE [µg/m3] |
RMSE (>35 µg/m3) [µg/m3] |
MBE (>35 µg/m3) [µg/m3] |
RMSE [µg/m3] |
MBE [µg/m3] |
RMSE (>35 µg/m3) [µg/m3] |
MBE (>35 µg/m3) [µg/m3] |
2005 | 2.82 | −0.07 | 10.18 | −2.76 | 2.90 | 0.15 | 8.67 | −2.40 |
2006 | 2.51 | −0.19 | 12.73 | −3.23 | 2.69 | 0.15 | 12.15 | −3.61 |
2007 | 2.86 | −0.17 | 14.62 | −5.88 | 2.87 | 0.19 | 12.04 | −3.29 |
2008 | 2.56 | −0.21 | 16.36 | −7.28 | 2.56 | 0.18 | 13.74 | −4.00 |
2009 | 2.63 | −0.07 | 19.14 | −4.97 | 2.62 | 0.19 | 16.52 | −3.05 |
2010 | 2.47 | −0.03 | 15.47 | −3.62 | 2.51 | 0.23 | 14.39 | −4.32 |
2011 | 2.56 | −0.08 | 16.35 | −4.84 | 2.67 | 0.28 | 15.42 | −3.08 |
2012 | 2.86 | −0.11 | 26.76 | −8.03 | 2.76 | 0.25 | 21.98 | −2.21 |
2013 | 2.80 | −0.07 | 19.94 | −2.76 | 2.62 | 0.21 | 16.17 | −0.83 |
2014 | 2.53 | −0.16 | 20.48 | −2.06 | 2.43 | 0.13 | 15.50 | −4.43 |
2015 | 2.60 | −0.11 | 22.24 | −1.57 | 2.54 | 0.26 | 18.62 | −3.75 |
2016 | 3.54 | −0.25 | 33.83 | −16.07 | 2.37 | 0.29 | 20.06 | −5.97 |
Avg. | 2.73 | −0.13 | 19.01 | −5.25 | 2.63 | 0.21 | 15.44 | −3.41 |
Wei et al. [10] (2023) Dataset | Our Dataset | |||||||
---|---|---|---|---|---|---|---|---|
Year |
RMSE [µg/m3] |
MBE [µg/m3] |
RMSE (>35 µg/m3) [µg/m3] |
MBE (>35 µg/m3) [µg/m3] |
RMSE [µg/m3] |
MBE [µg/m3] |
RMSE (>35 µg/m3) [µg/m3] |
MBE (>35 µg/m3) [µg/m3] |
2017 | 5.55 | 2.28 | 26.95 | −9.15 | 2.58 | 0.21 | 18.40 | −1.20 |
2018 | 4.92 | 1.97 | 21.43 | −6.61 | 2.66 | 0.23 | 20.12 | −2.28 |
2019 | 3.37 | 1.25 | 20.49 | −14.08 | 1.96 | 0.25 | 16.19 | −4.20 |
2020 | 5.31 | 1.04 | 39.10 | −10.13 | 3.49 | 0.25 | 27.52 | −1.59 |
2021 | 4.36 | 1.17 | 24.26 | −9.27 | 3.17 | 0.21 | 23.88 | −6.14 |
Avg. | 4.70 | 1.54 | 26.45 | −9.85 | 2.73 | 0.24 | 20.78 | −3.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Crooks, J.L.; Regan, E.A.; Karimzadeh, M. High-Resolution Estimation of Daily PM2.5 Levels in the Contiguous US Using Bi-LSTM with Attention. Remote Sens. 2025, 17, 126. https://doi.org/10.3390/rs17010126
Wang Z, Crooks JL, Regan EA, Karimzadeh M. High-Resolution Estimation of Daily PM2.5 Levels in the Contiguous US Using Bi-LSTM with Attention. Remote Sensing. 2025; 17(1):126. https://doi.org/10.3390/rs17010126
Chicago/Turabian StyleWang, Zhongying, James L. Crooks, Elizabeth Anne Regan, and Morteza Karimzadeh. 2025. "High-Resolution Estimation of Daily PM2.5 Levels in the Contiguous US Using Bi-LSTM with Attention" Remote Sensing 17, no. 1: 126. https://doi.org/10.3390/rs17010126
APA StyleWang, Z., Crooks, J. L., Regan, E. A., & Karimzadeh, M. (2025). High-Resolution Estimation of Daily PM2.5 Levels in the Contiguous US Using Bi-LSTM with Attention. Remote Sensing, 17(1), 126. https://doi.org/10.3390/rs17010126