Temperature Effects in AMSR2 Soil Moisture Products and Development of a Removal Method Using Data at Ascending and Descending Overpasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Review of Studies to Remove Temperature Effects
2.2. The New Method to Remove TEs from AMRS2 Soil Moisture Product
- Step 0:
- set initial ;
- Step 1:
- apply the recursive regression method [41] to estimate ;
- Step 2:
- renew .
2.3. The Tools Using for Evaluating New TE Removal Method on AMSR2 Soil Water Content
2.4. Data Description
2.4.1. In Situ Data
2.4.2. Satellite Data
3. Results
3.1. The Existence of Temperature Effects
3.2. Results of the Removal Algorithm
3.3. Evaluation of the Impact of Temperature Effect Removal
3.3.1. Visual Confirmation of the Impact of Temperature Effect Removal on the Difference between the Data from Ascending and Descending Overpasses
3.3.2. Quantitative Evaluation of the Impact of Temperature Effect Removal on In Situ and AMSR2 SWC Datasets
- Original in situ SWC () and corrected in situ SWC ();
- Original AMSR2 SWC () and original in situ SWC ();
- Original AMSR2 SWC () and corrected in situ SWC ();
- Corrected AMSR2 SWC () and corrected in situ SWC ().
3.3.3. Quantitative Evaluation of the Impact of Temperature Effect Removal on the Difference between Ascending and Descending SWC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADA | Ascending Previous—Descending—Ascending Following |
AMPEX | The ADEOS-II Mongolian Plateau EXperiment |
AMSR | The Advanced Microwave Scanning Radiometer |
AMSR-E | The Advanced Microwave Scanning Radiometer for Earth Observing System |
AMSR2 | The Advanced Microwave Scanning Radiometer 2 |
ASSHs | Automatic Stations for Soil Hydrology |
AWSs | Automatic Weather Stations |
CEOP | The Coordinated Enhanced Observing Period |
CVS | Core Validation Site |
EORC | The JAXA Earth Observation Research Center |
GCOM | The Global Change Observation Mission |
GCOM-W1 | The Global Change Observation Mission 1—Water |
JAXA | The Japan Aerospace Exploration Agency |
LST | Land Surface Temperature |
MAVEX | The Mongol AMSR/AMSR-E/ALOS Validation EXperiment |
SMAP | The Soil Moisture Active Passive Mission |
SMC | Soil Moisture Content |
SMOS | The Soil Moisture and Ocean Salinity Mission |
SWC | Soil Water Content |
TDR | Time Domain Reflectometry |
TEs | Temperature Effects |
References
- Mahfouf, J.F.F.; Richard, E.; Mascart, P. The influence of soil and vegetation on the development of mesoscale circulations. J. Appl. Meteorol. Climatol. 1987, 26, 1483–1495. [Google Scholar] [CrossRef]
- Entekhabi, D.; Rodriguez-Iturbe, I.; Castelli, F. Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol. 1996, 184, 3–17. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Pang, Z.; Qin, X.; Jiang, W.; Fu, J.; Yang, K.; Lu, J.; Qu, W.; Li, L.; Li, X. The review of soil moisture multi-scale verification methods. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2020, 5, 395–399. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J. The influence of land surface moisture retention on precipitation statistics. J. Clim. 1996, 9, 2551–2567. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized soil moisture index for drought monitoring based on Soil Moisture Active Passive observations and 36 years of North American Land Data Assimilation System data: A case study in the Southeast United States. Remote. Sens. 2018, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Donaire, M.d.P.; Tarquis, A.; Giráldez, J.V. Evaluation of a combined drought indicator and its predictive potential for agricultural droughts in Southern Spain. Nat. Hazards Earth Syst. Sci. Discuss. 2019, 20, 21–33. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J. Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solut. 2007, 12, 173–177. [Google Scholar] [CrossRef]
- Rahgozar, M.; Shah, N.; Ross, M. Estimation of evapotranspiration and water budget components using continuous soil moisture and water table monitoring. Int. Sch. Res. Not. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Douville, H.; Chauvin, F. Relevance of soil moisture for seasonal climate predictions: A preliminary study. Clim. Dyn. 2000, 16, 719–736. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J. Climate change and drought: The soil moisture perspective. Curr. Clim. Chang. Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Wood, E.F. Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res. 1994, 30, 3061–3078. [Google Scholar] [CrossRef]
- Susha Lekshmi, S.U.; Singh, D.N.; Shojaei Baghini, M. A critical review of soil moisture measurement. Measurement 2014, 54, 92–105. [Google Scholar] [CrossRef]
- Dorigo, W.; Van Oevelen, P.; Wagner, W.; Drusch, M.; Mecklenburg, S.; Robock, A.; Jackson, T. A new international network for in situ soil moisture data. Eos 2011, 92, 141–142. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote. Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Bell, J.E.; Palecki, M.A.; Baker, C.B.; Collins, W.G.; Lawrimore, J.H.; Leeper, R.D.; Hall, M.E.; Kochendorfer, J.; Meyers, T.P.; Wilson, T.; et al. U.S. climate reference network soil moisture and temperature observations. J. Hydrometeorol. 2013, 14, 977–988. [Google Scholar] [CrossRef]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. Discuss. 2021, 1–83. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Fujibe, F.; Yamazaki, N.; Kobayashi, K.; Nakamigawa, H. Long-term changes of temperature extremes and day-to-day variability in Japan. Pap. Meteorol. Geophys. 2007, 58, 63–72. [Google Scholar] [CrossRef]
- Jackson, T.J.; Schmugge, T.J. Passive Microwave Remote Sensing of Soil Moisture; Aacademic Press, INC.: Cambridge, MA, USA, 1986; Volume 14, pp. 123–159. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Imaoka, K.; Kachi, M.; Kasahara, M.; Ito, N.; Nakagawa, K.; Oki, T. Instrument performance and calibration of AMSR-E and AMSR2. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.-Isprs Arch. 2010, 38, 13–16. [Google Scholar]
- Imaoka, K.; Maeda, T.; Kachi, M.; Kasahara, M.; Ito, N.; Nakagawa, K. Status of AMSR2 instrument on GCOM-W1. In Proceedings of the SPIE 8528, Earth Observing Missions and Sensors: Development, Implementation, and Characterization II, Kyoto, Japan, 29 October–1 November 2012; Shimoda, H., Xiong, X., Cao, C., Gu, X., Kim, C., Kiran Kumar, A.S., Eds.; 2012; p. 852815. Available online: https://spie.org/Publications/Proceedings/Volume/8528#_=_ (accessed on 30 July 2023). [CrossRef]
- Njoku, E.E.G.; Jackson, T.J.T.; Lakshmi, V.; Chan, T.T.K.; Nghiem, S.V.S. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote. Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Bindlish, R.; Cosh, M.H.; Jackson, T.J.; Koike, T.; Fujii, H.; Chan, S.K.; Asanuma, J.; Berg, A.; Bosch, D.D.; Caldwell, T.; et al. GCOM-W AMSR2 soil moisture product validation using core validation sites. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 11, 209–219. [Google Scholar] [CrossRef]
- Koike, T.; Nakamura, Y.; Kaihotsu, I.; Davva, G.; Matsuura, N.; Tamagawa, K.; Fujii, H. Development of an Advanced Microwave Scanning Radiometer (AMSR-E) algorithm for soil moisture and vegetation water content (in Japanese). Proc. Hydraul. Eng. 2004, 48, 217–222. [Google Scholar] [CrossRef]
- Kaihotsu, I.; Koike, T.; Yamanaka, T.; Fujii, H.; Ohta, T.; Tamagawa, K.; Oyunbataar, D.; Akiyama, R. Validation of soil moisture estimation by AMSR-E in the Mongolian Plateau. J. Remote. Sens. Soc. Jpn. 2009, 29, 271–281. [Google Scholar] [CrossRef]
- Kaihotsu, I.; Asanuma, J.; Aida, K.; Oyunbaatar, D. Evaluation of the AMSR2 L2 soil moisture product of JAXA on the Mongolian Plateau over seven years (2012–2018). SN Appl. Sci. 2019, 1, 1477. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Wang, L.; Deng, C. Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 187–199. [Google Scholar] [CrossRef]
- Hoang, K.O.; Lu, M. Assessment of the temperature effects in SMAP satellite soil moisture products in Oklahoma. Remote. Sens. 2021, 13, 4104. [Google Scholar] [CrossRef]
- Schanz, T.; Baille, W.; Tuan, L.N.; Schanz, T.; Baille, W.; Tuan, L.N. Effects of temperature on measurements of soil water content with time domain reflectometry. Geotech. Test. J. 2011, 34, 103152:1–8. [Google Scholar] [CrossRef]
- Or, D.; Wraith, J.M.; Or, D. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model. Water Resour. Res. 1999, 35, 371–383. [Google Scholar] [CrossRef]
- Halbertsma, J.; Van den Elsen, E.; Bohl, H.; Skierucha, W. Temperature effects in soil water content determined with time domain reflectometry. Zesz. Probl. Postep. Nauk. Rol. 1996, 436, 65–74. [Google Scholar]
- Lu, M.; Kapilaratne, J.; Kaihotsu, I. A data-driven method to remove temperature effects in TDR measured soil water content at a Mongolian site. Hydrol. Res. Lett. 2015, 9, 8–13. [Google Scholar] [CrossRef]
- Mironov, V.; Kerr, Y.; Wigneron, J.P.; Kosolapova, L.; Demontoux, F. Temperature and texture-dependent dielectric model for moist soils at 1.4 GHz. IEEE Geosci. Remote. Sens. Lett. 2013, 10, 419–423. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Ohta, T.; Fujii, H.; Komatsu, M. Dielectric behavior of wet soils in the 1–36 GHz microwave range: Modeling and validation. J. Jpn. Soc. Soil Phys. 2022, 151, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Mironov, V.L.; Dobson, M.C.; Kaupp, V.H.; Komarov, S.A.; Kleshchenko, V.N. Generalized refractive mixing dielectric model for moist soils. Geosci. Remote. Sens. IEEE Trans. 2004, 42, 773–785. [Google Scholar] [CrossRef]
- Kapilaratne, R.G.; Lu, M. Automated general temperature correction method for dielectric soil moisture sensors. J. Hydrol. 2017, 551, 203–216. [Google Scholar] [CrossRef]
- Skierucha, W. Temperature dependence of time domain reflectometry-measured soil dielectric permittivity. J. Plant Nutr. Soil Sci. 2009, 172, 186–193. [Google Scholar] [CrossRef]
- Gong, Y.; Cao, Q.; Sun, Z. The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrol. Process. 2003, 17, 3601–3614. [Google Scholar] [CrossRef]
- Fujii, H.; Koike, T.; Imaoka, K. Improvement of the AMSR-E algorithm for moisture estimation by introducing a fractional vegetation coverage dataset derived from MODIS data. J. Remote. Sens. Soc. Jpn. 2009, 29, 282–292. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Yamanaka, T.; Kaihotsu, I.; Oyunbaatar, D.; Ganbold, T. Characteristics and controlling factors of regional-scale variability in surface soil moisture within semi-arid grassland in Mongolia. J. Meteorol. Soc. Jpn. 2007, 85A, 261–270. [Google Scholar] [CrossRef]
- Jackson, D.R. Diurnal changes in soil water content during drying. In Field Soil Water Regime; Bruce, R.R., Flach, K.W., Taylor, H.M., Eds.; SSSA: Woodlawn, MA, USA, 1973; pp. 37–55. [Google Scholar] [CrossRef]
- Kapilaratne, R.G.C.J.; Lu, M. Evaluation of evaporation related diurnal change from dielectrically measured soil moisture. J. Water Resour. Hydraul. Eng. 2017, 6, 43–50. [Google Scholar] [CrossRef]
- Holmes, T.R.; De Jeu, R.A.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. Atmos. 2009, 114, 1–15. [Google Scholar] [CrossRef]
Station ID | Location | Altitude | Resolution | Thiessen Weight |
---|---|---|---|---|
MGS AWS | (, ) | 1393 m | 30 min | 0.069 |
DRS AWS | (, ) | 1297 m | 30 min | 0.040 |
ASSH811/ASSH1 | (, ) | 1450 m | 2 h | 0.114 |
ASSH813 | (, ) | 1318 m | 2 h | 0.155 |
ASSH817/ASSH7 | (, ) | 1342 m | 2 h | 0.108 |
ASSH819/ASSH9 | (, ) | 1407 m | 2 h | 0.022 |
ASSH820/ASSH10 | (, ) | 1422 m | 2 h | 0.204 |
ASSH815/ASSH11 | (, ) | 1383 m | 2 h | 0.158 |
ASSH8122 | (, ) | 1502 m | 2 h | 0.130 |
Pair | R | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
−0.0039 | 0.0025 | 0.0042 | 0.0026 | 0.9980 | 0.9993 | 0.0051 | 0.0037 | 0.0032 | 0.0028 | ||
0.0148 | 0.0087 | 0.0363 | 0.0346 | 0.1994 | 0.4547 | 0.0510 | 0.0494 | 0.0488 | 0.0486 | ||
0.019 | 0.0112 | 0.035 | 0.0357 | 0.2076 | 0.4526 | 0.0489 | 0.0515 | 0.0476 | 0.0502 | ||
0.0140 | 0.0079 | 0.0348 | 0.0362 | 0.2407 | 0.4439 | 0.0491 | 0.0513 | 0.0471 | 0.0507 |
Pair | |||||
---|---|---|---|---|---|
0.0034 | 0.0017 | 0.0035 | 0.0034 | ||
0.0285 | 0.0256 | 0.0270 | 0.0275 | ||
0.0281 | 0.0253 | 0.0279 | 0.0280 | ||
0.0268 | 0.0277 | 0.0259 | 0.0261 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Hoang, K.O.; Kumarasiri, A.D.T.N. Temperature Effects in AMSR2 Soil Moisture Products and Development of a Removal Method Using Data at Ascending and Descending Overpasses. Remote Sens. 2024, 16, 1606. https://doi.org/10.3390/rs16091606
Lu M, Hoang KO, Kumarasiri ADTN. Temperature Effects in AMSR2 Soil Moisture Products and Development of a Removal Method Using Data at Ascending and Descending Overpasses. Remote Sensing. 2024; 16(9):1606. https://doi.org/10.3390/rs16091606
Chicago/Turabian StyleLu, Minjiao, Kim Oanh Hoang, and Agampodi Deva Thisaru Nayanathara Kumarasiri. 2024. "Temperature Effects in AMSR2 Soil Moisture Products and Development of a Removal Method Using Data at Ascending and Descending Overpasses" Remote Sensing 16, no. 9: 1606. https://doi.org/10.3390/rs16091606
APA StyleLu, M., Hoang, K. O., & Kumarasiri, A. D. T. N. (2024). Temperature Effects in AMSR2 Soil Moisture Products and Development of a Removal Method Using Data at Ascending and Descending Overpasses. Remote Sensing, 16(9), 1606. https://doi.org/10.3390/rs16091606