A Long-Duration Glacier Change Analysis for the Urumqi River Valley, a Representative Region of Central Asia
Abstract
:1. Introduction
2. Study Region
3. Data and Method
3.1. Data and Pre-Processing
3.2. Method
3.2.1. Delineation of Glaciers and Uncertainty Assessment
3.2.2. Ziyuan No.3 DEMs
3.2.3. DEMs Co-Registration and Error Analyses
3.2.4. Geodetic Mass Balance and Uncertainty Assessment
3.2.5. Glacial Mass Balance and Uncertainty
3.2.6. OGGM Model
3.2.7. Meteorological Data
4. Result
4.1. Delienation and Uncertainty of Glaciers
4.2. Area Changes and Analysis in Glaciers
4.3. Geodetic Uncertainty Analysis
4.4. Geodetic Glacier Mass Loss
4.5. Predicted Future Glacier Mass Loss in Urumqi River Basin
5. Discussion
5.1. Geodetic Glacier Mass Balance Validation
5.2. OGGM Model Validation and Forecasting
5.3. Glacier Loss Comparison in Typical Regions
5.4. Contribution of Meteorological Conditions to Glacier Ablation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benn, D.I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of Debris-Covered Glaciers in the Mount Everest Region to Recent Warming, and Implications for Outburst Flood Hazards. Earth-Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Wu, G.; Xu, B.; Wang, W.; Gao, J.; An, B. Asian Water Tower Change and its Impacts. Bull. Chin. Acad. Sci. 2019, 34, 1203–1209. [Google Scholar] [CrossRef]
- Hugonnet, R.; Mcnabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis Summary for Policymakers; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Bosson, J.B.; Huss, M.; Cauvy-Fraunié, S.; Clément, J.C.; Costes, G.; Fischer, M.; Poulenard, J.; Arthaud, F. Future emergence of new ecosystems caused by glacial retreat. Nature 2023, 620, 562–569. [Google Scholar] [CrossRef]
- Chen, Y.; Opała-Owczarek, M.; Chen, F.; Owczarek, P.; Zhang, H.; Wang, S.; Hu, M.; Satylkanov, R.; Ermenbaev, B.; Zulfiyor, B.; et al. Tree-ring perspective on the past and future mass balance of a glacier in Tien Shan (Central Asia): An example from the Tuyuksu glacier, Kyrgyzstan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 625, 111696. [Google Scholar] [CrossRef]
- Wang, S.; Yao, T.; Pu, J.; Wang, J. Historical reconstruction and future projection of mass balance and ice volume of Qiyi Glacier, Northeast Tibetan Plateau. J. Hydrol. Reg. Stud. 2023, 47, 101403. [Google Scholar] [CrossRef]
- Gobbi, M.; Ambrosini, R.; Casarotto, C.; Diolaiuti, G.; Ficetola, G.F.; Lencioni, V.; Seppi, R.; Smiraglia, C.; Tampucci, D.; Valle, B.; et al. Vanishing permanent glaciers: Climate change is threatening a European Union habitat (code 8340) and its poorly known biodiversity. Biodivers. Conserv. 2023, 30, 2267–2276. [Google Scholar] [CrossRef]
- Yang, S.; Wang, F.; Xie, Y.; Zhao, W.; Bai, C.; Liu, J.; Xu, C. Delineation Evaluation and Variation of Debris-Covered Glaciers Based on the Multi-Source Remote Sensing Images, Take Glaciers in the Eastern Tomur Peak Region for Example. Remote Sens. 2023, 15, 2575. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Xu, C.; Xing, W.; Zhou, P.; Zhang, H. Multi-decadal variations in glacier flow velocity and the influencing factors of Urumqi Glacier No. 1 in Tianshan Mountains, Northwest China. J. Arid Land 2017, 9, 900–910. [Google Scholar] [CrossRef]
- Rankl, M.; Kienholz, C.; Braun, M. Glacier Changes in the Karakoram Region Mapped by Multimission Satellite Imagery. Cryosphere 2014, 8, 977–989. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early 21st century glacier mass change in the Himalaya. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Rounce, D.R.; Hock, R.; Shean, D.E. Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 2020, 7, 331. [Google Scholar] [CrossRef]
- Farinotti, D.; Huss, M.; Fürst, J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front. Earth Sci. 2020, 7, 475909. [Google Scholar] [CrossRef]
- Vijay, S.; Braun, M.H. Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): Ice velocity, mass flux, surface elevation and front position. Remote Sens. 2017, 9, 635. [Google Scholar] [CrossRef]
- Maussion, F.; Butenko, A.; Champollion, N.; Dusch, M.; Eis, J.; Fourteau, K.; Gregor, P.; Jarosch, A.; Landmann, J.; Oesterle, F.; et al. The open global glacier model (OGGM) v1.1. Geosci. Model Dev. 2019, 12, 909–931. [Google Scholar] [CrossRef]
- Marzeion, B.; Jarosch, A.H.; Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 2012, 6, 1295–1322. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.; Mu, J.; Li, H.; Yang, S.; Xu, C. Projection of glacier area and volume in the Sawir Mountains modeled by the OGGM. J. Glaciol. Geocryol. 2023, 45, 497–508. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Zhou, P.; Li, H.; Yu, G.; Xu, C.; Wang, L. Rapid decrease of observed mass balance in the Urumqi Glacier No. 1, Tianshan Mountains, central Asia. Quat. Int. 2017, 349, 135–141. [Google Scholar] [CrossRef]
- Han, T.D.; Ding, Y.J.; Ye, B.S.; Liu, S.Y.; Jiao, K.Q. Mass balance characteristics of Urumqi Glacier No. 1, Tien Shan, China. Ann. Glaciol. 2006, 43, 323–328. [Google Scholar] [CrossRef]
- Wu, L.H.; Li, H.L.; Wang, L. Application of a degree day model for determination of mass balance of Urumqi Glacier No. 1, Eastern Tianshan, China. J. Earth Sci. 2011, 22, 470–481. [Google Scholar] [CrossRef]
- Zhang, G.F.; Li, Z.Q.; Wang, W.D.; Wang, W.B. Comparative study on observed mass balance between east and west branch of Urumqi Glacier No. 1, Eastern Tianshan, China. Sci. Cold Arid Reg. 2013, 5, 316–323. [Google Scholar] [CrossRef]
- Xu, C.; Li, Z.; Wang, P.; Anjum, M.N.; Li, H.; Wang, F. Detailed comparison of glaciological and geodetic mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China, from 1981 to 2015. Cold Reg. Sci. Technol. 2018, 155, 137–148. [Google Scholar] [CrossRef]
- Xu, C.; Li, Z.; Li, H.; Wang, F.; Zhou, P. Long-range terrestrial laser scanning measurements of annual and intra-annual mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China. Cryosphere 2019, 13, 2361–2383. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Li, Z.; Jin, S.; He, J. Summertime surface mass balance and energy balance of Urumqi Glacier No. 1, Chinese Tien Shan, modeled by linking COSIMA and in-situ measured meteorological records. Clim. Dyn. 2022, 61, 765–787. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Li, Z.; Liu, Y.; Xu, C.; Mu, J.; Zhang, H. Seasonal Surface Change of Urumqi Glacier No. 1, Eastern Tien Shan, China, Revealed by Repeated High-Resolution UAV Photogrammetry. Remote Sens. 2021, 13, 3398. [Google Scholar] [CrossRef]
- Yang, M.; Li, Z.; Anjum, M.N.; Kayastha, R.; Kayastha, R.B.; Rai, M.; Zhang, X.; Xu, C. Projection of streamflow changes under CMIP6 scenarios in the Urumqi River head watershed, Tianshan Mountain, China. Front. Earth Sci. 2022, 10, 857854. [Google Scholar] [CrossRef]
- Liu, S.; Guo, W.; Xu, J. The Second Glacier Inventory Dataset of China (Version 1.0) (2006–2011). A Big Earth Data Platform for Three Poles. 2012. Available online: https://cstr.cn/18406.11.glacier.001.2013.db (accessed on 11 March 2024).
- Li, Z.Q.; Li, H.L.; Chen, Y.N. Mechanisms simulation of accelerated shrinkage of continental glaciers: A case study of Urumqi Glacier No 1 in Eastern Tianshan central Asia. J. Earth Sci. 2011, 22, 423–430. [Google Scholar] [CrossRef]
- Kaushik, S.; Dharpure, J.K.; Joshi, P.K.; Ramanathan, A.L.; Singh, T. Climate change drives glacier retreat in Bhaga basin located in Himachal Pradesh, India. Geocarto Int. 2019, 35, 1179–1198. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based Inventory of Glaciers in Western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; et al. The GAMDAM Glacier Inventory: A quality controlled inventory of Asian glaciers. Cryosphere 2015, 9, 849–864. [Google Scholar] [CrossRef]
- Tielidze, L.G.; Bolch, T.; Wheate, R.D.; Kutuzov, S.S.; Lavrentiev, I.I.; Zemp, M. Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014. Cryosphere 2020, 14, 585–598. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Zhang, Y.; Wei, J.; Jiang, Z.; Wu, K. Glacier Variations at Aru Co in Western Tibet from 1971 to 2016 Derived from Remote-Sensing Data. J. Glaciol. 2018, 64, 397–406. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and Bias Corrections of Satellite Elevation Data Sets for Quantifying Glacier Thickness Change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Benn, D. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Buchroithner, M. Generation and evaluation of multi-temporal digital elevation models from different optical sensors. Photogramm. Remote Sens. 2011, 66, 927–940. [Google Scholar] [CrossRef]
- Huss, M. Density Assumptions for Converting Geodetic Glacier Volume Change to Mass Change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef]
- Han, T.; Liu, S.; Ding, Y.; Jiao, K. A characteristics mass balance of glacier No. 1 at the headwaters of the Urumqi River, Tianshan Mountains. Adv. Earth Sci. 2005, 20, 298. [Google Scholar] [CrossRef]
- Xie, Z.C.; Liu, C.H. Introduction to Glaciology; Shanghai Popular Science Press: Shanghai, China, 2010; pp. 1–490. [Google Scholar]
- Paterson, W.S.B. The Physics of Glaciers, 3rd ed.; Pergamon: New York, NY, USA, 1994. [Google Scholar]
- Che, Y.J.; Zhang, M.J.; Li, Z.Q.; Jin, S.; Wang, W.B.; Wang, S.J. Monitoring calculating of mass balance in Qingbingtan Glacier No 72. J. Glaciol. Geocryol. 2019, 41, 1–14. (In Chinese) [Google Scholar]
- Wang, P.; Li, Z.; Li, H.; Wang, W.; Zhou, P.; Wang, L. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China. Glob. Planet. Chang. 2017, 159, 11–24. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Li, H.; Wang, W.; Wu, L.; Zhang, H.; Huai, B.; Wang, L. Recent Evolution in Extent, Thickness, and Velocity of Haxilegen Glacier No. 51, Kuytun River Basin, Eastern Tianshan Mountains. Arct. Antarct. Alp. Res. 2016, 48, 241–252. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Zhou, P.; Zhu, X.; Wang, L. Mass-balance observations and reconstruction for Haxilegen Glacier No. 51, eastern Tien Shan, from 1999 to 2015. J. Glaciol. 2018, 64, 689–699. [Google Scholar] [CrossRef]
- Zhang, R.; Wei, W.; Shang, H.; Yu, S.; Gou, X.; Qin, L.; Bolatov, K.; Mambetov, B.T. A tree ring-based record of annual mass balance changes for the TS.Tuyuksuyskiy Glacier and its linkages to climate change in the Tianshan Mountains. Quat. Sci. Rev. 2019, 205, 10–21. [Google Scholar] [CrossRef]
- Liu, L.; Tian, H.; Zhang, X.; Chen, H.; Zhang, Z.; Zhao, G.; Kang, Z.; Wang, T.; Gao, Y.; Yu, F. Analysis of Spatiotemporal Heterogeneity of Glacier Mass Balance on the Northern and Southern Slopes of the Central Tianshan Mountains, China. Water 2022, 14, 1601. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Z.; Liu, L.; Xu, L.; Wang, P.; Li, L.; Ning, S. Changes of glacier mass balance in Manas river basin based on multi-source remote sensing data. Acta Geogr. Sin. 2020, 75, 98–112. [Google Scholar] [CrossRef]
- Yang, X.; Wang, N.; Liang, Q.; Chen, A. Glacier changes on the north slope of Tianshan Mountains in recent 60 years. Arid. Land Georg. 2023, 46, 1073–1083. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, M.; Li, Z.; Wang, S.; Du, M.; Wang, P.; Wang, J.; Zhou, P. Quantitative evaluation of glacier change and its response to climate change in the Chinese Tien Shan. Cold Reg. Sci. Technol. 2018, 153, 144–155. [Google Scholar] [CrossRef]
- Kang, E. Calculation of energy balance characteristics and material balance changes in the high Asian cryosphere. J. Glaciol. Geocryol. 1996, S1, 12–22. [Google Scholar]
Data | Image ID/Attribution | Date | Resolution | Application |
---|---|---|---|---|
Topographical maps | —— | August 1964 | 1:50,000 | Boundary Extraction |
Landsat4 TM | LT41430301989230XXX01 | 18 August 1989 | 30 m | Boundary Extraction |
Spot 5 | 5217-262/805/09/0704:57:242A | 7 September 2005 | 10 m/5 m | Boundary Extraction |
ZY3 02 TMS | _L1A0001048489 | 14 September 2022 | 2.5 m | Boundary Extraction and Generating DEMs from Stereo Images |
_L1A0001048441 | 14 September 2022 | 2.5 m | ||
_L1A0001130875 | 22 July 2022 | 2.5 m | ||
_L1A0001130874 | 22 July 2022 | 2.5 m | ||
landsat9 OLI_TIRS | LC91430302022257LGN01 | 14 September 2022 | 30 m/15 m | Calibration Control Points |
SRTM DEM | —— | February 2000 | 30 m | Glacial Elevation Changes |
ALOS PALSAR DEM | ALPSRP253320850 | 26 October 2010 | 12.5 m | Glacial Elevation Changes |
ASTER GDEM V3 | —— | 5 August 2019 | 30 m | Basin Extraction and Comparison Aids |
ZY3-DEM | —— | July–September 2022 | 2.5 m | Glacial Elevation Changes |
The Second Glacier Inventory of China | 2006–2011 | 30 m/15 m | Reference to Basic Glacier Properties |
District | 1964 Area | 1989 Area | 2005 Area | 2022 Area | Area Change Rate (1964–2022) |
---|---|---|---|---|---|
5Y730A | 6.16 ± 0.58 km2 | 4.52 ± 0.44 km2 | 3.19 ± 0.11 km2 | 1.99 ± 0.04 km2 | 32.31%·a−1 |
5Y730B | 21.62 ± 2.04 km2 | 18.41 ± 1.81 km2 | 12.81 ± 0.43 km2 | 9.73 ± 0.12 km2 | 45.00%·a−1 |
5Y730C | 9.17 ± 0.86 km2 | 8.32 ± 0.82 km2 | 5.13 ± 0.17 km2 | 4.10 ± 0.04 km2 | 44.71%·a−1 |
5Y730D | 11.73 ± 1.11 km2 | 9.32 ± 0.91 km2 | 7.31 ± 0.25 km2 | 5.79 ± 0.07 km2 | 49.36%·a−1 |
Total | 48.68 ± 4.59 km2 | 40.57 ± 3.98 km2 | 28.44 ± 0.96 km2 | 21.61 ± 0.27 km2 | 44.39%·a−1 |
Period | Overall Losses km2 | Overall Error of Variation | Annual Area Change | Area Change Rate |
---|---|---|---|---|
1964–1989 | 8.11 km2 | 1.10 km2 | 0.32 ± 0.04 km2·a−1 | 0.67%·a−1 |
1989–2005 | 12.14 km2 | 1.26 km2 | 0.76 ± 0.08 km2·a−1 | 1.87%·a−1 |
2005–2022 | 6.82 km2 | 0.24 km2 | 0.40 ± 0.01 km2·a−1 | 1.41%·a−1 |
1964–2020 | 27.07 km2 | 2.57 km2 | 0.47 ± 0.04 km2·a−1 | 0.96%·a−1 |
Period | Item | Original (m) | Adjusted (m) | N | SE (m) | σ (m) | ||
---|---|---|---|---|---|---|---|---|
MED | STDV | MED | STDV | |||||
2000–2010 | SRTM_ALOS | 17.84 | 29.47 | 0.14 | 32.85 | 3872 | 0.53 | 0.53 |
2010–2022 | ALOS_ZiyuanNo.3 | 2.00 | 12.59 | −0.13 | 9.74 | 10,363 | 0.10 | 0.16 |
Region | Typical Glacier | Period | Basin Mass Balance/m w.e.a−1 | Period | Single Mass Balance/m w.e.a−1 | Source |
---|---|---|---|---|---|---|
Urumqi Valley | UHG | 2000–2022 2000–2010 2010–2022 | −0.65 ± 0.11 −0.67 ± 0.12 −0.63 ± 0.11 | 2000–2022 2000–2010 2010–2022 | −0.69 ± 0.12 −0.71 ± 0.12 −0.67 ± 0.12 | This study |
Mt.Tomor | Qingbingtan No.72 | 1964–2008 2008–2014 | −0.20 −0.38 | [46,47] | ||
Keqikaer | 1999–2003 2004–2006 | −0.22 −0.44 | [48] | |||
Kuitun River Basin | Haxilegen No.51 | 2004–2006 2010–2011 | −0.38 −0.68 | [49] | ||
Yili River Basin | Ts.Tuyuksuyskiy | 2003–2018 | −0.42 ± 0.16 | 2003–2018 | −0.50 | [50] |
Kaidu River Basin | —— | 2001–2016 | −0.48 | —— | —— | [51] |
Manas River Basin | —— | 2000–2016 | −0.58 | —— | —— | [52] |
Northern Tin Shan | —— | 2000–2020 | −0.39 ± 0.04 | —— | —— | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yang, S.; Chen, K.; Liu, S.; Jin, X.; Xie, Y. A Long-Duration Glacier Change Analysis for the Urumqi River Valley, a Representative Region of Central Asia. Remote Sens. 2024, 16, 1489. https://doi.org/10.3390/rs16091489
Wang L, Yang S, Chen K, Liu S, Jin X, Xie Y. A Long-Duration Glacier Change Analysis for the Urumqi River Valley, a Representative Region of Central Asia. Remote Sensing. 2024; 16(9):1489. https://doi.org/10.3390/rs16091489
Chicago/Turabian StyleWang, Lin, Shujing Yang, Kangning Chen, Shuangshuang Liu, Xiang Jin, and Yida Xie. 2024. "A Long-Duration Glacier Change Analysis for the Urumqi River Valley, a Representative Region of Central Asia" Remote Sensing 16, no. 9: 1489. https://doi.org/10.3390/rs16091489
APA StyleWang, L., Yang, S., Chen, K., Liu, S., Jin, X., & Xie, Y. (2024). A Long-Duration Glacier Change Analysis for the Urumqi River Valley, a Representative Region of Central Asia. Remote Sensing, 16(9), 1489. https://doi.org/10.3390/rs16091489