Validating Landsat Analysis Ready Data for Nearshore Sea Surface Temperature Monitoring in the Northeast Pacific
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets
2.2.1. In Situ SST Data
- (i)
- Farshore In Situ Site (Halibut Bank Buoy)
- (ii)
- Nearshore In Situ Sites (BC Lighthouse Stations)
- (1)
- Race Rocks—off the dock at the northwest side of the island;
- (2)
- Entrance Island—off the dock on the island’s south side;
- (3)
- Departure Bay—off the dock to the southwest of the Pacific Biological Station.
2.2.2. Landsat ARD ST Images
3. Methods
- (i)
- At the farshore buoy location (Figure 1), an 8100 m2 polygon (Landsat ARD 3 × 3 pixel window) centred over the site was used to extract image zonal statistics of mean and standard deviation SSTLsat for matchup comparison with corresponding SSTin situ buoy observations. Matchups were removed if the standard deviation was >2.0 °C within the pixel window to limit errors associated with surface heterogeneity [10,41,43].
- (ii)
- For the three nearshore locations, a Canadian Hydrographic Service (CHS) Low Water Mark (LWM) (https://catalogue.data.gov.bc.ca/dataset/chs-low-water-mark-lines (accessed on 1 September 2021)) was used to delineate the coastline around the lighthouse locations (Figure 1). From the derived coastline, a 3 × 12 pixel transect was defined as perpendicular to the coast from the local dock where SSTin situ was collected (Figure 2). Each transect was then subdivided into four distance groups covering nine (3 × 3) pixels each: 0–90 m, 90–180 m, 180–270 m, and 270–360 m. For the Departure Bay lighthouse site, sampling was not possible past 180 m from the coast because a small island offshore from the lighthouse created a geographical constraint (Figure 2c). The mean SSTLsat value and standard deviation of each 3 × 3 pixel window were extracted for each data analysis scenario [10,41,43].
4. Results
4.1. Farshore Results
4.2. Nearshore Results
5. Discussion
5.1. Considerations for the Use of LANDSAT ARD for Nearshore SST
5.2. Sources of Uncertainty: Matchup Quality and Characteristics
5.3. Sources of Uncertainties: Sensor-Specific and Calibration Biases
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Centurioni, L.R.; Turton, J.; Lumpkin, R.; Braasch, L.J.; Brassington, G.B.; Chao, Y.; Charpentier, E.; Chen, Z.; Corlett, G.K.; Dohan, K.; et al. Global in situ observations of essential climate and ocean variables at the air–sea interface. Front. Mar. Sci. 2019, 6, 419. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Chandler, P.C. Long-term temperature and salinity at BC lighthouses. In State of Physical, Biological, and Selected Fishery Resources of Pacific Canadian Marine Ecosystems; Fisheries and Oceans Canada: Sidney, BC, Canada, 2010. [Google Scholar]
- Minnett, P.; Alvera-Azcárate, A.; Chin, T.; Corlett, G.; Gentemann, C.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- Schaeffer, B.A.; Iiames, J.; Dwyer, J.; Urquhart, E.; Salls, W.; Rover, J.; Seegers, B. An initial validation of Landsat 5 and 7 derived surface water temperature for US lakes, reservoirs, and estuaries. Int. J. Remote Sens. 2018, 39, 7789–7805. [Google Scholar] [CrossRef]
- Chandler, P.C. Sea surface temperature and salinity trends observed at lighthouses and weather buoys in British Columbia, 2014. In State of the Physical, Biological and Selected Fishery Resources of Pacific; Fisheries and Oceans Canada: Sidney, BC, Canada, 2014. [Google Scholar]
- Brewin, R.J.W.; Smale, D.A.; Moore, P.J.; Dall’olmo, G.; Miller, P.I.; Taylor, B.H.; Smyth, T.J.; Fishwick, J.R.; Yang, M. Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sens. 2018, 10, 925. [Google Scholar] [CrossRef]
- Starko, S.; Bailey, L.A.; Creviston, E.; James, K.A.; Warren, A.; Brophy, M.K.; Danasel, A.; Fass, M.P.; Townsend, J.A.; Neufeld, C.J. Environmental heterogeneity mediates scale-dependent declines in kelp diversity on intertidal rocky shores. PLoS ONE 2019, 14, e0213191. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An operational land surface temperature product for Landsat thermal data: Methodology and validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis ready data: Enabling analysis of the Landsat archive. Remote Sens. 2018, 10, 1363. [Google Scholar] [CrossRef]
- Cook, M.; Schott, J.R.; Mandel, J.; Raqueno, N. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a Land Surface Temperature (LST) product from the archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef]
- Schroeder, S.B.; Dupont, C.; Boyer, L.; Juanes, F.; Costa, M. Passive remote sensing technology for mapping bull kelp (Nereocystis luetkeana): A review of techniques and regional case study. Glob. Ecol. Conserv. 2019, 19, e00683. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C. Land adjacency effects on MODIS Aqua top-of-atmosphere radiance in the shortwave infrared: S tatistical assessment and correction. J. Geophys. Res. Ocean. 2017, 122, 4802–4818. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 2009, 387, 27–37. [Google Scholar] [CrossRef]
- Barnes, R.A.; Holmes, A.W.; Barnes, W.L.; Esaias, W.E.; Mcclain, C.R.; Svitek, T.; Hooker, S.B.; Firestone, E.R.; Acker, J.G. Volume 23: Seawifs Prelaunch Radiometric Calibration and Spectral Characterization (No. REPT-94B00144-VOL-23); Seawifs Technical Report Series; Goddard Space Flight Center: Greenbelt, MD, USA, 1994.
- Cavanaugh, K.C.; Bell, T.; Costa, M.; Eddy, N.E.; Gendall, L.; Gleason, M.G.; Hessing-Lewis, M.; Martone, R.; McPherson, M.; Pontier, O.; et al. A Review of the Opportunities and Challenges for Using Remote Sensing for Management of Surface-Canopy Forming Kelps. Front. Mar. Sci. 2021, 8, 1536. [Google Scholar] [CrossRef]
- Starko, S.; Neufeld, C.J.; Gendall, L.; Timmer, B.; Campbell, L.; Yakimishyn, J.; Druehl, L.; Baum, J.K. Microclimate predicts kelp forest extinction in the face of direct and indirect marine heatwave effects. Ecol. Appl. 2022, 32, e2673. [Google Scholar] [CrossRef] [PubMed]
- Gendall, L.; Schroeder, S.B.; Wills, P.; Hessing-Lewis, M.; Costa, M. A Multi-Satellite Mapping Framework for Floating Kelp Forests. Remote Sens. 2023, 15, 1276. [Google Scholar] [CrossRef]
- Mora-Soto, A.; Schroeder, S.; Gendall, L.; Wachmann, A.; Narayan, G.R.; Read, S.; Pearsall, I.; Rubidge, E.; Lessard, J.; Martell, K.; et al. Kelp dynamics and environmental drivers in the southern Salish Sea. Front. Mar. Sci. 2024, 11, 1323448. [Google Scholar] [CrossRef]
- Schroeder, S.B.; Boyer, L.; Juanes, F.; Costa, M. Spatial and temporal persistence of nearshore kelp beds on the west coast of British Columbia, Canada using satellite remote sensing. Remote Sens. Ecol. Conserv. 2020, 6, 327–343. [Google Scholar] [CrossRef]
- Supratya, V.P.; Coleman, L.J.; Martone, P.T. Elevated temperature affects phenotypic plasticity in the bull kelp (Nereocystis luetkeana, Phaeophyceae). J. Phycol. 2020, 56, 1534–1541. [Google Scholar] [CrossRef]
- Iwabuchi, B.L.; Gosselin, L.A. Long-term trends and regional variability in extreme temperature and salinity conditions experienced by coastal marine organisms on Vancouver Island, Canada. Bull. Mar. Sci. 2019, 95, 337–354. [Google Scholar] [CrossRef]
- Kaldy, J.E. Effect of temperature and nutrient manipulations on eelgrass Zostera marina L. from the Pacific Northwest, USA. J. Exp. Mar. Biol. Ecol. 2014, 453, 108–115. [Google Scholar] [CrossRef]
- Suchy, K.D.; Le Baron, N.; Hilborn, A.; Perry, R.I.; Costa, M. Influence of environmental drivers on spatio-temporal dynamics of satellite-derived chlorophyll-a in the Strait of Georgia. Prog. Oceanogr. 2019, 176, 102134. [Google Scholar] [CrossRef]
- Crawford, W.R.; Thomson, R.E. Physical oceanography of the western Canadian continental shelf. Cont. Shelf Res. 1991, 11, 669–683. [Google Scholar] [CrossRef]
- Schiltroth, B.; Bisgrove, S.; Heath, B. Effects of warm ocean temperatures on bull kelp forests in the Salish Sea. In Salish Sea Ecosystem Conference 2018; Western Washington University: Bellingham, WA, USA, 2018. [Google Scholar]
- Thompson, R.E. Oceanography of the British Columbia coast. Can. Spec. Publ. Fish. Aquat. Sci. 1981, 50, 291. [Google Scholar]
- Khangaonkar, T.; Nugraha, A.; Xu, W.; Balaguru, K. Salish Sea response to global climate change, sea level rise, and future nutrient loads. J. Geophys. Res. Ocean. 2019, 124, 3876–3904. [Google Scholar] [CrossRef]
- British Columbia Ministry of Environment. Indicators of Climate Change for British Columbia: 2016 Update; Ministry of Environment: British Columbia, Canada, 2016.
- Cummins, P.F.; Masson, D. Climatic variability and trends in the surface waters of coastal British Columbia. Prog. Oceanogr. 2014, 120, 279–290. [Google Scholar] [CrossRef]
- DFO. British Columbia Lighthouse Sea-Surface Temperature and Salinity Data, 1914-Present. British Columbia Shore Station Oceanographic Program. Department of Fisheries and Oceans Canada. 2021b. Available online: https://open.canada.ca/data/en/dataset/719955f2-bf8e-44f7-bc26-6bd623e82884 (accessed on 19 November 2021).
- Smit, A.J.; Roberts, M.; Anderson, R.J.; Dufois, F.; Dudley, S.F.J.; Bornman, T.G.; Olbers, J.; Bolton, J.J. A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS ONE 2013, 8, e81944. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- DFO. Marine Environmental Data Section Archive. Ecosystem and Oceans Science. Department of Fisheries and Oceans Canada. 2021a. Available online: https://meds-sdmm.dfo-mpo.gc.ca/ (accessed on 29 November 2021).
- DFO. Institute of Ocean Sciences Data Archive. Ocean Sciences Division. Department of Fisheries and Oceans Canada. 2022. Available online: https://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/index-eng.html (accessed on 10 January 2022).
- Vanhellemont, Q.; Brewin, R.J.; Bresnahan, P.J.; Cyronak, T. Validation of Landsat 8 high resolution Sea Surface Temperature using surfers. Estuar. Coast. Shelf. Sci. 2022, 265, 107650. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E.; He, Y. A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific. J. Geophys. Res. Ocean. 1999, 104, 1525–1536. [Google Scholar] [CrossRef]
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; Van Den Bosch, J. MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code. In Proceedings of the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; IEEE: New York, NY, USA, 2014; pp. 1–4. [Google Scholar]
- Wang, M.; Zhang, Z.; Hu, T.; Liu, X. A practical single-channel algorithm for land surface temperature retrieval: Application to landsat series data. J. Geophys. Res. Atmos. 2019, 124, 299–316. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wang, C.; Zhang, S.; Tang, B.-H.; Leng, P.; Gao, M.-F. Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product. Int. J. Remote Sens. 2019, 40, 1763–1778. [Google Scholar] [CrossRef]
- Hossain, M.S.; Bujang, J.S.; Zakaria, M.H.; Hashim, M. Assessment of Landsat 7 Scan Line Corrector-off data gap-filling methods for seagrass distribution mapping. Int. J. Remote Sens. 2015, 36, 1188–1215. [Google Scholar] [CrossRef]
- Laraby, K.G.; Schott, J.R. Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product. Remote Sens. Environ. 2018, 216, 472–481. [Google Scholar] [CrossRef]
- Baughman, C.A.; Conaway, J.S. Comparison of Historical Water Temperature Measurements with Landsat Analysis Ready Data Provisional Surface Temperature Estimates for the Yukon River in Alaska. Remote Sens. 2021, 13, 2394. [Google Scholar] [CrossRef]
- Werdell, P.J.; McKinna, L.I.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef]
- Giannini, F.; Hunt, B.P.; Jacoby, D.; Costa, M. Performance of OLCI Sentinel-3A satellite in the Northeast Pacific coastal waters. Remote Sens. Environ. 2021, 256, 112317. [Google Scholar] [CrossRef]
- Nasiha, H.J.; Wang, Z.; Giannini, F.; Costa, M. Spatial variability of in situ above-water reflectance in coastal dynamic waters: Implications for satellite match-up analysis. Front. Remote Sens. 2022, 3, 876748. [Google Scholar] [CrossRef]
- Schott, J.R.; Gerace, A.; Raqueno, N.; Ientilucci, E.; Raqueno, R.; Lunsford, A.W. Chasing the TIRS ghosts: Calibrating the Landsat 8 thermal bands. In Earth Observing Systems XIX; SPIE: Bellingham, WA, USA, 2014; Volume 9218, pp. 409–428. [Google Scholar]
- Qiu, S.; Lin, Y.; Shang, R.; Zhang, J.; Ma, L.; Zhu, Z. Making Landsat time series consistent: Evaluating and improving Landsat analysis ready data. Remote Sens. 2019, 11, 51. [Google Scholar] [CrossRef]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Hook, S.; Chander, G.; Barsi, J.; Alley, R.; Abtahi, A.; Palluconi, F.; Markham, B.; Richards, R.; Schladow, S.; Helder, D. In-flight validation and recovery of water surface temperature with Landsat-5 thermal infrared data using an automated high-altitude lake validation site at Lake Tahoe. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2767–2772. [Google Scholar] [CrossRef]
- Casey, K.S.; Cornillon, P. A comparison of satellite and in situ–based sea surface temperature climatologies. J. Clim. 1999, 12, 1848–1863. [Google Scholar] [CrossRef]
- Robinson, I.S.; Wells, N.C.; Charnock, H. The sea surface thermal boundary layer and its relevance to the measurement of sea surface temperature by airborne and spaceborne radiometers. Int. J. Remote Sens. 1984, 5, 19–45. [Google Scholar] [CrossRef]
- Kaplan, D.M.; Largier, J.L.; Navarrete, S.; Guiñez, R.; Castilla, J.C. Large diurnal temperature fluctuations in the nearshore water column. Estuar. Coast. Shelf Sci. 2003, 57, 385–398. [Google Scholar] [CrossRef]
- Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. An optimal definition for ocean mixed layer depth. J. Geophys. Res. Ocean. 2000, 105, 16803–16821. [Google Scholar] [CrossRef]
- Arafeh-Dalmau, N.; Schoeman, D.S.; Montaño-Moctezuma, G.; Micheli, F.; Rogers-Bennett, L.; Olguin-Jacobson, C.; Possingham, H.P. Marine heat waves threaten kelp forests. Science 2020, 367, 635. [Google Scholar] [CrossRef]
- Schott, J.R.; Hook, S.J.; Barsi, J.A.; Markham, B.L.; Miller, J.; Padula, F.P.; Raqueno, N.G. Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010). Remote Sens. Environ. 2012, 122, 41–49. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Automated water surface temperature retrieval from Landsat 8/TIRS. Remote Sens. Environ. 2020, 237, 111518. [Google Scholar] [CrossRef]
- Springer, Y.P.; Hays, C.G.; Carr, M.H.; Mackey, M.R. Toward ecosystem-based management of marine macroalgae–the bull kelp, Nereocystis luetkeana. Oceanogr. Mar. Biol. 2010, 48, 1–42. [Google Scholar]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
Site Name | Location | Adjacent to Coast? | Temporal Resolution | Description |
---|---|---|---|---|
Halibut Bank buoy | 49°20′24″N, 123°43′48″W | No | Hourly | Operated by Environment and Climate Change Canada, this buoy is located about 10.7 km offshore in the central Strait of Georgia (Figure 1) and has been used in the past to validate other satellite SST products [5]. Seasonally, the SST ranges from 4.2 °C to 22.0 °C [32]. |
Race Rocks lighthouse | 48°17′54″N, 123°31′54″W | Yes | Daily | Located on an island at the southern tip of Vancouver Island (Figure 1), this lighthouse station experiences the most stable SSTs year-round (5.9–13.3 °C) [32] due to consistent upwelling of deep water along the west coast of Vancouver Island and strong currents and wind–wave action (fetch = 989,674 m) from the Strait of Juan de Fuca [30]. |
Entrance Island lighthouse | 49°12′33″N, 123°48′29″W | Yes | Daily | This is a moderately exposed (fetch = 686,219 m) lighthouse located midway into the Salish Sea, Vancouver Island (Figure 1). This lighthouse undergoes strong seasonal variation in SST (5.8–22.8 °C) [32] and wave action from the Strait of Georgia [31]. |
Departure Bay lighthouse | 49°12′39″N, 123°57′20″W | Yes | Daily | The most sheltered (fetch = 32,093 m) of the lighthouse stations, Departure Bay undergoes strong seasonal variation in SST (6.1–22.5 °C) because of limited tide mixing and strong influences from nearby freshwater outfalls [7]. This station is located on the north side of Nanaimo Harbour (Figure 1), protected by the Brandon Islands, and presents the most complex geography among the selected sites. |
Thermal Range | MB (°C) | MRB (%) | RMSE (°C) | pRMSE (%) | Slope | Offset | R Squared | N |
---|---|---|---|---|---|---|---|---|
Total | 0.03 | −0.96 | 0.97 | 8.39 | 1.08 | −1.1 | 0.96 | 134 |
<10 °C | −0.46 | −7.39 | 0.88 | 13.76 | N/A | N/A | N/A | 25 |
10–15 °C | 0.02 | −0.12 | 0.83 | 6.34 | N/A | N/A | N/A | 37 |
15–20 °C | 0.33 | 1.88 | 1.10 | 6.44 | N/A | N/A | N/A | 68 |
>20 °C | 0.51 | 2.42 | 1.04 | 5.09 | N/A | N/A | N/A | 4 |
Season | MB (°C) | MRB (%) | RMSE (°C) | pRMSE (%) | Slope | Offset | R Squared | N |
---|---|---|---|---|---|---|---|---|
Spring/Summer | 0.12 | 0.38 | 0.95 | 6.23 | 1.06 | −0.82 | 0.94 | 120 |
Winter | −0.76 | −12.51 | 1.15 | 18.51 | 1.34 | −3.52 | 0.82 | 14 |
Sensor | MB (°C) | MRB (%) | RMSE (°C) | pRMSE (%) | Slope | Offset | R Squared | N |
---|---|---|---|---|---|---|---|---|
L5 | −0.28 | −3.28 | 0.96 | 9.42 | 1.05 | −1.05 | 0.96 | 79 |
L7 | 0.1 | −0.58 | 1.05 | 7.54 | 1.09 | −1.26 | 0.96 | 18 |
L8 | 0.65 | 3.79 | 0.98 | 6.17 | 1.09 | −0.72 | 0.98 | 37 |
Distance from Coast | MB (°C) | MRB (%) | RMSE (°C) | pRMSE (%) | Slope | Offset | R Squared | N |
---|---|---|---|---|---|---|---|---|
0–90 m | 0.58 | 3.35 | 1.78 | 13.74 | 1.08 | −0.56 | 0.88 | 512 |
90–180 m | −0.61 | −4.98 | 1.74 | 12.98 | 1.01 | −0.72 | 0.87 | 512 |
180–270 m * | −1.25 | −9.31 | 1.78 | 13.12 | 0.91 | 0.05 | 0.91 | 334 |
270–360 m * | −1.27 | −9.44 | 1.79 | 13.28 | 0.92 | 0.15 | 0.91 | 334 |
Distance: Season | MB (°C) | MRB (%) | RMSE (°C) | pRMSE (%) | Slope | Offset | R Squared | N |
---|---|---|---|---|---|---|---|---|
0–90 m: Spring/Summer | 0.71 | 4.28 | 1.78 | 12.63 | 1.03 | 0.22 | 0.85 | 475 |
0–90 m: Winter | −1.05 | −15.43 | 1.70 | 23.75 | 1.60 | −5.49 | 0.64 | 37 |
90–180: Spring/Summer | −0.57 | −4.13 | 1.75 | 11.95 | 0.99 | −0.39 | 0.83 | 475 |
90–180 m: Winter | −1.1 | −15.84 | 1.55 | 22.35 | 1.44 | −4.35 | 0.67 | 37 |
90–180 m, Spring/Summer | MB (°C) | MRB (%) | RMSE (°C) | pRMSE (%) | Slope | Offset | R Squared | N |
---|---|---|---|---|---|---|---|---|
Location | ||||||||
Race Rocks | −0.93 | −8.39 | 1.41 | 12.84 | 0.81 | 1.14 | 0.46 | 127 |
Entrance Island | −1.43 | −8.71 | 2.03 | 12.41 | 0.90 | 0.16 | 0.83 | 183 |
Departure Bay | 0.67 | 4.23 | 1.65 | 10.64 | 1.03 | 0.13 | 0.84 | 165 |
Temp. Range | ||||||||
<10 °C | −0.42 | −4.7 | 1.13 | 12.72 | N/A | N/A | N/A | 55 |
10–15 °C | −0.68 | −5.91 | 1.54 | 13.06 | N/A | N/A | N/A | 183 |
15–20 °C | −0.31 | −1.69 | 1.8 | 10.28 | N/A | N/A | N/A | 210 |
>20 °C | −1.84 | −8.63 | 2.94 | 13.86 | N/A | N/A | N/A | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wachmann, A.; Starko, S.; Neufeld, C.J.; Costa, M. Validating Landsat Analysis Ready Data for Nearshore Sea Surface Temperature Monitoring in the Northeast Pacific. Remote Sens. 2024, 16, 920. https://doi.org/10.3390/rs16050920
Wachmann A, Starko S, Neufeld CJ, Costa M. Validating Landsat Analysis Ready Data for Nearshore Sea Surface Temperature Monitoring in the Northeast Pacific. Remote Sensing. 2024; 16(5):920. https://doi.org/10.3390/rs16050920
Chicago/Turabian StyleWachmann, Alena, Samuel Starko, Christopher J. Neufeld, and Maycira Costa. 2024. "Validating Landsat Analysis Ready Data for Nearshore Sea Surface Temperature Monitoring in the Northeast Pacific" Remote Sensing 16, no. 5: 920. https://doi.org/10.3390/rs16050920
APA StyleWachmann, A., Starko, S., Neufeld, C. J., & Costa, M. (2024). Validating Landsat Analysis Ready Data for Nearshore Sea Surface Temperature Monitoring in the Northeast Pacific. Remote Sensing, 16(5), 920. https://doi.org/10.3390/rs16050920