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Milan Radovanović and
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Abstract: Remote sensing detection of natural gas leaks remains challenging when using ground
vegetation stress to detect underground pipeline leaks. Other natural stressors may co-present and
complicate gas leak detection. This study explores the feasibility of identifying and distinguishing
gas-induced stress from other natural stresses by analyzing the hyperspectral reflectance of vegetation.
The effectiveness of this discrimination is assessed across three distinct spectral ranges (VNIR, SWIR,
and Full spectra). Greenhouse experiments subjected three plant species to controlled environmental
stressors, including gas leakage, salinity impact, heavy-metal contamination, and drought exposure.
Spectral curves obtained from the experiments underwent preprocessing techniques such as standard
normal variate, first-order derivative, and second-order derivative. Principal component analysis
was then employed to reduce dimensionality in the spectral feature space, facilitating input for
linear/quadratic discriminant analysis (LDA/QDA) to identify and discriminate gas leaks. Results
demonstrate an average accuracy of 80% in identifying gas-stressed plants from unstressed ones using
LDA. Gas leakage can be discriminated from scenarios involving a single distracting stressor with an
accuracy ranging from 76.4% to 84.6%, with drought treatment proving the most successful. Notably,
first-order derivative processing of VNIR spectra yields the highest accuracy in gas leakage detection.

Keywords: remote sensing; hyperspectral imaging; vegetation stress; methane/natural gas; pipeline
leakage detection; multivariate analysis; climate change

1. Introduction

Today, the global demand for natural gas is soaring high. Thus, it becomes increasingly
important to minimize any unintended release of natural gas for operational safety, eco-
nomic benefits, and control of climate change, as methane is the second largest contributor
to global warming. Over the last decade, the estimated anthropogenic gas emission reached
359 Tg [1] and underground pipelines were susceptible to gas leakage when damaged un-
der man-made and natural hazards. Between 2003 and 2022, over 12,781 pipeline incidents
occurred in the US [2]. These incidents were caused by natural forces (earth movement,
wind gusts, heavy rains/floods, lighting), excavations from third parties or operators,
operation negligence, material defects, and corrosion [3]. The detection of gas leakage from
pipelines has long been viewed as a challenging task due to its unpredictable leakage scale,
especially in vegetated regions with limited access to potential accident locations [4]. The
undiscovered gas leakage may result in severe environmental hazards like greenhouse
emissions and even cause fatality to both humans and animals due to its volatility. Remote
sensing can overcome the access limit and help rapidly screen vegetation-rich ground
conditions. This technology makes it possible to detect vegetation alterations associated
with the gas leakage, though its efficiency largely depends upon the use of sensors [5–9].

Unmanned aircraft vehicles (UAVs) enable remote sensing that can be used to timely
detect the conditions of plants through physical and biochemical characteristics. Gas leak-
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age depletes the oxygen in the soil and alters the microbiological conditions to discourage
plant root respirations (energy supply) in hypoxic conditions, thus reportedly stressing
plants [10–12]. Thermal imaging has been introduced to detect gas-stressed plants be-
cause their stomatal activity deviated from corresponding unstressed conditions, forming
a temperature difference in the plant canopy [13]. RGB imaging can also capture the
color alteration of the plants associated with gas leakage [14]. The two techniques were
combined to detect the plant stress associated with water deficit [5]. However, thermal
imaging detection is highly dependent on temperature resolution and sensitivity because
the stressed plants exhibit an insignificant temperature difference from that of the normal
plants. RGB image analysis to spot gas leakage generally employs the visible symptoms on
plant foliage and the reduced growth of impacted vegetation over time, which cannot meet
the need for short-term detection.

Hyperspectral imaging (HSI) is a different remote sensing technique for the identi-
fication of plant stress because it enables the spectroscopic analysis of physiological and
biochemical changes at pixel, canopy, and plant levels [15–18]. The reflectance curve
(spectral signature/curve) retrieved from hyperspectral imaging is an indication of the
interaction between leaf chemical compositions and electromagnetic radiation. The spectral
signature is a function of wavelengths ranging from visible (VIS, 400–750 nm), near-infrared
(NIR, 750–1200 nm), to short-wave infrared (SWIR, 1200–2400 nm) [19–21]. Chemical com-
pounds of the plants are represented by various features on a spectral curve. For example,
H2O yields absorption valleys at 1410 nm and 1930 nm due to the presence of O-H [22–24].
Exposure to adverse conditions stimulates the synthesis of antioxidants to counteract
reactive oxygen species (ROS), such as radicals OH•− and OH• and non-radicals like
H2O2, and thus protects the plants from the toxic, damaging impacts [25]. Plant stress is a
physiological product of plant pigments, proteins, and cell structure component alterations.
Photosynthetic pigmentations dominate VIS light scattering over the parenchyma structure.
Outer-layer epidermis affects the radiation absorption in NIR, while enzyme (protein),
lignin, cellulose, and water content are correlated with the SWIR spectroscopy. Therefore,
hyperspectral imaging responds to the changes on leaf surfaces through the features of
spectral signatures with stress response at specific wavelengths [26,27].

Gas leakage detection with HSI data has been involved in several studies. Vegetation
indices (VIs) in ratio have been used to effectively associate band information with specific
biochemical parameters; thus, the gas indued stress is present on plants. VIs are equations
developed to represent specific changes in reflectance at particular wavelengths compared
to a reference wavelength. VIs are proxies of the plant health status assessed by an increase
or decrease of the index’s value. For instance, Normalized Difference Vegetation Index
(NDVI) increases represent healthier plants (more greenness), while the increase in the
Anthocyanin Reflectance Index (ARI) can indicate plant stress [28]. A natural gas indicator
constructed by Ran et al. (2020) can demonstrate the underground gas leak when the
Jeffries–Matusita (JM) distance exceeds 1.8 [29]. In addition, Pan et al. (2022) compared
several gas stress indicators and proposed a newly defined variational mode decomposition
index (VMDI), which outperforms other indicators in terms of early detection [30].

Different plant stressors can impact the reflectance in hyperspectral curves at specific
wavelengths. The reflectance ratio between 725 nm and 702 nm (R725/R702) decreased by
30% to 50% before any visible signs could be observed on tested grasses under increasing
gas stress and the normalized difference index between 750 nm and 1900 nm gave a gas
leakage detection with high sensitivity [31]. Accettura (2018) predicted the developmental
stage of gas stress on maize and wheat with six reflectance indices. A combination of
760 nm, 1650 nm, and 1790 nm bands yields a detection of methane stress with 93%
accuracy [32]. An alternative band combination of 760 nm, 790 nm, 820 nm, 880 nm, and
930 nm exhibits similar accuracy. Noomen et al. (2012) tested four established stress
indicators for their effectiveness in mapping hydrocarbon seepages and revealed that the
Lichtenthaler index (R440/R740) can reduce false abnormalities [10]. Resembling VIs, the
‘red edge’ is considered the most effective indicator of gas leakage stress on vegetation,
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both in pixel and canopy scale [16,21,33]. Moreover, the ‘red edge position’ (REP), defined
as the inflection point of at the reflectance spectrum between 680 nm and 750 nm, shifted
to shorter wavelengths (also known as ‘blue shift’) and distinguished gassed vegetations
due to the degradation of chlorophyll [33–35]. Although VIs are promising to discern
gas-induced plant stress from other effects, the identification of gas-stressed plants can
be misleading with false alarms because VIs incorporate information only from several
wavelengths. Loss of information biases gas detection from other stressors unless the
unique metabolic response due to the gas exposure in the rhizosphere can be ascertained.
Note that REP impacts can be observed in other abiotic scenarios like salinization, heavy
metal contamination, and water deficit attack [33,36–38].

Rather than VIs, the use of a full spectrum in the detection of gas leakage improves
robustness and accuracy as physiological, morphological, and biochemical changes are
considered simultaneously, though close-range wavelengths are somewhat interrelated,
causing redundant messages in spectral analysis [39]. Moghimi et al. (2018) compared pixel
similarity with vector-wise similarity to a salt endmember and identified different concen-
trations of salt treatment from similar indices [40]. Mirzaei et al. (2019) introduced a partial
least square (PLS) method to group different grapevine foliage contaminated by heavy
metal salts based on the NIR spectra [41]. Asaari et al. (2018) confirmed the effectiveness
of full-spectrum identification for the early drought stress on maize plants cultivated in a
high-throughput plant phenotyping platform with the analysis of variance (ANOVA) [19].
Differentiation between stressors has also been investigated from an integration of entire
obtained spectra. From the reflectance curve of vegetation, Lassalle et al. (2018) assessed
oil-contaminated soils in the presence of heavy metal with an accuracy of 89% and 93%
from changes in the leaf and canopy of tested plants, respectively [42].

The above reviews indicated no systematic investigations on the selection of spectral
ranges for the effective detection of vegetation stress. More importantly, the detection of
gas-induced vegetation stress remains unexplored for specific wavelength responses and
potential responses to existing VIs or the development of new, gas-stress-specific VIs. The
impact of elevated concentrations of CO2 in the root zone was conducted on the normalized
difference first derivative index (NFDI), chlorophyll normalized difference vegetation index
(Chl NDI), and other investigated VIs [43].

Gas pipelines were distributed across the boundaries of states or countries in various
environments where other natural stressors such as salinity impact (SI), heavy metal
contamination (HMC), and drought exposure (DE) are likely mixed with the potential effect
of gas leakage in different ways. The other natural stressors can be severe disturbances
to the detection of gas-induced stress because of their potential overlapped hyperspectral
response on spectral signatures [44]. The multiple presence of stressors gives rise to false
alarms in gas leakage [12,31,45,46]. To facilitate rapid and accurate detection of gas leakage
with UAVs-enabled hyperspectral imaging, it is necessary to discriminate gas-stressed
vegetation from vegetation displaying responses to natural stressors. Even with some
false negatives, remote detection can expedite the deployment of ‘on the ground’ testing
for affirming and mitigating potential leaks and eliminating false detections. To this end,
three research questions need to be answered:

(1) Do hyperspectral curves respond to spectral features at unique wavelength bands for
different stressors?

(2) Do plants display significantly different sensitivities to various stressors in VIS,
NIR, and SWIR ranges during the identification and discrimination of gas-stressed
vegetation?

(3) Are plant responses (e.g., metabolic response) similar across different species so that
specific vegetative indices may be used for many sites and vegetations?

To reduce the number of false alarms when detecting gas leakage from hyperspectral
reflectance, three species of plants, one grass and two shrubs, will be tested in a greenhouse
under three natural stressors: SI, HMC, and DE. They will be imaged over time using a
hyperspectral camera. The research objectives of this study are:



Remote Sens. 2024, 16, 1029 4 of 24

1. To develop an accurate and robust approach for gas leakage identification from the
change of hyperspectral reflectance spectra instead of VIs,

2. To develop an effective method to spectrally discriminate gas leakage from the other
possible concurrent natural stressors, and

3. To determine the spectral region(s) that yield the most accurate classification of gas
leakage from trained discriminants in multivariate analysis.

2. Materials and Methods
2.1. Lab Test Design

Greenhouse tests were conducted in the Hypoint Laboratory (37.955376◦N,
91.771681◦W) at Missouri University of Science and Technology (S&T). As shown in
Figure 1, one grass (Calamagrostis × acutifoliate Karl Foerster grass abbreviated as ‘Grass’)
and two shrubs (Ligustrum sinense ‘southern sunshine’ abbreviated as ‘South’ and Ilex
glabra Gem box® inkberry holly abbreviated as ‘Gem’) were selected to emulate gas leakage
effects because of their presence in the wild of North America. All plants were mature to
ensure that their heights did not change appreciably in the study period, having minimal
influence on subsequent hyperspectral scanning. The selected plants were perennial to
overcome aging deterioration. The plants were treated with methane gas and three other
stressors: SI, HMC, and DE. The other stressors served as distraction sets for gas leakage
detection [47–49]. For comparison, plants cultivated under optimal conditions without
any known stress were used as a control reference, which is referred to as a non-stressed
scenario. For each stress treatment condition and the non-stressed scenario, three tests were
repeated. Therefore, a total of 45 pots of plants (3 replicas × 5 treatments × 3 species) were
prepared for the greenhouse tests.
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Figure 1. Schematic demonstration of the regular hyperspectral imaging collection on vegetations
with a hyperspectral camera in lab settings.

2.2. Stress Treatments

Before any treatment, all plants were placed in the greenhouse for an acclimation
period of 15 days to ensure they were adapted to the greenhouse environment. For gas
treatments, plants were transplanted to 8-L standard cylinder pots for easy distribution
of methane gas. A percolated gas distributor in cross shape was installed at the bottom of
each pot for methane application. The four ends of the cross were alternated clockwise
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to ensure that methane diffuses uniformly into the soil. Ultra-high purity grade methane
from Airgas (Airgas Inc., Radnor, PA, USA) was used as a stress medium to stimulate the
plants. The flow rate of the methane was regulated to 5 L/h over 10 h a day. The gas was
delivered through transparent vinyl tubing (D = 0.1875 cm). For SI treatments, the soil
was amended with NaCl and CaCl2 in 2:1 mol ratio to realize a moderate salinity for each
species of plants [50]. Here, sodium and calcium chloride salts were used because of their
abundance in nature. The moderate salinity was quantified by the soil-saturated paste
electrical conductivity (ECe) [51]. In reference to saline resistances of different species, ECe
was finally set to 6 dS/m, 8 dS/m, and 8 dS/m for Grass, South, and Gem, respectively [52].
Before salinization, the original ECe of soil in each pot of plant was measured and the
amount of salt needed was estimated. For HMC treatments, the composition of heavy
metal elements and their concentration in soil were referred to the U.S. Department of
Agriculture (USDA) regulatory limits, as given in Table 1. In this study, the five most
common heavy metal elements are considered: chromium, copper, zinc, nickel, and arsenic.
Heavy metal salts are diluted into irrigation water and sprayed on the soil of potted plants
in three batches to prevent overflowing [42]. For DE treatments, irrigation water was
reduced to half of the water intake than normal [12,21]. After each treatment, plants were
transferred back to the greenhouse to mark the start of a stress cycle. For the reference
group (Ref), plants were watered as instructed without any additional treatment on the soil
to create a stress-free environment.

Table 1. USDA regulatory limits of heavy metals applied to soil developed by the U.S. Environmental
Protection Agency (EPA).

Heavy Metal Salt As Cd Cr Cu Pb Hg Ni Se Zn

Maximum (ppm) 75 85 3000 4300 420 840 75 100 7500

The test lasted 121 days and all the plants were cultivated in the greenhouse with a
temperature of 25 ◦C and a relative humidity of 70%. A series of LED lights with a constant
378 µmol·m2/s photosynthetically active light intensity were uniformly distributed on the
roof of the greenhouse to create a homogeneous radiation on each plant as it was in a normal
transpiration system. A photoperiod of 14 h of light and 10 h of darkness was maintained
throughout the greenhouse tests. In addition, the ventilation rate of the greenhouse was set
to 50 L/min to achieve good air circulation for the plants in the greenhouse and maintain a
constant temperature.

2.3. Hyperspectral Imaging and Calibration
2.3.1. Hyperspectral Camera Setup

The stress effects on the treated plants were characterized by hyperspectral reflectance,
also known as spectral signature or spectral curve. A push broom hyperspectral imaging
platform built for this test was composed of four parts: imager, spectrometer, illumination
source, and movement control, as shown in Figure 1. The Headwall dual-lens imager
(Headwall Photonics, Inc., Bolton, MA, USA) that covers a full spectral range from 400 nm
to 2400 nm was used to collect hyperspectral images. The full spectral range can be
divided into two regions: VNIR (400–1000 nm) and SWIR (1000–2400 nm). The VNIR
range has 249 bands with 2 nm spectral resolution, while the SWIR range has 240 bands
at a 6 nm wavelength interval. Therefore, the full spectrum has 489 sampling bands. The
external illumination was provided by two 300 W full-spectrum tungsten halogen lamps
(Ushio Lighting Inc., Cypress, CA, USA) that were arranged parallel with the plant pots to
produce homogeneous radiation on the canopy of plants. Under constant light exposure,
the exposure time of the hyperspectral camera was set to 40 ms at a framing rate of 45 ms.
The field of view of the camera on the side of two lenses was 22◦. In the plane of the dual
lens, the hyperspectral camera can rotate 15◦ to cover the area to be scanned during tests.
The speed of the hyperspectral camera was adjusted to fit the imaging setup to ensure no
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pixel distortion so that the object in the pixel was neither compressed nor extended in the
movement direction. The camera parameter setup and speed control were finished in the
software Hyperspec III (Version: 3.1, Headwall Photonics, Inc., Bolton, MA, USA).

To collect hyperspectral images, the plant canopy was set to be 1.2 m down below
the imager. For each scanning, a screening line contains 640 pixels within the Field of
View (FOV) of the imager and the obtained image has 640 × 1208 pixels. The spatial
resolution of the pixel is 0.78 mm. Before the plant canopy was scanned, a gray mat was
placed underneath each pot within the view of the camera to reduce the reflection from
the background, lowering the risk of shadowing in the hyperspectral image. All the plants
were scanned every five days after the acclimation period.

2.3.2. Radiometric Calibration

Hyperspectral reflectance extracted from the plant leaves reflects the physical, mor-
phological, and biochemical status of the leaf surface [37]. The quality of image data is
related to the image detector properties such as lens, sensor, grating, and filter. Raw images
are subjected to radiometric calibration to reduce the influence of variability from the sen-
sor [53,54]. Raw digital numbers (DNs) captured by the detector are mapped to radiance
through a calibration coefficient for each wavelength. Thus, the spectral power flux on the
projected area can be plotted as a function of wavelength, creating a radiance fingerprint.
When exposed to a constant source, the radiance from plant canopies can be converted to
hyperspectral reflectance to facilitate the identification and comparison between different
scans. The radiance-to-reflectance conversion is done through the use of dark and white
references [19,55]. Prior to each scan, the camera when capped captures an internal dark
current as the dark reference. The white reference is acquired by a standard 25.4 cm square
Labsphere Spectralon® (Labsphere, Inc., North Sutton, NH, USA) made of barium sulfate,
which can reflect 99.7% light.

All pixels on the image are subjected to radiometric calibration by subtracting the
dark reference and normalized by the white reference before any feature extraction from
hyperspectral reflectance curves. All the conversion and correction are done in SpectraView
software (Version: 1.1.38, Headwall Photonics, Inc., Bolton, MA, USA). The raw reflectance
is normalized as shown in Equation (1) to range from 0 to 1. This transformation makes the
spectral signatures between scans comparable [53,56].

Ir =
R − D
W − D

(1)

where R and Ir are the raw and normalized reflectance intensities from a target pixel; D
and W are its corresponding dark current and white reference, respectively.

2.4. Optimization of Raw Reflectance

The spectral curves retrieved from plants are typically not smooth, especially from
a single pixel [57]. The Savitzky–Golay smoothing technique provides a moving average
of n adjacent bands and fits the averaged points with an mth-order polynomial function.
Another smoothing strategy to increase the signal-to-noise ratio (SNR) is to put l neighbor
bands into one bin [53,58–60]. Furthermore, a spectral curve is extracted from binning pixels
within a spot (on leaf surface) instead of picking an independent pixel. Figure 2 compares
the two ways of data extraction: single pixel and spatial binning. It can be seen from Figure 2
that the noise is suppressed along the spectrum, and especially in the VNIR and the SNR, it
is almost doubled by the spatial binning. The above raw hyperspectral reflectance curve
extraction is achieved in the classification module of SpectraView software.
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In addition, the canopy leaf inclination and thus distance to the imager detector affect
the intensity of reflectance [15,19]. Such variations can lead to locally higher reflection in
some pixels and thus neutralize an artifact unintentionally [54]. To compensate for the
above multiplicative factors, the standard normal variate (SNV) is introduced to normalize
the spectra by subtracting their mean from the raw data and dividing the difference by
their standard deviation as indicated in Equation (2) [51].

CSNV =
R − mean(R)
STDEV(R)

(2)

where R and C denote the spectral curve before and after the SNV processing, respec-
tively; Mean and STDEV are the mean value and standard deviation of a spectral curve,
respectively.

Mathematically, SNV can be viewed to rescale the variables such as leaf inclination
and light scattering into a standard form. This transformation retains every minor feature
of the original spectral signature, thus making the reflectance curves from pixels in the
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ROI comparable. After the SNV, the raw hyperspectral reflectance was differentiated
concerning wavelength to further reduce the effect of multiplicative variations [58]. More
importantly, derivative analysis augments absorption features that are masked by the
noise [18,54,61,62]. In this study, both the first-order derivative (FOD) and the second-order
derivative (SOD) of each hyperspectral reflectance spectrum are calculated by Savitzky–
Golay filtering with a window of 9 bands and a polynomial order of 2. The Savitzky–Golay
filtering can simultaneously smooth and differentiate the spectra following a least square
optimization [60,61]. All data transformations are done by using the Unscrambler X
software (Version: 10.1).

2.5. Multivariate Analysis

Each hyperspectral reflectance spectrum contains 489 sampling wavelengths between
400 and 2400 nm. The features manifested within a close range of wavelengths are some-
times interrelated since the chemical stretches interact with photons that have nearly
tantamount energy. The reflectance curve also exhibits variations in the VNIR and SWIR
range in terms of the importance of various stressors, which camouflages the distinction
of each treatment and complicates the stress discrimination. To account for the above
factors, multivariate analysis has proven effective in successfully distinguishing stress
treatments [39,42,58].

2.5.1. Principal Component Analysis (PCA)

A single spectral curve can be expressed into a function of wavelength as displayed in
Equation (3),

H
(
w1, w2, · · ·wp

)
= fw1

(
w1, w2, · · ·wp

)
+ fw2

(
w1, w2, · · ·wp

)
+ · · ·

+ fwp
(
w1, w2, · · ·wp

) (3)

where wi represents the wavelength w at the ith band out of a total number of samplings p in
the spectral range of interest (e.g., 489 samplings of the full spectra); H denotes the spectral
curve function; fwi is the integration of contributions from p number of wavelengths
centered at the ith wavelength (i = 1, 2, . . ., p). Multicollinearity at adjacent wavelengths
often influences the interpretation of spectral curve features due to high dimensionality
and entangled correlation. For the construction of a discrimination model, all features
of the hyperspectral reflectance curve from each stress treatment can be expressed into
Xs = [H0, H1, · · · , Hs−1], where s is the number of observations. H0 is a collection of the
p terms in Equation (3) and is written in vector form. To reduce the dimensionality of
hyperspectral data, PCA is used to analyze the original and transformed spectral curves.
PCA projects the p-dimensional data points to different orthogonal axes by maximizing
the variance in each direction. The PCA process makes the information along principal
component (PC) axes independent. The projection space is defined by the eigenvectors
that are derived from matrix Xs. The eigenvalues of the directions associated with the
eigenvectors can be computed from Equation (4) [63]. The top eigenvalues are the indicators
of the explanatory variance of the original data in the corresponding PC directions.

E−1CE = λ (4)

where C denotes the covariance matrix of the X; E is a matrix that represents a collection
of the computed eigenvectors; and λ is a matrix including the eigenvalues in diagonal
direction. The eigenvalues are displayed in descending order and a higher eigenvalue
means more contribution of that PC to representing the original data. The number of PCs,
n, to use for further model construction is determined by a 95% accumulative explained
variance of the raw reflectance data by the first n PCs. While increasing n unproportionally
can cover more radiance, an excessive number of PCs is likely to cause dimensionality
havoc or Hughes phenomenon [64]. After the PCA, the features of the Xs can be remodeled
as F with the n eigenvectors.
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F = XsEn (5)

2.5.2. Linear/Quadratic Discriminant Analysis (LDA/QDA)

The optimized and transformed raw reflectance data with reduced dimensions will be
used to identify or distinguish various treatments among three species of plants. LDA/QDA
groups different stressors by modeling the difference among samples through the feature
vectors F from the PCA analysis. QDA is performed by projecting features to hyperplanes
that maximize the distances between categories and minimize the variation within each
category. Mathematically, QDA classifies samples by maximizing the ratio between Cw
(within-group covariance) and Cb (between-group covariance) [63]. Once the maximum
ratio is located, the optimal differentiation space SQDA is expressed into

SQDA = arg maxQDA

∣∣STCbS
∣∣

|STCwS|
(6)

where SQDA represents the direction in which the groups are sectioned optimally in feature
data space F. LDA is a simplified form (special case) of QDA in terms of discrimination
strategy. LDA groups two stresses with a linear boundary while QDA can section more
stressors with multiple quadratic boundaries. A lower-class discrimination with QDA risks
overfitting. A higher-class LDA is likely to fail in classification due to the limited linear
separability [38,42].

Five treatments (gas leakage, SI, HMC, DE, and a control group) were discriminated
against with the QDA. The differentiation of stressors was carried out on any individual
group of plant species. To do so, five leaves were randomly selected from the canopy of each
plant for spectra collection. For an individual leaf, the representative spectrum is obtained
by averaging spectra from three different spots within the domain of the leaf. Hence, a
total of 15 spectra are accumulated from each scanning. Overall, the stress treatment lasted
60 days in this study. The discriminant analysis used the hyperspectral data from all the
collection dates and the spectra were divided into 70% and 30% for model training and
testing. The classification is accomplished with the Unscrambler X software (Version: 10.1).
The flow chart of the hyperspectral reflectance collection, processing, and classification is
presented in Figure 3. The entire process is divided into three steps: data acquisition, data
transformation, and model construction.
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3. Results
3.1. Raw Hyperspectral Reflectance Extraction and Stress Symptoms

The hyperspectral responses under non-optimal ambient stress conditions were consid-
ered different from those under optimal/normal conditions due to the foliage composition
and morphology changes of plants [44]. The plant stressors were reported to be sensitive
to the red edge position (REP), which is highly correlated with the chlorophyll content in
leaves. The corresponding red edge position indexing (REPI) was mapped over the plant
canopy in the ENVI software (Version: 5.5.2.), as shown in Figure 4a,b, and the development
of each stressor was plotted in Figure 4c. The REPI values for Grass, Gem, and South are
approximately 0.713, 0.725, and 0.709, respectively. Gem yields the highest REPI because
the thick shrub leaves contain more chlorophyll. After 25 days of treatment, it is observed
that the plant stressors cause slight changes in REPI when compared with the plant in the
control group. The changes spread more widely when the plants are treated for 60 days.
These changes are indicative of accumulative stress effects on the plants. However, the
stress did not necessarily yield visible symptoms on the treated plants during the 60-day
test. Among all three species, shrub South was the most sensitive to gas exposures and
displayed chlorosis on all the stress treatment scenarios due to the reduced photosynthesis,
as shown in Figure 5. The earliest chlorosis appeared on the plants with HMC and DE
treatments. For DE, the loss of sheen on the plant leaf was another notable feature because
of the dehydration effect. At the last stage of the stress development, some of the South
leaves demonstrated a dark/brown rim, which was reported as a sign of necrosis. Grass
also showed a sign of chlorosis under the stress conditions and started from the tip of the
long leaves. Compared to the Grass, the Shrub South showed less visible symptoms and
the Shrub Gem did not show identifiable physical changes on leaves regardless of the stress
treatments though optical differences can be observed in Figure 4(c-2). The resistance of the
stress effect likely accounts for the difference among the plant species. As such, separate
discriminant analyses are performed on the three plant species.
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3.2. Spectral Correlation and Dimensionality Reduction with PCA

Hyperspectral redundancy, which is indicative of the similarity between bands, was
quantified by the spectral correlation. Figure 6 shows the coefficient of correlation between
any two bands in VNIR and SWIR ranges, respectively for the test plant. In the VNIR
range, the most informative wavelengths are located around 540 nm in green and 680 nm
near red. The 540 nm band represents a featured absorption of chlorophyll, and 680 nm is
also dominated by the presence of chlorophyll [65]. The NIR spectra are regulated by the
scattering effect of the cellular components and thus are less correlated with the pigment
absorptions in VIS. In the SWIR range, the spectral information between 1000 nm and
2000 nm generally represents water features because the water or water-related content
yields spectral features at 1110 nm, 1380 nm, 1430 nm, 1780 nm, and 1920 nm [66]. Therefore,
the spectral bands are correlated as indicated by the high Pearson coefficient values. The
reflectance at bands between 1980 nm and 2400 nm is related to the plant biomass such as
lignin and cellulose and thus not correlated with information at the lower wavelengths [15].
Those informative wavelengths were also demonstrated by a band redundancy study [39].

Based on the understanding of electromagnetic radiation and the interrelation of
information at various wavelengths, the original hyperspectral data were compressed for
efficient and effective stress detection. Figure 7 displays the score plots of all PCs for the
classification model of Ref-Gas-DE using different spectral transformations and Figure 8
demonstrates their corresponding spectral loadings. The original 249 bands in the VNIR
range can be reduced to three in all transformation scenarios. As indicated by Figure 7,
the first two PCs explain more than 90% of the original spectra information and the first
three PCs represent over 95% of the variance of spectra in the original space. By examining
the spectral loadings of the corresponding PCs, the most informative bands are located in
VIS (400–680 nm) and ‘red edge’ (680–740 nm) in both raw and SNV transformed spectra.
The secondary wavelengths that contain significant variances are in the NIR (700–1000 nm)
range. It agrees with previous findings in the research on plant stress identification and
detection [33,38]. As for the effect of derivative analysis on the PCA model, the ‘red edge’
ranks the most significant region and the information in VIS contributes comparatively
less, as indicated by the spectral loading of PC1 in Figure 8c. Similarly, based on the PC2
and PC3 contributions, only some pigments’ featured absorption bands are highlighted,
such as 560 nm (chlorophyll a), and 610 nm, and 670 nm (chlorophyll concentration). The
informativeness of ‘REP’ was demonstrated by the zero point in PC3 in correspondence
to the ‘red edge’ in PC1. The effectiveness of the REP was reported to shift to lower
wavelengths in the presence of stress in many studies [33,35]. In comparison with raw
spectra, the SOD is less effective than the FOD in the PCA analysis. Overall, four PCs are
needed to explain the 95% variance, and only the ‘red edge’ is identified, which has a trivial
effect on the dimensionality reduction of the raw spectra according to the loadings. Instead,
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the wavelengths at the beginning of the VIS (400–450 nm) include most contributions from
the perspective of variance. The reason is that the SOD amplifies the noise in the region,
therefore inducing more variance.
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3.3. Gas Treatment Identification with LDA

The VNIR, SWIR, and full spectrum were considered respectively in the LDA model
for gas stress identification. Only the hyperspectral reflectance curves acquired from the
gas-stressed and untreated control sets of plants were pooled in this case. Figure 9 presents
the gas stress identification results with LDA for different plant species and the classification
accuracies of Ref and Gas are indicated by blue and orange color bars, respectively. The
identification accuracy shows a clear difference between plant species. The Shrub South
yielded the most accurate result while the Shrub Gem was the least. The overall average
identification accuracy is 79.3% for the South, which is approximately 10% higher than
that of the Gem. It is probably because the stress in the Gem was developed much more
slowly than that in the other two species. Therefore, many unstressed samples in the early
stage are eventually labeled as gas-stressed during the entire acquisition period, which
will provide erroneous data in the development of the LDA model. The small changes in
REPI due to stress treatment, as shown in Figure 4(c-2), may also explain the delayed stress
development in the Gem.

The spectral range selection also affects the identification of the gas stress on plants by
LDAs. The most informative gas stress identification comes from spectra in the VNIR range
for all three plants. The SWIR range provides the least information since it is less responsive
to the methane gas stress, as reported in [67]. The full spectra from 400 nm to 2500 nm yield
intermediate accuracy because the SWIR range can influence the LDA model in identifying
the true gas stress. In addition, the gas stress identification accuracy significantly differs
between the spectral transformations. LDA models based on the spectra in the VNIR range
after the FOD transformation generally yield the most desirable gas stress and non-stress
classifications. The highest identification accuracy is 80.2%, 77.6%, and 86.8% for the Grass,
the Gem, and the South, respectively. The effectiveness of the FOD of original spectra
for stress identification was also documented in previous publications [19,42]. Compared
to the SNV, the FOD helps reduce the scattering effects from the environment. The FOD
analysis exposes some important spectral features such as the red edge position (REP). That
is why the identification accuracy after the SNV processing is not as good as the FOD even
after the ambience effects have been removed. The SOD also reduces the multiplicative
effect in the process of differentiation. However, the higher-order derivative analysis would
augment the noise in the original spectra, especially at the beginning and ending region
of the spectra as shown in Figure 4(c-3). The noisy part in the SOD space is predominant
compared to other spectral features. When taking the varying sources into account in
control and gas plant classification, the LDA model can mispresent the actual scenario.

3.4. Gas Stress Discrimination from Other Treatments with QDA in Multi-Class Classification

SI, HMC, and DE were considered as distraction parameters for the detection of
gas leakage in multi-class discrimination. Considering different covariances between
classes, QDA was used to find optimal boundaries of the classes with a nonlinear func-
tion [37,56,58]. The hyperspectral curves collected from three species of plant under five
treatment conditions were pooled for QDA classification.

Figure 10 presents the gas stress classification accuracy with the other plant stressors
considered in this study. The classification accuracy of each stress effect was indicated.
The highest gas classification accuracy is 64.2%, 61.3%, and 68.7% for Grass, Gem and
South, respectively. Among all the five classes, the shrub Gem still yielded the lowest
accuracy. Plant species make a huge difference in both the gas stress identification as
discussed in Section 3.3 and classification because the plants vary significantly in stress
resistance, pigment concentration, and root structure [38]. Therefore, plants do not show
synchronized responses even when exposed to similar stress stimuli. In addition, the
classification accuracy of each stressor varies significantly between the spectral bands
used. SWIR still produced the worst results and VNIR and full spectra both yielded higher
accuracy in all five stressor classifications. VNIR spectra performed slightly better than the
full spectra. The weaker SWIR was likely related to the slow psychological response of the
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plant because the informative bands in SWIR were regulated by the biomass components
of the plant, which are reluctant to alter compared to the plant-pigmentation-dominated
bands in the visible range [68].
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Looking into the accuracy difference between the plant stressors, it is noted that DE
can be more accurately classified by the QDA models from all three plant species. The
best DE classification rate is 74.2%, which was derived from the South with VNIR data
after the FOD analysis. In addition, the DE is also highly detectable compared to the rest
of the stressors with the spectral information in the SWIR range. This is because the DE
treatment significantly reduced the water content in the leaf tissues. Loss of hydration
vastly increased the reflectance in the SWIR range [19]. The reduction of the leaf water
also increased the reflectance in the visible range due to the decline of the chlorophyll
content as observed from the Z. Mays barley [69,70]. Moreover, plant photosynthesis
activities were prohibited to some extent due to the lack of water supply. Hence, the optical
properties in the VNIR range change correspondingly. In contrast, SI achieved the lowest
accuracy in most classification scenarios. It is probably attributable to the minor change in
reflectance due to the saline effect. The SI was reported to increase the NIR reflectance on
the plant leave scale [38]. The VIS range may not change because the SI does not directly
reduce the concentration of the pigment and thus yields minor differences in the visible
range (400–600 nm). However, HMC exerts the stress influence directly in the biochemical
way because the HMC reduces the chlorophyll in plants. The center Magnesium can be
replaced by the other heavy metal cations; thus, the photosynthesis can be interrupted
because the photons cannot be effectively captured. The reactive species produced during
photosynthesis cannot be compromised to generate necrosis on the leaf surface. As a result,
the VNIR spectra adapts to the biochemical transformation that differs from the effects of
the remaining stressors. That explains why the HMC can also be discriminated from gas
with acceptable accuracy.

3.5. Gas Stress Discrimination from Another Treatment with QDA in Three-Class Classification

Section 3.3 and Section 3.4 discussed two extreme scenarios for gas stress detection
with no and three disturbances, respectively. In applications, gas leakage in an environment
with one disturbance stressor is more practical since multiple natural stressors (SI, HMC,
and DE) are seldom present at one location. Sections 3.3 and 3.4 also indicated that the
hyperspectral reflectance in the VNIR range can yield the most accurate detection results.
Thus, only spectra in the VNIR range are included in the following analysis. Figure 11
shows the gas stress detection results with QDA when the gas stressor is pooled with Ref
(stress-free) and one other predefined stressor on three species of plants. In Figure 11,
‘Ref-Gas-DE’ denotes a hyperspectral reflectance pool of three treatment conditions: no
stress reference, gas treatment, and drought exposure.

Among the three natural plant stressors, DE distinguishes itself from the others in
spectral reflectance and thus yields the highest classification accuracy in the five-class
classification in Section 3.4. In the current three-class classification, the DE also achieved
the highest accuracy. The shrub South reveals the most accurate stress classification, which
reached 88.2% by using the FOD transformed spectra. One of the reasons for the easy
discrimination of DE is that the DE yields very distinct spectral profiles against the Ref
and Gas, as discussed before. Figure 11 shows the representative spectra retrieved from
the plants after 60 days of stress treatment. REP was shifted to the lower wavelengths for
approximately 9 nm as opposed to Ref. The blue shift was also noted in the DE research
and other plant stress detection studies [21,38]. For the methane gas stress, Nooman and
Smith (2008) also detected the REP blue shift, though only 1–2 nm [71]. In comparison, the
gas-induced REP shift in this study is approximately 3 nm, as indicated by the FOD spectra
in Figure 12. The SI remains the most difficult stressor to distinguish from the gas from the
perspectives of the QDA model. With the presence of the SI, the highest gas identification
accuracy is 81.3%, which is approximately 3% lower than the classification combination
of Ref-Gas-HMC. The confusion in classification may result from the close hyperspectral
reflectance, as both stressors were reported to not alter the optical properties in the VIS and
only slightly lower the reflectance in the NIR [72,73].
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Among various transformations of the original spectra, SNV sometimes does not
influence the classification results, though it can remove the environmental disturbance,
which was also reported in [19]. The FOD transformation improves the contrast of spectra
associated with different treatments by reducing the multiplicate effect. In addition, the nor-
malization process suppresses many non-informative bands while maintaining significant
absorption features in the original space. In contrast, SOD yields the lowest classification
results in most scenarios because the SOD makes the noise even more prominent than the
original signal to retard the classification. Moreover, the higher order derivative analysis
disperses the noise that will contaminate more bands in the VNIR range and thus make it
more difficult in classification.

4. Discussion

Natural gas pipelines account for 80–90% of the transmission pipeline network, span-
ning approximately 3 million miles across the US [2]. Annually, these pipelines emit around
200 million cubic feet of natural gas, leading to significant environmental impact and sub-
stantial financial losses [66]. Studies by Naga Venkata et al. [74] and Lu et al. [3] have delved
into the progress, challenges, and opportunities in detecting pipeline leaks using various
techniques. However, achieving affordable and effective early detection of underground
natural gas leaks remains a formidable challenge. This article proposes leveraging ground
vegetation to detect underground natural gas leaks, employing hyperspectral imaging to
monitor biochemical changes in spectral profiles that signify the presence of a leak. Specifi-
cally, this study tested the hypothesis that vegetation can be responsive to the natural gas
impact. Moreover, this study investigated the discrimination of other vegetation stressors
in the presence of natural gas by considering a more complicated real-world natural gas
leak detection scenario and enhancing the robustness of the proposed method.

Hyperspectral imaging of the vegetation was utilized to perform the natural gas leak
detection and discrimination. In the context of early detection of natural gas leak, it is
postulated that stimuli in this study were not necessary to alter the spectral profile in
the full range. Therefore, three spectral zones were considered in this study: visible near
infrared (VNIR), short-wave infrared (SWIR), and the full spectra. The results indicated
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that VNIR spectroscopy consistently yields higher accuracy in natural gas identification
and discrimination. This is because plants tend to call for various pigments to counteract
the immediate adverse effects [75,76]. Principal Component Analysis (PCA) indicates
that wavelengths associated with the red edge and chlorophyll contribute significantly
according to the larger spectral loadings across all PCs in the natural gas discrimination
study, highlighting plant pigment vulnerability to vegetation stressors in the presence of
vegetation stressors [37,53,77]. This study emphasizes the sensitivity of different spectral
zones to use hyperspectral imaging to reflect vegetation stress in the presence of other
stressors. The inclusion of nonresponsive or less active wavelengths (e.g., the full spectra)
in the model complicates the natural gas detection, thus potentially impairing the detection
accuracy. In addition, it is worth noting that spectral transformation also plays a part in
the detection accuracy. First-order derivative (FOD) consistently facilitates natural gas
detection and discrimination. Even in the VNIR range, there remain some nonactive
bands, and FOD can basically eliminate their disturbance on the natural gas leak detection.
However, the second-order derivative (SOD) presents the least detection accuracy because
SOD amplifies the noises in the original spectral and even obscures the useful information
as indicated in Figure 12.

In the natural gas leak identification and discrimination, the results indicated that
vegetation can be used as a medium to receive the natural gas impact and the alterations on
vegetation can be identifiable in spectra, as demonstrated by the high detection accuracy.
As illustrated in the previous studies, many vegetation stressors, both biotic and abiotic,
such as saline soil, water deficit, and heavy metal contamination also induce spectral
changes and can be identifiable in hyperspectral imaging, which might increase the false
alarms in the natural leak detection via vegetations [5,21,40,53,72,73]. In the presence of
distraction vegetation stressors, natural gas stress remains discernible though with a lower
accuracy in this study. It is noticed that the drought differs from natural gas the most
on vegetation spectra as illustrated by the highest discrimination accuracy across plant
species. It might result from the distinct spectral responses under natural gas and drought
effects. It is reported that the drought exposure increases the hyperspectral reflectance in
the range of NIR while it decreases in 450–530 nm; the trend is opposite in the presence
of drought [31,32,75,76]. The difference in the spectral response comes from the generic
activities under two stressors [33,75,78,79]. In contrast, saline soil might confound the
natural gas leak detection, as indicated by the lowest discrimination accuracy among the
three distraction stressors [53,72]. Such confusion in natural gas detection comes from the
similar spectral response because salinity also decreases the reflectance in the NIR as of
natural gas, which is consistent with the results from the authors’ field natural gas leak
detection study.

Though the natural gas leak can be identified and differentiated via vegetation, the
generic reasons and the consequential biochemical products on vegetation behind the
natural gas stress remain insufficiently investigated. Future endeavors can be allocated
to biochemical studies to reveal the stress mechanisms to support the interpretation of
the hyperspectral data. In addition, with the proven capability of natural gas detection
through vegetation in a lab environment, it is necessary to test the applicability of deploying
hyperspectral imaging in the field of natural gas leak detection.

5. Conclusions

This paper summarized the feasibility study on detecting methane gas stress on
vegetation from hyperspectral reflectance as it contains variance of the vegetation derived
from exposure to the stress. Due to plant generic responses to electromagnetic radiation, the
transformed hyperspectral data in different spectral ranges (VNIR, SWIR, and full spectra)
were compared for the first time. The multivariate analysis technique (LDA or QDA) was
used to statistically differentiate the gas stress from both the unstressed reference and
three natural stressors (DE, HMC, and SI). Based on the extensive tests, data normalization
analyses, and noise cleansing, the following conclusions can be drawn:
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1. The LDA can be applied to effectively identify the gas stress on vegetation from un-
stressed vegetation with an accuracy of 77.6–84.8% in the two-class detection process.

2. With the distraction of three natural stressors, the QDA can be applied to discriminate
the gas treatment from natural stressors with an accuracy of 61.2–68.4% in the five-
class detection process. DE is the most distinguishable stressor, while SI is the least in
terms of classification accuracy.

3. When distracted by one natural stressor (DE, HMC, or SI), the QDA can differentiate
the gas stress from the distracted natural stressor and the unstressed reference with
an accuracy of 76.4–84.6% in the three-class detection process. This level of accuracy
is comparable to that of gas stress identification from unstressed vegetation. These
results have practical implications for the natural gas and oil pipeline industries.

4. The FOD of the VNIR-ranged spectra (400–1000 nm) can always lead to the highest ac-
curacy in almost all detection cases. The FOD can effectively simplify the feature space
of raw data by reducing the number of PCs required for more accurate classification.

Overall, the proposed LDA and QDA can be respectively applied to the FOD of
the VNIR-ranged spectra for the effective identification of gas stress from unstressed
vegetations and successful discrimination of gas stress from one other natural stressor. Even
so, further research is required to understand the physiological and biochemical alteration
of stressed vegetations to develop more explainable distinctions among hyperspectral
reflectance curves associated with different stressor effects. Moreover, the applicability of
the LDA and QDA in the pipeline industries must be tested over seasons in an experimental
field station to quantify the time effect on the accuracy of the algorithms in gas detection.
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