Drought Offsets the Controls on Colored Dissolved Organic Matter in Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Compilation and Analyses
2.2.1. Assessment of CDOM Using Remote Sensing
2.2.2. Land Cover and Vegetation Index
2.2.3. Lake and Catchment Morphometry
2.2.4. Climate Data
2.3. Statistical Analysis
2.3.1. Variance Partitioning
2.3.2. Partial Least-Squares Analysis with Variable Selection
2.3.3. Moran’s Eigenvector Spatial Regression
3. Results
3.1. Regulation of CDOM by Catchment Morphometry, Land Cover, and Climate
3.1.1. Wet Year
3.1.2. Dry Year
3.2. Key Regulators of CDOM in Wet and Dry Years
3.3. Spatial Model for CDOM
4. Discussion
4.1. Direct Impact of Drought on CDOM
4.2. Shifts in the Relative Importance of Climate, Land Cover, and Morphometry
4.3. Controls of CDOM Evaluated Using PLS and Moran’s Eigenvector Spatial Model
4.4. CDOM in Changing Climate
4.5. Study Robustness
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Sobek, S.; Algesten, G.; Bergström, A.K.; Jansson, M.; Tranvik, L.J. The catchment and climate regulation of pCO2 in boreal lakes. Glob. Chang. Biol. 2003, 9, 630–641. [Google Scholar] [CrossRef]
- Kritzberg, E.S.; Hasselquist, E.M.; Skerlep, M.; Löfgren, S.; Olsson, O.; Stadmark, J.; Valinia, S.; Hansson, L.A.; Laudon, H. Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 2020, 49, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Keeler, B.L.; Wood, S.A.; Polasky, S.; Kling, C.; Filstrup, C.T.; Downing, J.A. Recreational demand for clean water: Evidence from geotagged photographs by visitors to lakes. Front. Ecol. Environ. 2015, 13, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Skerlep, M.; Steiner, E.; Axelsson, A.L.; Kritzberg, E.S. Afforestation driving long-term surface water browning. Glob. Chang. Biol. 2020, 26, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Jaffé, R.; McKnight, D.; Maie, N.; Cory, R.; McDowell, W.H.; Campbell, J.L. Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. J. Geophys. Res. Biogeosci. 2008, 113, G04032. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.L.; Zhu, G.W.; Qin, B.Q.; Feng, L.Q.; Cai, L.L.; Gao, G.A. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 2011, 82, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Jacome, A.; Bernier, M.; Chokmani, K.; Gauthier, Y.; Poulin, J.; De Sève, D. Monitoring volumetric surface soil moisture content at the La Grande basin boreal wetland by radar multi polarization data. Remote Sens. 2013, 5, 4919–4941. [Google Scholar] [CrossRef]
- Arvola, L.; Aijala, C.; Lepparanta, M. CDOM concentrations of large Finnish lakes relative to their landscape properties. Hydrobiologia 2016, 780, 37–46. [Google Scholar] [CrossRef]
- Barnes, R.T.; Butman, D.E.; Wilson, H.F.; Raymond, P.A. Riverine export of aged carbon driven by flow path depth and residence time. Environ. Sci. Technol. 2018, 52, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Wickland, K.P.; Neff, J.C.; Aiken, G.R. Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability. Ecosystems 2007, 10, 1323–1340. [Google Scholar] [CrossRef]
- Kallio, K.; Attila, J.; Härmä, P.; Koponen, S.; Pulliainen, J.; Hyytiäinen, U.M.; Pyhälahti, T. Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Andersen, T.; Hessen, D.O. Climate change predicted to cause severe increase of organic carbon in lakes. Glob. Chang. Biol. 2011, 17, 1186–1192. [Google Scholar] [CrossRef]
- Treat, C.C.; Marushchak, M.E.; Voigt, C.; Zhang, Y.; Tan, Z.L.; Zhuang, Q.L.; Virtanen, T.A.; Räsänen, A.; Biasi, C.; Hugelius, G.; et al. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Glob. Chang. Biol. 2018, 24, 5188–5204. [Google Scholar] [CrossRef] [PubMed]
- Laudon, H.; Berggren, M.; Ågren, A.; Buffam, I.; Bishop, K.; Grabs, T.; Jansson, M.; Köhler, S. Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: The role of processes, connectivity, and scaling. Ecosystems 2011, 14, 880–893. [Google Scholar] [CrossRef]
- Bodmer, P.; Heinz, M.; Pusch, M.; Singer, G.; Premke, K. Carbon dynamics and their link to dissolved organic matter quality across contrasting stream ecosystems. Sci. Total Environ. 2016, 553, 574–586. [Google Scholar] [CrossRef]
- Hutchins, R.H.S.; Prairie, Y.T.; del Giorgio, P.A. Large-scale landscape drivers of CO2, CH4, DOC, and DIC in boreal river networks. Glob. Biogeochem. Cycles 2019, 33, 125–142. [Google Scholar] [CrossRef]
- Jordan, Y.C.; Ghulam, A.; Hartling, S. Traits of surface water pollution under climate and land use changes: A remote sensing and hydrological modeling approach. Earth Sci. Rev. 2014, 128, 181–195. [Google Scholar] [CrossRef]
- Berggren, M.; Klaus, M.; Selvam, B.P.; Strom, L.; Laudon, H.; Jansson, M.; Karlsson, J. Quality transformation of dissolved organic carbon during water transit through lakes: Contrasting controls by photochemical and biological processes. Biogeosciences 2018, 15, 457–470. [Google Scholar] [CrossRef]
- Mzobe, P.; Berggren, M.; Pilesjö, P.; Lundin, E.; Olefeldt, D.; Roulet, N.T.; Persson, A. Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach. PLoS ONE 2018, 13, e0199608. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, T.; Buffam, I.; Sponseller, R.A.; Laudon, H. Inferring scale-dependent processes influencing stream water biogeochemistry from headwater to sea. Limnol. Oceanogr. 2017, 62, S58–S70. [Google Scholar] [CrossRef]
- Toming, K.; Arst, H.; Paavel, B.; Laas, A.; Noges, T. Spatial and temporal variations in coloured dissolved organic matter in large and shallow Estonian waterbodies. Boreal. Environ. Res. 2009, 14, 959–970. [Google Scholar]
- Zhang, Y.L.; Yin, Y.; Liu, X.H.; Shi, Z.Q.; Feng, L.Q.; Liu, M.L.; Zhu, G.W.; Gong, Z.J.; Qin, B.Q. Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China. Org. Geochem. 2011, 42, 510–519. [Google Scholar] [CrossRef]
- Lapierre, J.F.; Seekell, D.A.; del Giorgio, P.A. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon. Glob. Chang. Biol. 2015, 21, 4425–4435. [Google Scholar] [CrossRef] [PubMed]
- Klaus, M.; Seekell, D.A.; Lidberg, W.; Karlsson, J. Evaluations of climate and land management effects on lake carbon cycling need to account temporal variability in CO<sub>2</sub> Concentration. Glob. Biogeochem. Cycles 2019, 33, 243–265. [Google Scholar] [CrossRef]
- Al-Kharusi, E.S.; Tenenbaum, D.E.; Abdi, A.M.; Kutser, T.; Karlsson, J.; Bergström, A.K.; Berggren, M. Large-scale retrieval of coloured dissolved organic matter in northern lakes using Sentinel-2 data. Remote Sens. 2020, 12, 157. [Google Scholar] [CrossRef]
- Jansson, M.; Hickler, T.; Jonsson, A.; Karlsson, J. Links between terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden. Ecosystems 2008, 11, 367–376. [Google Scholar] [CrossRef]
- Bianchi, E.; Villalba, R.; Solarte, A. NDVI Spatio-temporal Patterns and Climatic Controls Over Northern Patagonia. Ecosystems 2020, 23, 84–97. [Google Scholar] [CrossRef]
- Turcotte, R.; Fortin, J.P.; Rousseau, A.N.; Massicotte, S.; Villeneuve, J.P. Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. J. Hydrol. 2001, 240, 225–242. [Google Scholar] [CrossRef]
- Peters, D.L.; Baird, D.J.; Tenenbaum, D.E. Towards the Development of Instream Flow Needs Standards for Agricultural Watersheds in Canada—2006/07 Interim Report; Environmental Standards Initiative Technical Series Report No. 3–40; Environment Canada: Gatineau, QB, Canada, 2007; p. 89. [Google Scholar]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Clim. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Browne, W.J.; Subramanian, S.V.; Jones, K.; Goldstein, H. Variance partitioning in multilevel logistic models that exhibit overdispersion. J. R. Stat. Soc. Ser. A Stat. Soc. 2005, 168, 599–613. [Google Scholar] [CrossRef]
- Peres-Neto, P.R.; Legendre, P.; Dray, S.; Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 2006, 87, 2614–2625. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbo, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Brind’Amour, A.; Mahévas, S.; Legendre, P.; Bellanger, L. Application of Moran Eigenvector Maps (MEM) to irregular sampling designs. Spat. Stat. 2018, 26, 56–68. [Google Scholar] [CrossRef]
- Szkokan-Emilson, E.J.; Kielstra, B.W.; Arnott, S.E.; Watmough, S.A.; Gunn, J.M.; Tanentzap, A.J. Dry conditions disrupt terrestrial-aquatic linkages in northern catchments. Glob. Chang. Biol. 2017, 23, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.D.; Petrone, K.C.; Silberstein, R.P. Drought, groundwater storage and stream flow decline in southwestern Australia. Geophys. Res. Lett. 2012, 39, L03408. [Google Scholar] [CrossRef]
- Wiley, D.Y.; McPherson, R.A. The role of climate change in the proliferation of freshwater harmful algal blooms in inland water bodies of the United States. Earth Interact. 2024, 28, e230008. [Google Scholar] [CrossRef]
- Berggren, M.; Gudasz, C.; Guillemette, F.; Hensgens, G.; Ye, L.; Karlsson, J. Systematic microbial production of optically active dissolved organic matter in subarctic lake water. Limnol. Oceanogr. 2020, 65, 951–961. [Google Scholar] [CrossRef]
- Lake, P.S. Ecological effects of perturbation by drought in flowing waters. Freshw. Biol. 2003, 48, 1161–1172. [Google Scholar] [CrossRef]
- Vazquez, E.; Amalfitano, S.; Fazi, S.; Butturini, A. Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions. Biogeochemistry 2011, 102, 59–72. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, X.; Jing, X.; Zhu, B.A. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil. Biol. Biochem. 2018, 123, 21–32. [Google Scholar] [CrossRef]
- Toberman, H.; Evans, C.D.; Freeman, C.; Fenner, N.; White, M.; Emmett, B.A.; Artz, R.R.E. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland. Soil. Biol. Biochem. 2008, 40, 1519–1532. [Google Scholar] [CrossRef]
- Wu, X.Q.; Wu, L.Y.; Liu, Y.; Zhang, P.; Li, Q.H.; Zhou, J.Z.; Hess, N.J.; Hazen, T.C.; Yang, W.L.; Chakraborty, R. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front. Microbiol. 2018, 9, 1234. [Google Scholar] [CrossRef] [PubMed]
- Nemergut, D.R.; Costello, E.K.; Meyer, A.F.; Pescador, M.Y.; Weintraub, M.N.; Schmidt, S.K. Structure and function of alpine and arctic soil microbial communities. Res. Microbiol. 2005, 156, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Breeuwer, A.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.; Schouten, M.G.C.; Berendse, F. Decreased summer water table depth affects peatland vegetation. Basic. Appl. Ecol. 2009, 10, 330–339. [Google Scholar] [CrossRef]
- Ji, M.Y.; Zhou, L.; Zhang, S.C.; Luo, G.; Sang, W.J. Effects of biochar on methane emission from paddy soil: Focusing on DOM and microbial communities. Sci. Total Environ. 2020, 743, 140725. [Google Scholar] [CrossRef] [PubMed]
- Laudon, H.; Buttle, J.; Carey, S.K.; McDonnell, J.; McGuire, K.; Seibert, J.; Shanley, J.; Soulsby, C.; Tetzlaff, D. Cross-regional prediction of long-term trajectory of stream water DOC response to climate change. Geophys. Res. Lett. 2012, 39, L18404. [Google Scholar] [CrossRef]
- Jonsson, A.; Meili, M.; Bergström, A.K.; Jansson, M. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örtrasket, N. Sweden). Limnol. Oceanogr. 2001, 46, 1691–1700. [Google Scholar] [CrossRef]
- Berggren, M.; Laudon, H.; Jonsson, A.; Jansson, M. Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microb. Ecol. 2010, 60, 894–902. [Google Scholar] [CrossRef]
- Köhler, S.J.; Buffam, I.; Laudon, H.; Bishop, K.H. Climate’s control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. J. Geophys. Res. Biogeosci. 2008, 113, G03012. [Google Scholar] [CrossRef]
- O’Donnell, J.A.; Aiken, G.R.; Butler, K.D.; Guillemette, F.; Podgorski, D.C.; Spencer, R.G.M. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state. J. Geophys. Res. Biogeosci. 2016, 121, 2727–2744. [Google Scholar] [CrossRef]
- Larsen, S.; Andersen, T.; Hessen, D.O. Predicting organic carbon in lakes from climate drivers and catchment properties. Glob. Biogeochem. Cycles 2011, 25, GB3007. [Google Scholar] [CrossRef]
- Mzobe, P.; Yan, Y.; Berggren, M.; Pilesjö, P.; Olefeldt, D.; Lundin, E.; Roulet, N.T.; Persson, A. Morphometric control on dissolved organic carbon in subarctic streams. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005348. [Google Scholar] [CrossRef]
- Spadoni, G.L.; Cavalli, A.; Congedo, L.; Munafò, M. Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sens. Appl. Soc. Environ. 2020, 20, 100419. [Google Scholar] [CrossRef]
- Fiore, N.M.; Goulden, M.L.; Czimczik, C.I.; Pedron, S.A.; Tayo, M.A. Do recent NDVI trends demonstrate boreal forest decline in Alaska? Environ. Res. Lett. 2020, 15, 095007. [Google Scholar] [CrossRef]
- Mattsson, T.; Kortelainen, P.; Raike, A. Export of DOM from boreal catchments: Impacts of land use cover and climate. Biogeochemistry 2005, 76, 373–394. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Zhou, L.; Myneni, R.B.; Tucker, C.J.; Slayback, D.; Shabanov, N.V.; Pinzon, J. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett. 2003, 30, 2147. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Page, B.P.; Finlay, J.C.; Brezonik, P.L.; Bauer, M.E.; Griffin, C.G.; Hozalski, R.M. Regional measurements and spatial/temporal analysis of CDOM in 10,000+optically variable Minnesota lakes using Landsat 8 imagery. Sci. Total Environ. 2020, 724, 138141. [Google Scholar] [CrossRef] [PubMed]
- Tank, S.E.; Fellman, J.B.; Hood, E.; Kritzberg, E.S. Beyond respiration: Controls on lateral carbon fluxes across the terrestrial-aquatic interface. Limnol. Oceanogr. Lett. 2018, 3, 76–88. [Google Scholar] [CrossRef]
- Karlsson, J.; Bergström, A.K.; Byström, P.; Gudasz, C.; Rodriguez, P.; Hein, C. Terrestrial organic matter input suppresses biomass production in lake ecosystems. Ecology 2015, 96, 2870–2876. [Google Scholar] [CrossRef]
- Bergström, A.K.; Karlsson, J. Light and nutrient control phytoplankton biomass responses to global change in northern lakes. Glob. Chang. Biol. 2019, 25, 2021–2029. [Google Scholar] [CrossRef]
- Kelly, P.T.; Solomon, C.T.; Zwart, J.A.; Jones, S.E. A framework for understanding variation in pelagic gross primary production of lake ecosystems. Ecosystems 2018, 21, 1364–1376. [Google Scholar] [CrossRef]
- Vasconcelos, F.R.; Diehl, S.; Rodriguez, P.; Hedström, P.; Karlsson, J.; Byström, P. Bottom-up and top-down effects of browning and warming on shallow lake food webs. Glob. Chang. Biol. 2019, 25, 504–521. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Arnold, W.A.; Griffin, C.G.; Olmanson, L.G.; Brezonik, P.L.; Hozalski, R.M. Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing. Water Res. 2019, 165, 115001. [Google Scholar] [CrossRef] [PubMed]
Variable ID | Description | Unit |
---|---|---|
BS_WIDT.N.6.0 | Basin width | m |
DA_SDEL.N.11.3 | Drainage area std. dev. elevation | m.a.s.l. |
DA_MNTI.N.9.3 | Drainage area mean topographic index | unitless |
DA_SDTI.N.9.3 | Drainage area std. dev. topographic index | unitless |
BS_CHLM.N.8.3 | Basic Chorley’s lemniscate | unitless |
BS_SCEL.N.8.3 | Basin Schumm’s elongation | unitless |
BS_HFF1.N.8.3 | Basin Horton’s form factor 1 | unitless |
BS_NORT.N.9.3 | Basin orientation northness | unitless |
DA_SDSL.N.9.3 | Drainage area mean slope | degrees |
LK_PERI.N.7.0 | Lake perimeter | m |
LK_AREA.N.11.0 | Lake area * | m2 |
DA_MIEL.N.9.3 | Drainage area minimum elevation | m.a.s.l. |
DA_MNSL.N.9.3 | Drainage area mean slope | degrees |
temp | Air temperature * | °C |
PDI | Palmer drought index | unitless |
lon | Longitude | decimal degrees |
lat | Latitude | decimal degrees |
elev | Elevation | m.a.s.l. |
Herba | Herbaceous vegetation and shrubs | % coverage |
Wetland | Wetland | % coverage |
Broad | Broad leaf forest | % coverage |
Water | Open water | % coverage |
Mixed | Mixed forests | % coverage |
Open | Open area | % coverage |
Conif | Coniferous forest | % coverage |
NDVI | Normalized difference vegetation index | unitless |
Year | Model Variables | R2 | AIC | BIC |
---|---|---|---|---|
2016 | Temperature, Lake Area, SDTI | 0.67 | 51.72 | 97.13 |
2018 | Lake Area, Wetlands | 0.54 | 427.35 | 462.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kharusi, E.S.; Hensgens, G.; Abdi, A.M.; Kutser, T.; Karlsson, J.; Tenenbaum, D.E.; Berggren, M. Drought Offsets the Controls on Colored Dissolved Organic Matter in Lakes. Remote Sens. 2024, 16, 1345. https://doi.org/10.3390/rs16081345
Al-Kharusi ES, Hensgens G, Abdi AM, Kutser T, Karlsson J, Tenenbaum DE, Berggren M. Drought Offsets the Controls on Colored Dissolved Organic Matter in Lakes. Remote Sensing. 2024; 16(8):1345. https://doi.org/10.3390/rs16081345
Chicago/Turabian StyleAl-Kharusi, Enass Said., Geert Hensgens, Abdulhakim M. Abdi, Tiit Kutser, Jan Karlsson, David E. Tenenbaum, and Martin Berggren. 2024. "Drought Offsets the Controls on Colored Dissolved Organic Matter in Lakes" Remote Sensing 16, no. 8: 1345. https://doi.org/10.3390/rs16081345
APA StyleAl-Kharusi, E. S., Hensgens, G., Abdi, A. M., Kutser, T., Karlsson, J., Tenenbaum, D. E., & Berggren, M. (2024). Drought Offsets the Controls on Colored Dissolved Organic Matter in Lakes. Remote Sensing, 16(8), 1345. https://doi.org/10.3390/rs16081345