Assessing the Spatiotemporal Variations in the Hydrological Response of the Qin River Basin in Loess Plateau, China
Abstract
:1. Introduction
2. Geographical Setting, Data Sources and Research Framework
2.1. Study Area
2.2. Data
3. Research Methods
3.1. Trend Analysis of Hydrometeorological Factors
3.1.1. Time Series Analysis
3.1.2. Spatial Change Trend Analysis
3.2. Identification of Abrupt Changes Years and Division of Different Periods
3.3. Contribution of Climate Change and Human Activities to Runoff Dynamics
3.3.1. Empirical Statistical Methods
- (1)
- Runoff-R method
- (2)
- Budyko-based methods
3.3.2. Distributed Hydrological Model
4. Results
4.1. Trend and Abrupt Changes Analysis of Hydrometeorological Elements
4.1.1. Time Series Trend Analysis of Meteorological Elements
4.1.2. Division of Different Periods of Hydrometeorological Elements
4.2. Spatiotemporal Evolution of Underlying Surface
4.2.1. Analysis of Spatiotemporal Changes in LULC
4.2.2. Analysis of Spatiotemporal Changes in NDVI
4.3. Temporal and Spatial Evolution of Runoff in Flood Season
4.4. Quantitative Analysis of Different Impact Factors on Runoff Change
4.4.1. Runoff-R
4.4.2. Budyko Method
4.4.3. GBHM
4.4.4. Spatial Distribution Characteristics of the Contribution Rate of Runoff Change in Flood Season
5. Discussion
5.1. The Impact of Underlying Surface Changes on Basin Hydrological Systems
5.2. The Impact of Climate Change on Basin Hydrological Systems
5.3. Quantitative Results Comparison of Hydrological Response
5.4. Applicability of Quantitative Detection Methods
6. Limitations and Future Challenges
7. Conclusions
- (1)
- The runoff and precipitation during the flood season from 1971 to 2000 displayed an insignificant decreasing trend, and the temperature showed an insignificant increasing trend.
- (2)
- Under the disturbance of intense human activities, the LULC and NDVI of the basin have undergone changes. Grassland and construction land have become the fastest-growing land types. The NDVI showed a solid increasing trend, and the improved area accounted for 94.96% of the basin.
- (3)
- A comprehensive evaluation of and in the Qin River basin was conducted via various models. Climate change was determined to be the main driving factor of runoff change in the two variation periods A and B, and the average was 83.26% and 74.84, respectively. The quantitative simulation results of the distributed hydrological model and the calculation results of the two hydrological statistical model were compared and analyzed; the quantitative simulation results of the hydrological model had the best accuracy.
- (4)
- In variation period A, the area of > 50% was primarily distributed in the upper reaches of the basin, showing a centralized distribution. Compared with variation period A, the area of > 50% in the upstream river source area of variation period B was significantly reduced. In the downstream urban area, > 50% expanded significantly.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water Availability in snow–dominated regions. Nature 2005, 138, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.W.; Yuan, X.; Ji, P.; Sun, S.A.; Leng, G.Y. Shifts in trends and correlation of water scarcity and productivity over China. J. Hydrol. 2024, 37, 131187. [Google Scholar] [CrossRef]
- Zhang, W.B.; Liang, W.; Gao, X.R.; Li, J.R.; Zhao, X.N. Trajectory in water scarcity and potential water savings benefits in the Yellow River basin. J. Hydrol. 2024, 633, 130998. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Tran, T.N.D.; Do, S.K.; Nguyen, B.Q.; Tran, V.N.; Maria, G.L.; Sinicyn, G.; Lakshmi, V. Investigating the Future Flood and Drought Shifts in the Transboundary Srepok River Basin Using CMIP6 Projections. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7516–7529. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Yang, T. Variability of water resource in the Yellow River basin of past 50 years, China. Water Resour. Manag. 2009, 2, 1157–1170. [Google Scholar] [CrossRef]
- Xia, J.; Shi, W. Perspective on water security issue of changing environment in China. J. Hydraul. Eng. 2016, 47, 292–301. [Google Scholar] [CrossRef]
- Yao, Y.B.; Wang, R.Y.; Yang, J.H.; Yue, P.; Lu, D.R.; Xiao, G.J.; Wang, Y.; Liu, L.C. Changes in terrestrial surface dry and wet conditions on the Loess Plateau (China) during the last half century. J. Arid Land 2013, 5, 15–24. [Google Scholar] [CrossRef]
- Yang, B.; Jiao, J.Y.; Ma, X.W.; Zhao, W.T.; Ling, Q.; Zhang, X.H.; Han, J.Q.; Du, P.F.; Chen, Y.; Chen, H. Distribution and formation of soil balls under heavy rainstorm conditions in the northern Loess Plateau. J. Hydrol. 2023, 625, 130103. [Google Scholar] [CrossRef]
- Liu, Y.H.; Xu, Y.; Liu, Y. Population growth and temporal–spatial differentiation in Loess Plateau region in the last 2000 years. Prog. Geogr. 2012, 31, 156–166. [Google Scholar] [CrossRef]
- Guo, P.; Wang, F.; Zhou, X.W.; Lyu, J.Q. Variation characteristics of hydrological response to water conservancy construction in the Qinhe River Basin of the Loess Plateau, China. Hydrol. Process. 2023, 9, 37. [Google Scholar] [CrossRef]
- Miao, C.Y.; Kong, D.X.; Wu, J.W.; Duan, Q.Y. Functional degradation of the water–sediment regulation scheme in the lower Yellow River: Spatial and temporal analyses. Sci. Total Environ. 2016, 551–552, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Lyu, J.Q.; Yuan, W.N.; Zhou, X.W.; Mo, S.H.; Mu, D.R.; Luo, P.P. Detecting the Quantitative Hydrological Response to Changes in Climate and Human Activities at Temporal and Spatial Scales in a Typical Gully Region of the Loess Plateau, China. Water 2022, 14, 257. [Google Scholar] [CrossRef]
- Yang, T.; Xu, C.Y.; Shao, Q.X.; Chen, X.; Lu, G.H.; Hao, Z.C. Temporal and spatial patterns of low–flow changes in the Yellow River in the last half century. Stoch. Environ. Res. Risk Assess. 2010, 24, 297–309. [Google Scholar] [CrossRef]
- Labat, D.; Goddéris, Y.; Probst, J.L.; Guyot, J.L. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 2004, 27, 631–642. [Google Scholar] [CrossRef]
- Novotny, E.V.; Stefan, H.G. Stream flow in Minnesota: Indicator of climate change. J. Hydrol. 2007, 334, 319–333. [Google Scholar] [CrossRef]
- Xu, Z.X.; Jiang, Y. Studies on runoff evolution mechanism under changing environment: A state–of–the–art review. Hydro-Sci. Eng. 2022, 1, 9–18. [Google Scholar] [CrossRef]
- Paul, D.; Wagner, S.; Murty, B.; Balaji, N.; Shamita, K.; Nicola, F.P.F. Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environ. Model Softw. 2019, 122, 103987. [Google Scholar] [CrossRef]
- Paul, D.; Wagner, S.; Murty, B.; Balaji, N.; Lakshmi, N.K.; Sudheer, K.P.; Shamita, K.; Karl, S.; Peter, F. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Sci. Total Environ. 2016, 539, 153–164. [Google Scholar] [CrossRef]
- Helen, A.; Naghmeh, M.D.; Ali, M.; Zahra, A.; Majid, D.; Nicola, F.; Paul, D.W. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef]
- Li, L.J.; Zhang, L.; Wang, H.; Wang, J.; Yang, J.W.; Jiang, D.J.; Li, J.Y.; Qin, D.Y. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol. Process 2007, 10, 3485–3491. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhang, L.; Zhao, J.; Paul, R.; Peter, H. Response of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44, 56–64. [Google Scholar] [CrossRef]
- Zhao, G.J.; Tian, P.; Mu, X.M.; Jiao, J.Y.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin. China J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Zeng, S.D.; Zhan, C.S.; Sun, F.B.; Du, H.; Wang, F.Y. Effects of climate change and human activities on surface runoff in the Luan River Basin. Adv. Meteorol. 2015, 2015, 740239. [Google Scholar] [CrossRef]
- Ye, X.C.; Zhang, Q.; Liu, J.; Li, X.H.; Xu, C.Y. Distinguishing the relative impacts of cli–mate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Zuo, D.P.; Xu, Z.X.; Wu, W.; Zhao, J.; Zhao, F.F. Identification of streamflow response to climate change and human activities in the Wei River Basin, China. Water Resour. Manag. 2014, 28, 833–851. [Google Scholar] [CrossRef]
- Gao, G.; Fu, B.; Wang, S.; Liang, W.; Jiang, X.H. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557–558, 331–342. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.Y.; Singh, V.P.; Gu, X.H.; Chen, X.H. Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin, China. Hydrol. Process 2016, 30, 2562–2576. [Google Scholar] [CrossRef]
- Lyu, J.Q.; Mo, S.H.; Luo, P.P.; Zhou, M.M.; Shen, B.; Nover, D. A quantitative assessment of hydrological responses to climate change and human activities at spatiotemporal within a typical catchment on the Loess Plateau, China. Quat. Int. 2019, 527, 1–11. [Google Scholar] [CrossRef]
- Gbohoui, Y.P.; Paturel, J.; Fowe, T.; Mounirou, L.A.; Yonaba, R.; Karambiri, H.; Yacouba, H. Impacts of climate and environmental changes on water resources: A multi-scale study based on Nakanbé nested watersheds in West African Sahel. J. Hydrol. Reg. Stud. 2012, 35, 100828. [Google Scholar] [CrossRef]
- Xu, Z.X.; Ban, C.G.; Zhang, R. Evolution law, attribution regional characteristics of runoff for major rivers in China. Adv. Sci. Technol. Water Resour. 2024, 44, 1–8. [Google Scholar] [CrossRef]
- Wu, J.W.; Miao, C.Y.; Zhang, X.M.; Yang, T.T.; Duan, Q.Y. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef]
- Liu, Z.P.; Wang, Y.Q.; Shao, M.G.; Jia, X.X.; Li, X.L. Spatiotemporal analysis of multiscalar drought characteristics across the loess plateau of China. J. Hydrol. 2016, 534, 281–299. [Google Scholar] [CrossRef]
- Wang, H.J.; Yang, Z.S.; Saito, Y.; Liu, J.P.; Sun, X.X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Li, Y.Y.; Rong, T.Q.; Qin, M.Z.; Zhang, P.Y.; Yang, D.; Liu, Z.Y.; Zhang, Y.; Zhu, H.; Song, M.L. Spatiotemporal characteristics of soil erosion in a typical watershed consisting of different landscape: A case study of the Qin River Basin. PLoS ONE 2022, 17, e0275470. [Google Scholar] [CrossRef]
- Lyu, J.Q. The Hydrological Response to Climate Change and Human Activity in Typical Regions, Northwest China. Ph.D. Thesis, Xi’an University of Technology, Xi’an, China, 2012. [Google Scholar]
- Liu, Y.Q.; Huang, S.Z.; Guo, Y.; Liu, Y.J.; Li, Z.Y.; Huang, Q. Propagation threshold of meteorological drought to different levels of hydrological drought: A case study of Qinhe River Basin. J. Hydraul. Eng. 2022, 41, 9–19. [Google Scholar] [CrossRef]
- Yang, D.W.; Li, C.; Hu, H.P.; Lei, Z.D.; Yang, S.X.; Tetsuya, K.; Toshio, K.; Katumi, M. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resour. Res. 2004, 40, W06502. [Google Scholar] [CrossRef]
- Liu, J. Remote Sensing Monitoring Dataset of Land Use Status in Six Provinces in Western China for Many Years (1970s, 1980s, 1995, 2000, 2005, 2010, 2015); National Tibetan Plateau Data Center: Xining, China, 2019. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; Saleous, N.E. An extended AVHRR-8km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Jain, S.; Lall, U. Magnitude and timing of annual maximum floods: Trends and large scale climatic associations for the Blacksmith Fork River, Utah. Water Resour. Res. 2000, 36, 3641–3651. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Zhang, J.; Man, Z.M.; Xiao, W.W.; Shen, Z.Z. Research on sequence reconstruction and characteristics diagnosis of droughts and floods in the Middle Yellow River since the Qing Dynasty: 1644–2009. Geogr. Res. 2013, 32, 1579–1590. [Google Scholar] [CrossRef]
- Sun, S.; Barraud, S.; Branger, F.; Braud, I.; Castebrunet, H. Urban hydrologic trend analysis based on rainfall and runoff data analysis and conceptual model calibration. Hydrol. Process 2017, 31, 1349–1359. [Google Scholar] [CrossRef]
- Cao, L.; Xu, J.H.; Chen, Y.N.; Li, W.H.; Yang, Y.; Hong, Y.L.; Li, Z. Understanding the dynamic coupling between vegetation cover and climatic factors in a semiarid region—A case study of Inner Mongolia, China. Ecohydrology 2012, 6, 917–926. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Shao, M.; Li, X. Temporal and Spatial Evolution, Prediction, and Driving-Factor Analysis of Net Primary Productivity of Vegetation at City Scale: A Case Study from Yangzhou City, China. Sustainability 2023, 15, 14518. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land–cover change detection using multitemporal MODIS NDVI data. Remote Sens. Environ. 2009, 105, 142–154. [Google Scholar] [CrossRef]
- Zhang, Y.R.; He, Y.; Li, Y.L.; Jia, L.P. Spatiotemporal variation and driving forces of NDVI from 1982 to 2015 in the Qinba Mountains, China. Environ. Sci. Pollut. Res. 2022, 29, 52277–52288. [Google Scholar] [CrossRef]
- Kundzewicz, W.Z.; Robson, A.J. Change detection in hydrological records-a review of the methodology/Revue methodologique de la detection de changements dans les chroniques hydrologiques. Hydrol. Sci. J. 2004, 49, 7–19. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-parametric approach to the change-point problem. J. R. Stat. Soc. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, G.J.; Mu, X.M.; Gao, P.; Sun, W.Y. Regime shift identification of runoff and sediment loads in Yellow River Basin, China. Water 2014, 6, 3012–3032. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009, 368, 117–130. [Google Scholar] [CrossRef]
- Zhao, C.S.; Liu, C.M.; Dai, X.Q.; Liu, T.; Duan, Z.; Liu, L.F.; Mitrovic, S.M. Separation of the impacts of climate change and human activity on runoff variations. J. Hydrol. 2015, 60, 234–246. [Google Scholar] [CrossRef]
- Jiang, S.H.; Ren, L.L.; Yong, B.; Yang, X.L.; Liu, X.F. Analysing the effects of climate variability and human activities on runoff from the Laohahe Basin in northern China. Hydrol. Res. 2012, 43, 3–13. [Google Scholar] [CrossRef]
- Budyko, M.I. Evaporation under Natural Conditions; Office of Technical Services, U.S. Department of Commerce: Washington, DC, USA, 1948.
- Budyko, M.I. Climate and Life; Academic Press: Cambridge, MA, USA, 1976; Volume 6, pp. 461–463. [Google Scholar] [CrossRef]
- Fuh, B.P. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar] [CrossRef]
- Yang, H.B.; Yang, D.W.; Hu, Q.F. An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff. Water Resour. Res. 2014, 50, 9620–9629. [Google Scholar] [CrossRef]
- Choudhury, B.J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Wang, D.B.; Tang, Y. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophys. Res. Lett. 2014, 41, 4569–4577. [Google Scholar] [CrossRef]
- Gong, Y.; Mo, S.H.; Li, Z.L.; Shen, B. Study on runoff response in Xiaoli Basin based on Budyko equation. J. Xi’an Univ. Technol. 2018, 34, 439–446. [Google Scholar] [CrossRef]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. One–dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two–layer variable infiltration capacity model. J. Geophys. Res. 1996, 101, 21403–21422. [Google Scholar] [CrossRef]
- Yang, D.W.; Herath, S.; Musiake, K. A hillslope–based hydrological model using catchment area and width function. Hydrol. Sci. J. 2022, 47, 49–65. [Google Scholar] [CrossRef]
- Xu, X.Y.; Yang, H.B.; Yang, D.W.; Ma, H. Assessing the impacts of climate variability and human activities on annual runoff in the Luan River basin, China. Hydrol Res. 2013, 44, 940–952. [Google Scholar] [CrossRef]
- Mu, X.M.; Zhang, L.; Mcvicar, T.R.; Chille, B.S.; Gau, P. Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China. Hydrol. Process 2007, 21, 2124–2134. [Google Scholar] [CrossRef]
- Zhao, G.J.; Mu, X.M.; Jiao, J.Y.; An, Z.F.; Klik, A.; Wang, F.; Jiao, F.; Yue, X.L.; Gao, P.; Sun, W.Y. Evidence and Causes of Spatiotemporal Changes in Runoff and Sediment Yield on the Chinese Loess Plateau. Land Degrad. Dev. 2017, 28, 579–590. [Google Scholar] [CrossRef]
- Rungee, J.; Bales, R.; Goulden, M. Evapotranspiration response to multiyear dry periods in the semiarid western United States. Hydrol. Process 2019, 33, 182–194. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, P.D.; Liu, M.; Xu, K.R.; Zhang, N.; Jiang, P.; Wang, W.J.; Jiang, Y.G. Spatial pattern of water conservation function and ecological management suggestions in the catchment area of the upper reaches of Qinhe River in the Yellow River Basin from 1990 to 2020. Geology 2024, 1–15. Available online: https://link.cnki.net/urlid/11.1167.P.20231120.1259.012 (accessed on 1 April 2024).
- Bai, P.; Liu, W.H.; Guo, M.J. Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China. Theor. Appl. Climatol. 2014, 117, 293–301. [Google Scholar] [CrossRef]
- Yan, D.N.; Wu, X.Y.; Wang, B.H.; Hao, H.K. Characteristics and driving forces of changes in vegetation coverage on the Loess Plateau, 1982–2015. Acta Ecol. Sin. 2023, 43, 9794–9804. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.X.; Zhu, Y.J.; Liu, Z.P. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 2010, 151, 437–448. [Google Scholar] [CrossRef]
- Cao, S.X. Impact of China’s Large-Scale Ecological Restoration Program on the Environment and Society in Arid and Semiarid Areas of China: Achievements, Problems, Synthesis, and Applications. Crit. Rev. Environ. Sci. Technol. 2011, 41, 317–335. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.L.; Wang, S.; Ciais, P.; Zeng, Z.Z.; Lv, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Liu, X.Q.; Zhao, J.B.; Yu, X.F. Study on the Climatic Warming-drying Trend in the Loess Plateau and the Countermeasures. Arid Zone Res. 2006, 4, 627–631. [Google Scholar] [CrossRef]
- Tian, P.; Mu, X.M.; Liu, J.L.; Hu, J.F.; Gu, C.J. Impacts of Climate Variability and Human Activities on the Changes of Runoff and Sediment Load in a Catchment of the Loess Plateau, China. Adv. Meteorol. 2016, 2016, 4724067. [Google Scholar] [CrossRef]
- Chang, Y.P.; Ding, Y.J.; Zhao, Q.D.; Zhang, S.Q. Attributing Evapotranspiration Changes with an Extended Budyko Framework Considering Glacier Changes in a Cryospheric-Dominated Watershed. Remote Sens. 2023, 15, 558. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour Res. 2009, 45, 56–64. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Maximum surface water storage (mm) | 11 | Slope shape factor | 0.21 |
Hydraulic conductivity of topsoil (mm/h) | 1.2 | Crop coefficient | 0.8 |
Hydraulic conductivity of subsoil (mm/h) | 1.6 | Manning coefficient | 0.05 |
Hydraulic conductivity of unsaturated soil (mm/h) | 0.4 | Channel roughness | 0.06 |
Statistical Elements | Sp | M-K | Overall Trend |
---|---|---|---|
Runoff | −3.15 * | −3.02 * | Downward * |
Precipitation | −1.18 | −1.23 | Downward |
Temperature | 4.41 * | 3.55 * | Upward * |
Statistical Elements | M-K | T-Test | Period |
---|---|---|---|
Runoff | 1977, 1981 | 1982, 1991 | Natural period: 1971–1981 |
Precipitation | 1986, 1989, 1998 | 1984, 1993 | Variation period A: 1982–1991 |
Temperature | 1991, 1994 | 1982, 1990 | Variation period B: 1992–2000 |
Period | Single LULC Dynamics (%) | ||||
---|---|---|---|---|---|
Grassland | Farmland | Construction Land | Forest | Water | |
Natural period | −0.034 | 0.024 | 0.206 | −0.002 | 0.001 |
Variation period A | 0.357 | −0.091 | −0.095 | −0.078 | −0.002 |
Variation period B | 0.292 | −0.067 | 0.303 | −0.08 | –0.001 |
Statistical Elements | M-K Trend Test | Hurst Index | ||
---|---|---|---|---|
ZValue | Significance | Hvalue | Persistence | |
Variation period A | 1.76 | Non-significant | 0.74 | Strong persistence |
Variation period B | 5.34 | Significant | 0.81 | Strong persistence |
Period | Precipitation (mm) | Runoff Depth | Actual Evaporation | Soil Water | |||
---|---|---|---|---|---|---|---|
(mm) | R/P | (mm) | E/P | (mm) | S/P | ||
Natural period | 14.6 | 8.51 | 0.58 | 4.73 | 0.32 | 2.71 | 0.19 |
Variation period A | 13.07 | 7.01 | 0.54 | 4.78 | 0.37 | 2.85 | 0.22 |
Variation period B | 12.55 | 5.92 | 0.47 | 4.61 | 0.38 | 2.88 | 0.23 |
Change Segments | Runoff Depth | Climate Change | Human Activities | |||
---|---|---|---|---|---|---|
Real Value | Simulated Value | Variation | Variation | |||
Natural period | 34.3 mm | |||||
Variation period A | 20.97 mm | 21.57 mm | 12.74 mm | 95.53% | 0.6 mm | 4.47% |
Variation period B | 14.93 mm | 18.42 mm | 15.88 mm | 81.95% | 3.5 mm | 18.05% |
Change Segments | Climate Change | Human Activities | ||
---|---|---|---|---|
Contribution | Contribution | |||
Variation period A | 13.15 mm | 67.28% | 6.39 mm | 32.72% |
Variation period B | 8.13 mm | 65.80% | 4.23 mm | 34.20% |
Change Segments | Climate Change | Human Activities | ||
---|---|---|---|---|
Contribution | Contribution | |||
Variation period A | 6.17 mm | 86.96% | 0.93 mm | 13.04% |
Variation period B | 4.54 mm | 76.77% | 1.38 mm | 23.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Wang, Y.; Yan, Y.; Wang, F.; Lyu, J.; Ge, W.; Chen, H.; Jiao, J. Assessing the Spatiotemporal Variations in the Hydrological Response of the Qin River Basin in Loess Plateau, China. Remote Sens. 2024, 16, 1603. https://doi.org/10.3390/rs16091603
Guo P, Wang Y, Yan Y, Wang F, Lyu J, Ge W, Chen H, Jiao J. Assessing the Spatiotemporal Variations in the Hydrological Response of the Qin River Basin in Loess Plateau, China. Remote Sensing. 2024; 16(9):1603. https://doi.org/10.3390/rs16091603
Chicago/Turabian StyleGuo, Peng, Yingjie Wang, Yilin Yan, Fei Wang, Jiqiang Lyu, Wenyan Ge, Hao Chen, and Juying Jiao. 2024. "Assessing the Spatiotemporal Variations in the Hydrological Response of the Qin River Basin in Loess Plateau, China" Remote Sensing 16, no. 9: 1603. https://doi.org/10.3390/rs16091603
APA StyleGuo, P., Wang, Y., Yan, Y., Wang, F., Lyu, J., Ge, W., Chen, H., & Jiao, J. (2024). Assessing the Spatiotemporal Variations in the Hydrological Response of the Qin River Basin in Loess Plateau, China. Remote Sensing, 16(9), 1603. https://doi.org/10.3390/rs16091603