Spatiotemporal Evolution Characteristics of 2022 Pakistan Severe Flood Event Based on Multi-Source Satellite Gravity Observations
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. GRACE/GRACE-FO Data
3.2. Swarm Data
3.3. ERA5-Land Dataset
3.4. ET Data
3.5. Climate Index
3.6. Global Land Data Assimilation System Model
3.7. Auxiliary Data
4. Method
4.1. Uncertainty Assessment and Improvement
4.2. Detrend Approach
4.3. SPI
4.4. GRACE-Based Drought Severity Index (GRACE-DSI)
4.5. Standardized TEM Index
4.6. Flood Characteristics
4.7. Weight Migration
5. Results
5.1. TWSC Evaluation
5.2. Spatiotemporal Evolution of Flood
5.3. Flood Causes
6. Discussion
6.1. Flood Propagation
6.2. Flood Impact
6.3. Driving Factors of the Flood
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Review article “Assessment of economic flood damage”. Nat. Hazard Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- Cui, L.; He, M.; Zou, Z.; Yao, C.; Wang, S.; An, C.; Wang, X. The Influence of Climate Change on Droughts and Floods in the Yangtze River Basin from 2003 to 2020. Sensors 2022, 22, 8178. [Google Scholar] [CrossRef] [PubMed]
- Hallegatte, S.; Green, C.; Nicholls, R.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.; Kriaučiūnienë Kundzewicz, Z.; Lang, M.; Llasat, M.; et al. Understangding flood regime changes in Europe: A state-of -the-art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef]
- The West Is Ignoring Pakistan’s Super-Floods. Heed This Warning: Tomorrow It Will Be You. Available online: https://www.theguardian.com/commentisfree/2022/sep/08/pakistan-floods-climate-crisis (accessed on 19 October 2023).
- Rich Countries Caused Pakistan’s Catastrophic Flooding. Their Response? Inertia and Apathy. Available online: https://www.theguardian.com/commentisfree/2022/sep/05/rich-countries-pakistan-flooding-climate-crisis-cop27 (accessed on 19 October 2023).
- Lotto, F.; Zachariah, M.; Saeed, F.; Siddiqi, A.; Shahzad, K.; Mushtaq, H.; Arulalan, T.; AchutaRao, K.; Chaithra, S.; Barnes, C.; et al. Climate change likely increased extreme monsoon rainfall, flooding highly vulnerablecommunities in Pakistan. Environ. Res. Climate 2023, 2, 025001. [Google Scholar]
- Sarkar, S. Pakistan floods pose serious health challenges. BMJ 2022, 378, 2141. [Google Scholar] [CrossRef]
- Mirza, M. Climate change, flooding in South Asia and implications. Regional Environ. Change 2011, 11, 95–107. [Google Scholar] [CrossRef]
- Owusu, M.; Nursey-Bray, M.; Rudd, D. Gendered perception and vulnerability to climate change in urban slum communities in Accra, Ghana. Regional Environ. Change 2019, 19, 13–25. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; De Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Global Climate Risk Index. Available online: https://www.germanwatch.org/sites/default/files/Global%20Climate%20Risk%20Index%202021_2.pdf (accessed on 19 October 2023).
- Li, X.; Zhong, B.; Li, J.; Wang, H. Investigating terrestrial water storage changes and their driving factors in the Southwest River basin of China using geodetic data. IEEE Trans. Geosci. Remote sens. 2023, 61, 5922115. [Google Scholar] [CrossRef]
- Cui, L.; Luo, C.; Yao, C.; Zou, Z.; Wu, G.; Li, Q.; Wang, X. The influence of climate change on forest fires in Yunnan province, Southwest China detected by GRACE satellites. Remote Sens. 2022, 14, 712. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, Z.; Zhou, Z.; Li, Q.; Zhong, B.; Lu, B.; Hsu, H. Impact of different kinematic empirical parameters processing strategies on temporal gravity field model determination. J. Geophys. Res. Solid Earth 2018, 123, 252–276. [Google Scholar] [CrossRef]
- Zhong, B.; Li, Q.; Li, X.; Chen, J. Basin-scale terrestrial water storage changes inferred from GRACE-based geopotential differences: A case study of the Yangtze River basin, China. Geophys. J. Int. 2023, 223, 1318–1338. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Zou, Z.; Li, Y.; Cui, L.; Yao, C.; Xu, C.; Yin, M.; Zhu, C. Spatiotemporal evaluation of the flood potential index and its driving factors across the Volga River basin based on combined satellite gravity observation. Remote Sens. 2023, 15, 4144. [Google Scholar] [CrossRef]
- Reager, J.; Famiglietti, J. Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett. 2009, 36, L23402. [Google Scholar] [CrossRef]
- Chen, J.; Wilson, C.; Tapley, B. The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour. Res. 2010, 46, WE009383. [Google Scholar] [CrossRef]
- Long, D.; Shen, Y.; Sun, A.; Hong, Y.; Longuevergne, L.; Yang, Y.; Li, B.; Chen, L. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ. 2014, 155, 145–160. [Google Scholar] [CrossRef]
- Molodtsova, T.; Molodtsov, S.; Kirilenko, A.; Zhang, X.; Vanlooy, J. Evaluating flood potential with GRACE in the United States. Nat. Hazards Earth Syst. Sci. 2016, 16, 1011–1018. [Google Scholar] [CrossRef]
- Yirdaw, S.Z.; Snelgrove, K.R.; Agboma, C.O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. J. Hydrolo. 2008, 356, 84–92. [Google Scholar] [CrossRef]
- Wang, J.H.; Jiang, D.; Huang, Y.H.; Wang, H. Drought analysis of the Haihe River basin based on GRACE terrestrial water storage. Sci. World J. 2014, 2014, 578372. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Wen, L. Satellite gravity measurement monitoring terrestrial water storage and drought in the continental United States. Sci. Rep. 2016, 6, 19909. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Yin, M.; Huang, Z.; Yao, C.; Wang, X.; Lin, X. The drought events over the Amazon River basin from 2003 to 2020 detected by GRACE/GRACE-FO and Swarm satellites. Remote Sens. 2022, 14, 2887. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, J.; Guo, S.; Gu, L.; Xiong, F.; Li, N. Integrated flood potential index for flood monitoring in the GRACE era. J. Hydrol. 2021, 603, 127115. [Google Scholar] [CrossRef]
- Da Encarnação, T.; Visser, P.; Arnold, D.; Bezdek, A.; Doornbos, E.; Ellmer, M.; Guo, J.; van den IJssel, J.; Iorfida, E.; Jäggi, A.; et al. Description of the multi-approach gravity field models from Swarm GPS data. Earth Syst. Sci. Data 2020, 12, 1385–1417. [Google Scholar] [CrossRef]
- Cui, L.; Song, Z.; Luo, Z.; Zhong, B.; Wang, X.; Zou, Z. Comparison of terrestrial water storage changes derived from GRACE/GRACE-FO and Swarm: A case study in the Amazon River Basin. Water 2020, 12, 3128. [Google Scholar] [CrossRef]
- Zhang, C.; Shum, C.; Bezdek, A.; Bevis, M.; de Encarnação, T.; Tapley, B.; Zhang, Y.; Su, X.; Shen, Q. Rapid mass loss in west Antractica revealed by Swarm Gravimetry in the Absence of GRACE. Geophys. Res. Lett. 2021, 48, e2021GL095141. [Google Scholar] [CrossRef]
- Cui, L.; Yin, M.; Zou, Z.; Yao, C.; Xu, C.; Li, Y.; Mao, Y. Spatiotemporal change in evapotranspiration acorss the Indus River basin detected by combining GRACE/GRACE-FO and Swarm observations. Remote Sens. 2023, 15, 4469. [Google Scholar] [CrossRef]
- Abid, M.; Scheffran, J.; Schneider, U.; Elahi, E. Farmer perceptions of climate change, observed trend and adaptation of agriculture of Pakistan. Environ. Manag. 2019, 63, 110–123. [Google Scholar] [CrossRef]
- Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaption and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Zhang, C.; Yao, C.; Luo, Z.; Wang, X.; Li, Q. Analysis of the influencing factors of drought events based on GRACE data under different climatic conditions: A case study in Mainland China. Water 2021, 13, 2575. [Google Scholar] [CrossRef]
- Jean, Y.; Meyer, U.; Jäggi, A. Combination of GRACE monthly gravity field solutions from different processing strategies. J. Geod. 2018, 92, 1313–1328. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. Royal Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Khan, M.; Liaqat, U.; Baik, J. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric. Forest Meteorol. 2018, 252, 256–268. [Google Scholar] [CrossRef]
- Martens, B.; Gonzalez Miralles, D.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.; Fernández-Prieto, D.; Beck, H.; Dorigo, W.; Verhoest, N. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Cayan, D.; Redmond, K.; Riddle, L. ENSO and hydrologic extremes in the western United States. J. Clim. 2010, 12, 2881–2893. [Google Scholar] [CrossRef]
- Cui, L.; Chen, X.; An, J.; Yao, C.; Su, Y.; Zhu, C.; Li, Y. Spatiotemporal variation characteristics of drought and their connection to climate variability and human activity in the Pearl River basin, South China. Water 2023, 15, 1720. [Google Scholar] [CrossRef]
- Zhou, Z.; Xie, S.; Zhang, R. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA 2021, 118, e2022255118. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. American Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- MODIS Land Cover Type/Dynamics. Available online: https://modis.gsfc.nasa.gov/data/dataprod/mod12.php (accessed on 19 October 2023).
- Zhang, B.; Liu, L.; Yao, Y.; van Dam, T.; Khan, S.A. Improving the estimate of the secular variation of Greenland ice mass in the recent decades by incorporating a stochastic process. Earth Planet Sci. Lett. 2020, 549, 116518. [Google Scholar] [CrossRef]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Cui, L.; Zhu, C.; Wu, Y.; Yao, C.; Wang, X.; An, J.; Wei, P. Natural- and human-induced influences on terrestrial water storage change in Sichuan, Southwest China from 2003 to 2020. Remote Sens. 2022, 14, 1369. [Google Scholar] [CrossRef]
- Bai, H.; Ming, Z.; Zhong, Y.; Zhong, M.; Kong, D.; Ji, B. Evaluation of evapotranspiration for exorheic basins in China using an improved estimate of terrestrial water storage change. J. Hydrol. 2022, 610, 127885. [Google Scholar] [CrossRef]
- Cui, L.; Zhu, C.; Zou, Z.; Yao, C.; Zhang, C.; Li, Y. The spatiotemporal characteristics of wildfires across Australia and their connection to extreme climate based on a combined hydrological drought index. Fire 2023, 6, 42. [Google Scholar] [CrossRef]
- Vicente-Serrano, S. Differences in spatial patterns of drought on different time scales: An analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, C.; Luo, Z.; Wang, X.; Li, Q.; Liu, L. Using the local drought data and GRACE/GRACE-FO data to charactrize the drought events in Mainland China from 2002 to 2020. Appl. Sci. 2021, 11, 9594. [Google Scholar] [CrossRef]
- Hao, Z.; Aghakouchak, A. Multivariate standardizad drought Index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef]
- Li, J.; Chunyu, X.; Huang, F. Land Use Pattern Changes and the Driving Forces in the Shiyang River Basin from 2000 to 2018. Sustainability 2022, 15, 154. [Google Scholar] [CrossRef]
- Cui, L.; Zhong, L.; Meng, J.; An, J.; Zhang, C.; Li, Y. Spatiotemporal evolution features of the 2022 compound hot and drought event over the Yangtze River basin. Remote Sens. 2024, 16, 1367. [Google Scholar] [CrossRef]
- Qureshi, A.; Mc Cornick, P.; Sarwar, A.; Sharma, B. Chanllenges and prospects of sustainable groundwater management in the Indus basin, Pakistan. Water Resour. Mag. 2010, 24, 1551–1569. [Google Scholar] [CrossRef]
- “Triple” La Niña Event. Available online: https://baijiahao.baidu.com/s?id=1748984438589596831&wfr=spider&for=pc (accessed on 19 October 2023).
- La Niña Times Three. Available online: https://earthobservatory.nasa.gov/images/150691/la-nina-times-three (accessed on 19 October 2023).
- Subtropical High Pressure, Why This Summer Is Abnormal. Available online: http://finance.people.com.cn/n1/2022/0905/c1004-32519166.html (accessed on 19 October 2023).
- Webster, P.; Moore, A.; Loschnigg, J.; Leben, R. Coupled ocean-atmospjere dynamics in the Indian Ocean during 1997–1998. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Indian Ocean Dipole. Available online: https://www.jamstec.go.jp/aplinfo/sintexf/e/iod/about_iod.html (accessed on 19 October 2023).
- Climate Change Could Increase Heavy Rainfall in Pakistan. Available online: https://new.qq.com/rain/a/20220920A06N6E00 (accessed on 19 October 2023).
- Why Are Pakistan’s Floods so Extreme This Year? Available online: https://www.nature.com/articles/d41586-022-02813-6 (accessed on 19 October 2023).
- Mapping the Scale of Damage by the Catastrophic Pakistan Floods Infographic News Al Jazeera. Available online: https://www.aljazeera.com/news/longform/2022/9/16/mapping-the-scale-of-destruction-of-the-pakistan-floods (accessed on 19 October 2023).
- Floods Ravage Pakistan, WFP Scales up Assistance. Available online: https://www.deepl.com/translator#zh/en (accessed on 19 October 2023).
- United Nations and Pakistan Launch Emergency Fund-Raising Progamme for Floods. Available online: https://www.gdtv.cn/tv/32764f13b4f5b9e40f08889189faee43 (accessed on 19 October 2023).
- Nanditha, J.; Kushwaha, A.; Singh, R.; Malik, I.; Solanki, H.; Chuphal, D.; Danger, S.; Mahto, S.; Vegad, U.; Mishra, V. The Pakistan flood of August 2022: Causes and implications. Earth’s Future 2023, 11, e2022EF003230. [Google Scholar] [CrossRef]
- Climate Change Made Devastating Early Heat in India and Pakistan 30 Times More Likely. Available online: https://rcc.imdpune.gov.in/Annual_Climate_Summary/annual_summary_2015.pdf (accessed on 19 October 2023).
- O’Gorman, P. Precipitation extremes under climate change. Current Clim. Change Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Pfahl, S.; O’Gorman, P.; Fischer, E. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 2017, 7, 423–427. [Google Scholar] [CrossRef]
Dataset | Short Name | Time Span | Spatial Resolution | Temporal Resolution | Data Source |
---|---|---|---|---|---|
GRACE/GRACE-FO SH | CSR | 2003–2022 | 1° × 1° | Monthly | http://icgem.gfz-potsdam.de/home, accessed on 10 November 2023 |
GFZ | |||||
JPL | |||||
GRACE/GRACE-FO Mascon | CSR | 2003–2022 | 0.25° × 0.25° | Monthly | https://www2.csr.utexas.edu/grace/RL05_mascons.html, accessed on 10 November 2023 |
JPL | 0.5° × 0.5° | https://grace.jpl.nasa.gov/data/get-data/, accessed on 10 November 2023 | |||
Swarm SH | - | 2014–2022 | 1° × 1° | Monthly | http://icgem.gfz-potsdam.de/home, accessed on 10 November 2023 |
PPT | ERA5 | 2003–2022 | 0.1° × 0.1° | Monthly | https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset, accessed on 10 November 2023 |
TEM | |||||
Runoff | |||||
SM | |||||
ET | GLEAM 3.7a | 2003–2022 | 0.25° × 0.25° | Monthly | https://www.gleam.eu/, accessed on 10 November 2023 |
SM | GLDAS | 2003–2022 | 1° × 1° | Monthly | https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS_NOAH025_M_2.1&page=1, accessed on 10 November 2023 |
SWE | |||||
PCW | |||||
Land cover type | MODIS | 2022 | 0.05° × 0.05° | Yearly | https://modis.gsfc.nasa.gov/data/dataprod/mod12.php, accessed on 10 November 2023 |
Niño3.4 index | ENSO | 2003–2022 | - | Monthly | https://www.cpc.ncep.noaa.gov/data/indices/, accessed on 10 November 2023 |
DMI | IOD | 2003–2022 | - | Monthly | https://www.cpc.ncep.noaa.gov/data/indices/, accessed on 10 November 2023 |
Geopotential Height | - | 2003–2022 | 2.5° × 2.5° | Monthly | https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html, accessed on 10 November 2023 |
Category | Description | SPI |
---|---|---|
S4 | Extreme wet | SPI ≥ 2.0 |
S3 | Severe wet | 1.5 ≤ SPI < 2.0 |
S2 | Moderate wet | 1.0 ≤ SPI < 1.5 |
S1 | Light wet | 0.5 ≤ SPI < 1.0 |
S0 | No wet | SPI < 0.5 |
Category | Description | GRACE-DSI |
---|---|---|
W5 | Exceptional wet | GRACE-DSI ≥ 2.0 |
W4 | Extreme wet | 1.6 ≤ GRACE-DSI < 2.0 |
W3 | Severe wet | 1.3 ≤ GRACE-DSI < 1.6 |
W2 | Moderate wet | 0.8 ≤ GRACE-DSI < 1.3 |
W1 | Light wet | 0.5 ≤ GRACE-DSI < 0.8 |
W0 | No wet | GRACE-DSI < 0.5 |
TWSC | Long-Term Change Trend | Annual Amplitude | Annual Phase |
---|---|---|---|
GRACE | −0.39 ± 0.35 mm/a | 0.25 cm | −1.35 rad |
Swarm | −0.35 ± 0.30 mm/a | 0.33 cm | −1.78 rad |
Region | Duration (Months) | Peak | Severity | Max FAR |
---|---|---|---|---|
Balochistan | 2 (Jul to Aug) | 2.354 (Jul) | 3.832 | 99.84% (Jul) |
Sindh | 2 (Jul to Aug) | 1.994 (Jul) | 3.441 | 99.59% (Jul and Aug) |
Punjab | 2 (Jun to Jul) | 1.005 (Jun) | 1.562 | 100.00% (Jun) |
KP | 2 (Jun to Jul) | 1.806 (Jul) | 2.599 | 98.15% (Jul) |
GB | 3 (Jun to Aug) | 1.088 (Aug) | 3.115 | 84.15% (Jun) |
Region | Duration (Months) | Peak | Severity | Max FAR |
---|---|---|---|---|
Balochistan | 5 (Aug to Dec) | 2.305 (Aug) | 10.187 | 100.00% (Aug to Sep) |
Sindh | 6 (Jul to Dec) | 2.518 (Aug) | 12.139 | 100.00% (Aug to Dec) |
Punjab | 5 (Aug to Dec) | 1.063 (Aug) | 4.747 | 75.00% (Nov) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Meng, J.; Li, Y.; An, J.; Zou, Z.; Zhong, L.; Mao, Y.; Wu, G. Spatiotemporal Evolution Characteristics of 2022 Pakistan Severe Flood Event Based on Multi-Source Satellite Gravity Observations. Remote Sens. 2024, 16, 1601. https://doi.org/10.3390/rs16091601
Cui L, Meng J, Li Y, An J, Zou Z, Zhong L, Mao Y, Wu G. Spatiotemporal Evolution Characteristics of 2022 Pakistan Severe Flood Event Based on Multi-Source Satellite Gravity Observations. Remote Sensing. 2024; 16(9):1601. https://doi.org/10.3390/rs16091601
Chicago/Turabian StyleCui, Lilu, Jiacheng Meng, Yu Li, Jiachun An, Zhengbo Zou, Linhao Zhong, Yiru Mao, and Guiju Wu. 2024. "Spatiotemporal Evolution Characteristics of 2022 Pakistan Severe Flood Event Based on Multi-Source Satellite Gravity Observations" Remote Sensing 16, no. 9: 1601. https://doi.org/10.3390/rs16091601
APA StyleCui, L., Meng, J., Li, Y., An, J., Zou, Z., Zhong, L., Mao, Y., & Wu, G. (2024). Spatiotemporal Evolution Characteristics of 2022 Pakistan Severe Flood Event Based on Multi-Source Satellite Gravity Observations. Remote Sensing, 16(9), 1601. https://doi.org/10.3390/rs16091601