Natural Gas Induced Vegetation Stress Identification and Discrimination from Hyperspectral Imaging for Pipeline Leakage Detection
Abstract
:1. Introduction
- (1)
- Do hyperspectral curves respond to spectral features at unique wavelength bands for different stressors?
- (2)
- Do plants display significantly different sensitivities to various stressors in VIS, NIR, and SWIR ranges during the identification and discrimination of gas-stressed vegetation?
- (3)
- Are plant responses (e.g., metabolic response) similar across different species so that specific vegetative indices may be used for many sites and vegetations?
- To develop an accurate and robust approach for gas leakage identification from the change of hyperspectral reflectance spectra instead of VIs,
- To develop an effective method to spectrally discriminate gas leakage from the other possible concurrent natural stressors, and
- To determine the spectral region(s) that yield the most accurate classification of gas leakage from trained discriminants in multivariate analysis.
2. Materials and Methods
2.1. Lab Test Design
2.2. Stress Treatments
2.3. Hyperspectral Imaging and Calibration
2.3.1. Hyperspectral Camera Setup
2.3.2. Radiometric Calibration
2.4. Optimization of Raw Reflectance
2.5. Multivariate Analysis
2.5.1. Principal Component Analysis (PCA)
2.5.2. Linear/Quadratic Discriminant Analysis (LDA/QDA)
3. Results
3.1. Raw Hyperspectral Reflectance Extraction and Stress Symptoms
3.2. Spectral Correlation and Dimensionality Reduction with PCA
3.3. Gas Treatment Identification with LDA
3.4. Gas Stress Discrimination from Other Treatments with QDA in Multi-Class Classification
3.5. Gas Stress Discrimination from Another Treatment with QDA in Three-Class Classification
4. Discussion
5. Conclusions
- The LDA can be applied to effectively identify the gas stress on vegetation from unstressed vegetation with an accuracy of 77.6–84.8% in the two-class detection process.
- With the distraction of three natural stressors, the QDA can be applied to discriminate the gas treatment from natural stressors with an accuracy of 61.2–68.4% in the five-class detection process. DE is the most distinguishable stressor, while SI is the least in terms of classification accuracy.
- When distracted by one natural stressor (DE, HMC, or SI), the QDA can differentiate the gas stress from the distracted natural stressor and the unstressed reference with an accuracy of 76.4–84.6% in the three-class detection process. This level of accuracy is comparable to that of gas stress identification from unstressed vegetation. These results have practical implications for the natural gas and oil pipeline industries.
- The FOD of the VNIR-ranged spectra (400–1000 nm) can always lead to the highest accuracy in almost all detection cases. The FOD can effectively simplify the feature space of raw data by reducing the number of PCs required for more accurate classification.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alvarez, R.A.; Zavala-Araiza, D.; Lyon, D.R.; Allen, D.T.; Barkley, Z.R.; Brandt, A.R.; Davis, K.J.; Herndon, S.C.; Jacob, D.J.; Karion, A.; et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 2018, 361, 186–188. [Google Scholar] [CrossRef]
- PHMSA. U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration (PHMSA). 2022. Available online: https://portal.phmsa.dot.gov/analytics/saw.dll?Portalpages&PortalPath=%2Fshared%2FPDM%20Public%20Website%2F_portal%2FSC%20Incident%20Trend&Page=All%20Reported (accessed on 12 March 2024).
- Lu, H.; Iseley, T.; Behbahani, S.; Fu, L. Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunn. Undergr. Space Technol. 2020, 98, 103249. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- De Swaef, T.; Maes, W.H.; Aper, J.; Baert, J.; Cougnon, M.; Reheul, D.; Steppe, K.; Roldán-Ruiz, I.; Lootens, P. Applying RGB- and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses. Remote Sens. 2021, 13, 147. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Plant, G.; Kort, E.A.; Murray, L.T.; Maasakkers, J.D.; Aben, I. Evaluating urban methane emissions from space using TROPOMI methane and carbon monoxide observations. Remote Sens. Environ. 2022, 268, 112756. [Google Scholar] [CrossRef]
- Udelhoven, T.; Schlerf, M.; Segl, K.; Mallick, K.; Bossung, C.; Retzlaff, R.; Rock, G.; Fischer, P.; Müller, A.; Storch, T.; et al. A satellite-based imaging instrumentation concept for hyperspectral thermal remote sensing. Sensors 2017, 17, 1542. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Sun, M.; Ren, X.; Wang, X. Visible-Thermal Image Object Detection via the Combination of Illumination Conditions and Temperature Information. Remote Sens. 2021, 13, 3656. [Google Scholar] [CrossRef]
- Noomen, M.F.; van der Werff, H.M.; van der Meer, F.D. Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage. Ecol. Inform. 2012, 8, 55–64. [Google Scholar] [CrossRef]
- Zhuo, Y.; Ma, P.; Guo, C.; Chen, G. Probability of detection for corrosion-induced steel mass loss using Fe–C coated LPFG sensors. Struct. Health Monit. 2024, 14759217241227229. [Google Scholar] [CrossRef]
- Bellante, G.J.; Powell, S.L.; Lawrence, R.L.; Repasky, K.S.; Dougher, T. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation. PLoS ONE 2014, 9, e108299. [Google Scholar] [CrossRef]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009, 36, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.O.; Costa Filho, C.F.F.; Costa, M.G.F. Leak detection of natural gas with based on the components of color spaces RGB and HSI using novelty filter. IEEE Lat. Am. Trans. 2014, 12, 1560–1565. [Google Scholar] [CrossRef]
- Behmann, J.; Steinrücken, J.; Plümer, L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2006, 58, 855–867. [Google Scholar] [CrossRef]
- Tokarczyk, P.; Montoya, J.; Schindler, K. An evaluation of feature learning methods for high resolution image classification. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-3, 389–394. [Google Scholar] [CrossRef]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Asaari, M.S.M.; Mishra, P.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; Scheunders, P. Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS J. Photogramm. Remote Sens. 2018, 138, 121–138. [Google Scholar] [CrossRef]
- Qi, Y.; Dennison, P.E.; Jolly, W.M.; Kropp, R.C.; Brewer, S.C. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass. Remote Sens. Environ. 2014, 150, 198–206. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Fan, L.; Fan, M.; Alhaj, A.; Chen, G.; Ma, H. Hyperspectral imaging features for mortar classification and compressive strength assessment. Constr. Build. Mater. 2020, 251, 118935. [Google Scholar] [CrossRef]
- Ma, P.; Fan, L.; Chen, G. Hyperspectral reflectance for determination of steel rebar corrosion and Cl− concentration. Constr. Build. Mater. 2023, 368, 130506. [Google Scholar] [CrossRef]
- Ma, P.; Li, J.; Zhuo, Y.; Jiao, P.; Chen, G. Coating Condition Detection and Assessment on the Steel Girder of a Bridge through Hyperspectral Imaging. Coatings 2023, 13, 1008. [Google Scholar] [CrossRef]
- Baltzer, J.L.; Thomas, S.C. Leaf optical responses to light and soil nutrient availability in temperate deciduous trees. Am. J. Bot. 2005, 92, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef]
- D’Ambrosio, N.; Szabo, K.; Lichtenthaler, H.K. Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown. Radiat. Environ. Biophys. 1992, 31, 51–62. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113 (Suppl. S1), S56–S66. [Google Scholar] [CrossRef]
- Ran, W.; Jiang, J.; Pan, Y.; Yuan, D. Spectral responses and identification of surface vegetation stressed by natural gas leakage. Int. J. Remote Sens. 2019, 41, 132–151. [Google Scholar] [CrossRef]
- Pan, X.; Jiang, J.; Xiao, Y. Identifying plants under natural gas micro-leakage stress using hyperspectral remote sensing. Ecol. Inform. 2022, 68, 101542. [Google Scholar] [CrossRef]
- Smith, K.L.; Steven, M.D.; Colls, J.J. Plant spectral responses to gas leaks and other stresses. Int. J. Remote Sens. 2005, 26, 4067–4081. [Google Scholar] [CrossRef]
- Scafutto, R.D.P.M.; Filho, C.R.D.S. Detection of methane plumes using airborne midwave infrared (3–5 µM) HYPERSPECTRAL data. Remote Sens. 2018, 10, 1237. [Google Scholar] [CrossRef]
- Smith, K.L.; Steven, M.D.; Colls, J.J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens. Environ. 2004, 92, 207–217. [Google Scholar] [CrossRef]
- Carter, G.A.; Miller, R.L. Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sens. Environ. 1994, 50, 295–302. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Kooistra, L.; Salas, E.; Clevers, J.; Wehrens, R.; Leuven, R.; Nienhuis, P.; Buydens, L. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ. Pollut. 2004, 127, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Zeng, S.-L.; Gao, Y.; Ouyang, Z.-T.; Li, B.; Fang, C.-M.; Zhao, B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [Google Scholar] [CrossRef]
- Song, S.; Gong, W.; Zhu, B.; Huang, X. Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance. ISPRS J. Photogramm. Remote Sens. 2011, 66, 672–682. [Google Scholar] [CrossRef]
- Moghimi, A.; Yang, C.; Miller, M.E.; Kianian, S.F.; Marchetto, P.M. A novel approach to assess salt stress tolerance in wheat using hyperspectral imaging. Front. Plant Sci. 2018, 9, 1182. [Google Scholar] [CrossRef]
- Mirzaei, M.; Verrelst, J.; Marofi, S.; Abbasi, M.; Azadi, H. Eco-friendly estimation of heavy metal contents in grapevine foliage using in-field hyperspectral data and multivariate analysis. Remote Sens. 2019, 11, 2731. [Google Scholar] [CrossRef]
- Lassalle, G.; Credoz, A.; Hédacq, R.; Fabre, S.; Dubucq, D.; Elger, A. Assessing soil contamination due to oil and gas production using vegetation hyperspectral reflectance. Environ. Sci. Technol. 2018, 52, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Lakkaraju, V.R.; Zhou, X.; Apple, M.E.; Cunningham, A.; Dobeck, L.M.; Gullickson, K.; Spangler, L.H. Studying the vegetation response to simulated leakage of sequestered CO2 using spectral vegetation indices. Ecol. Inform. 2010, 5, 379–389. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Couture, J.J. Hyperspectral assessment of plant responses to multi-stress environments: Prospects for managing protected agrosystems. Plants People Planet 2019, 2, 244–258. [Google Scholar] [CrossRef]
- Arellano, P.; Tansey, K.; Balzter, H.; Boyd, D.S. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ. Pollut. 2015, 205, 225–239. [Google Scholar] [CrossRef]
- A Sims, D.; A Gamon, J. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Smirnoff, N. Plant resistance to environmental stress. Curr. Opin. Biotechnol. 1998, 9, 214–219. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. J. Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P. Plant responses to environmental stresses—From gene to biotechnology. AoB Plants 2017, 9, plx025. [Google Scholar] [CrossRef]
- Provin, T.; Pitt, J.L. Managing Soil Salinity; Texas Farmer Collection; Texas A&M University System: College Station, TX, USA, 2001. [Google Scholar]
- Lara, M.A.; Diezma, B.; Lleó, L.; Roger, J.M.; Garrido, Y.; Gil, M.I.; Ruiz-Altisent, M. Hyperspectral Imaging to Evaluate the Effect of IrrigationWater Salinity in Lettuce. Appl. Sci. 2016, 6, 412. [Google Scholar] [CrossRef]
- Karberg, J.M.; Beattie, K.C.; O’Dell, D.I.; Omand, K.A. Salinity tolerance of common reed (Phragmites australis) at the Medouie Creek restoration site, Nantucket MA. Wetland Sci. Pract. 2015, 32, 19–23. [Google Scholar] [CrossRef]
- Paulus, S.; Mahlein, A.-K. Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale. GigaScience 2020, 9, giaa090. [Google Scholar] [CrossRef] [PubMed]
- Thorp, K.; Wang, G.; Bronson, K.; Badaruddin, M.; Mon, J. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and grain yield. Comput. Electron. Agric. 2017, 136, 1–12. [Google Scholar] [CrossRef]
- Elvanidi, A.; Katsoulas, N.; Ferentinos, K.P.; Bartzanas, T.; Kittas, C. Hyperspectral machine vision as a tool for water stress severity assessment in soilless tomato crop. Biosyst. Eng. 2018, 165, 25–35. [Google Scholar] [CrossRef]
- Mahesh, S.; Manickavasagan, A.; Jayas, D.; Paliwal, J.; White, N. Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst. Eng. 2008, 101, 50–57. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Maja, J.M.; Ehsani, R. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Comput. Electron. Agric. 2011, 77, 127–134. [Google Scholar] [CrossRef]
- Ma, P.; Li, J.; Bai, J.; Zhuo, Y.; Chi, L.; Zhu, Y.; Shi, Z.; Ma, H.; Chen, G. Effect of type and quantity of inherent alkali cations on alkali-silica reaction. Cem. Concr. Res. 2023, 173, 107293. [Google Scholar] [CrossRef]
- Ma, P.; Liao, W.; Zhuo, Y.; Ma, H.; Zhu, Y.; Chen, G. Characterization of alkali-silica reaction (ASR) products and C-S-H using SWIR spectroscopy for nondestructive detection of ASR. Constr. Build. Mater. 2024, 416, 135207. [Google Scholar] [CrossRef]
- Roy, I.G. On computing first and second order derivative spectra. J. Comput. Phys. 2015, 295, 307–321. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W. Derivative Analysis of Hyperspectral Data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Uddin, M.Z. A local feature-based facial expression recognition system from depth video. In Emerging Trends in Image Processing, Computer Vision and Pattern Recognition; Morgan Kaufmann: Cambridge, MA, USA, 2015; pp. 407–419. [Google Scholar] [CrossRef]
- Alonso, M.C.; Malpica, J.A.; de Agirre, A.M. Consequences of the Hughes phenomenon on some classification techniques. In Proceedings of the ASPRS 2001 Annual Conference, Milwaukee, WI, USA, 1–5 May 2011; pp. 1–5. [Google Scholar]
- Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F. Selection of hyperspectral narrowbands (hnbs) and composition of hyperspectral twoband vegetation indices (hvis) for biophysical characterization and discrimination of crop types using field reflectance and hyperion/EO-1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 427–439. [Google Scholar] [CrossRef]
- Ma, P.; Mondal, T.G.; Zhuo, Y.; Shi, Z.; Shang, B.; Li, L.; Chen, G. CAAP Final Report. 2022. Available online: https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=843&s=FE71D522E36B4158875D8616675A956D&c=1 (accessed on 12 March 2024).
- Du, Y.; Jiang, J.; Liu, Z.; Pan, Y. Combining a Crop Growth Model with CNN for Underground Natural Gas Leakage Detection Using Hyperspectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1846–1856. [Google Scholar] [CrossRef]
- Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral Classification of Plants: A Review of Waveband Selection Generalisability. Remote Sens. 2020, 12, 113. [Google Scholar] [CrossRef]
- Zhuo, Y. Probability of Detection in Corrosion Monitoring with Fe-C Coated LPFG Sensors. In Proceedings of the INSPIRE-UTC 2021 Annual Meeting, Virtual, 10–11 August 2021. [Google Scholar]
- Zibordi, G.; Maracci, G.; Schlittenhardt, P. Ocean colour analysis in coastal waters by airborne sensors. Int. J. Remote Sens. 1990, 11, 705–725. [Google Scholar] [CrossRef]
- Noomen, M.F.; Smith, K.L.; Colls, J.J.; Steven, M.D.; Skidmore, A.K.; Van Der Meer, F.D. Hyperspectral indices for detecting changes in canopy reflectance as a result of underground natural gas leakage. Int. J. Remote Sens. 2008, 29, 5987–6008. [Google Scholar] [CrossRef]
- Koyro, H.-W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ. Exp. Bot. 2006, 56, 136–146. [Google Scholar] [CrossRef]
- Thorhaug, A.; Richardson, A.D.; Berlyn, G.P. Spectral reflectance of Thalassia testudinum (Hydrocharitaceae) seagrass: Low salinity effects. Am. J. Bot. 2006, 93, 110–117. [Google Scholar] [CrossRef]
- Korlapati, N.V.S.; Khan, F.; Noor, Q.; Mirza, S.; Vaddiraju, S. Review and analysis of pipeline leak detection methods. J. Pipeline Sci. Eng. 2022, 2, 100074. [Google Scholar] [CrossRef]
- Melandri, G.; Thorp, K.R.; Broeckling, C.; Thompson, A.L.; Hinze, L.; Pauli, D. Assessing drought and heat stress-induced changes in the cotton leaf metabolome and their relationship with hyperspectral reflectance. Front. Plant Sci. 2021, 12, 751868. [Google Scholar] [CrossRef] [PubMed]
- Ma, P. Gas Leakage Detection with Hyperspectral Imagery-Based Vegetation Stress Indices. In Proceedings of the INSPIRE-UTC 2021 Annual Meeting, Virtual, 10–11 August 2021. [Google Scholar]
- Zhang, Y.; Zhu, Y.; Ma, P.; He, S.; Shao, X. Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite. Adv. Concr. Constr. 2023, 15, 359–376. [Google Scholar] [CrossRef]
- Staszel, J.; Lupa, M.; Adamek, K.; Wilkosz, M.; Marcinkowska-Ochtyra, A.; Ochtyra, A. Spatial Insights into Drought Severity: Multi-Index Assessment in Małopolska, Poland, via Satellite Observations. Remote Sens. 2024, 16, 836. [Google Scholar] [CrossRef]
- Zhou, J.-J.; Zhang, Y.-H.; Han, Z.-M.; Liu, X.-Y.; Jian, Y.-F.; Hu, C.-G.; Dian, Y.-Y. Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities. Remote Sens. 2021, 13, 2160. [Google Scholar] [CrossRef]
Heavy Metal Salt | As | Cd | Cr | Cu | Pb | Hg | Ni | Se | Zn |
---|---|---|---|---|---|---|---|---|---|
Maximum (ppm) | 75 | 85 | 3000 | 4300 | 420 | 840 | 75 | 100 | 7500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Zhuo, Y.; Chen, G.; Burken, J.G. Natural Gas Induced Vegetation Stress Identification and Discrimination from Hyperspectral Imaging for Pipeline Leakage Detection. Remote Sens. 2024, 16, 1029. https://doi.org/10.3390/rs16061029
Ma P, Zhuo Y, Chen G, Burken JG. Natural Gas Induced Vegetation Stress Identification and Discrimination from Hyperspectral Imaging for Pipeline Leakage Detection. Remote Sensing. 2024; 16(6):1029. https://doi.org/10.3390/rs16061029
Chicago/Turabian StyleMa, Pengfei, Ying Zhuo, Genda Chen, and Joel G. Burken. 2024. "Natural Gas Induced Vegetation Stress Identification and Discrimination from Hyperspectral Imaging for Pipeline Leakage Detection" Remote Sensing 16, no. 6: 1029. https://doi.org/10.3390/rs16061029
APA StyleMa, P., Zhuo, Y., Chen, G., & Burken, J. G. (2024). Natural Gas Induced Vegetation Stress Identification and Discrimination from Hyperspectral Imaging for Pipeline Leakage Detection. Remote Sensing, 16(6), 1029. https://doi.org/10.3390/rs16061029