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Abstract: In the face of global ocean warming, monitoring essential climate variables from space is
necessary for understanding regional trends in ocean dynamics and their subsequent impacts on
ecosystem health. Analysis Ready Data (ARD), being preprocessed satellite-derived products such
as Sea Surface Temperature (SST), allow for easy synoptic analysis of temperature conditions given
the consideration of regional biases within a dynamic range. This is especially true for SST retrieval
in thermally complex coastal zones. In this study, we assessed the accuracy of 30 m resolution
Landsat ARD Surface Temperature products to measure nearshore SST, derived from Landsat 8
TIRS, Landsat 7 ETM+, and Landsat 5 TM thermal bands over a 37-year period (1984–2021). We
used in situ lighthouse and buoy matchup data provided by Fisheries and Oceans Canada (DFO).
Excellent agreement (R2 of 0.94) was found between Landsat and spring/summer in situ SST at the
farshore buoy site (>10 km from the coast), with a Landsat mean bias (root mean square error) of
0.12 ◦C (0.95 ◦C) and a general pattern of SST underestimation by Landsat 5 of −0.28 ◦C (0.96 ◦C)
and overestimation by Landsat 8 of 0.65 ◦C (0.98 ◦C). Spring/summer nearshore matchups revealed
the best Landsat mean bias (root mean square error) of −0.57 ◦C (1.75 ◦C) at 90–180 m from the coast
for ocean temperatures between 5 ◦C and 25 ◦C. Overall, the nearshore image sampling distance
recommended in this manuscript seeks to capture true SST as close as possible to the coastal margin—
and the critical habitats of interest—while minimizing the impacts of pixel mixing and adjacent land
emissivity on satellite-derived SST.

Keywords: Landsat; Analysis Ready Data; nearshore; sea surface temperature (SST); coastal ecosystems

1. Introduction

Sea surface temperature (SST) is recognized as an essential climate variable that plays a
critical role in the health and function of marine ecosystems [1]. As such, significant efforts
have gone into establishing SST monitoring programs, e.g., in [2,3], that allow for time-series
analysis of seasonal and interannual variability [1]. Traditional methods for monitoring
SST include in situ sampling from ships, e.g., [2,3], buoys, and lighthouses [4]. These
methods provide ground truth data for the temporal analysis of SST at specific locations.
However, they do not provide information on SST dynamics over continuous spatial scales,
which vary regionally depending on geographical constraints (i.e., bathymetry, exposure
to wind and wave action, currents) [1,2]. This is especially pertinent to nearshore coastal
environments, where SST can vary significantly across fine spatial scales [5–8] and have dire
implications to coastal ecosystems [9]. Thus, nearshore regions require monitoring systems
capable of resolving high spatial and temporal variability [8]. Satellite-retrieved SST can
help meet these requirements by providing a synoptic complement to in situ sampling [6].
However, to effectively leverage satellite-derived SST products, it is essential that users
evaluate the regional accuracy and precision of satellite SST retrievals [8–11].
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Since the 1970s, Earth observation satellites with thermal infrared (TIR) sensors, gener-
ally operating at 3.7–12 µm wavelengths, have provided extensive SST data globally [5].
Early spaceborne sensors often acquired TIR data at spatial resolutions > 1 km, limiting
their effectiveness for nearshore SST retrieval [6,8]. TIR sensors have since been refined
to capture higher spatial resolution TIR (<150 m) [5], improving their ability to measure
SST along complex coastlines [8]. The top-of-atmosphere (TOA) TIR radiance (Level-1)
measured by a spaceborne sensor is a function of the surface emission, atmospheric path
radiance, and atmospheric downwelling irradiance reflected by the Earth’s surface and
attenuated by the atmosphere [5,10]. Surface emission depends on the temperature and
emissivity of the surface [5,10]. For retrieval of SST/land surface temperature (LST), cor-
recting for atmospheric attenuation and accounting for surface emissivity is a fundamental
requirement [5,10], thus requiring end-users to have skill sets in image processing. To
facilitate the use of these products, there has been a recent surge in Level-2 operational
thermal products, such as Analysis Ready Data (ARD) [11,12], to improve the accessibility
of high-fidelity satellite-derived surface temperature data to a broader demographic [5,8,11].
ARD and similar science-grade products provide geometrically and radiometrically con-
sistent observations based on standardized calibration methodologies for the streamlined
analysis of temperature trends [10,11].

However, uncertainties introduced into satellite-derived SST associated with adjacent
land emissivity and pixel mixing at the land–water boundary must be considered [5,6,8,13–16].
Land adjacency refers to the effects of TIR scattering from land pixels into the field of view
of adjoining water pixels [6,14,16]. Pixel mixing is the result of having multiple surface
types (e.g., land and water) captured within a single-image pixel, a function of the satellite’s
spatial resolution and the complexity of the geography being observed [17]. Both are
common limitations of accurate nearshore SST retrieval from satellite imagery [8], requiring
specific parameters for the selection of pixels most representative of true nearshore SST.
Temperature data for nearshore ecosystems can enhance our understanding of thermal
stress conditions associated with climate change and marine heatwaves [18]. This informa-
tion is valuable for guiding various restoration and management initiatives including the
monitoring of temperature tolerances for coral, eelgrass, kelp, and fisheries [9,17–24].

Here, we evaluated the accuracy of SST retrieval from Landsat 8 TIRS, Landsat 7
ETM+, and Landsat 5 TM ARD Surface Temperature products, with minimal additional
processing, for nearshore waters on the west coast of Canada. This was accomplished by
comparing satellite-derived SST against in situ SST observations from 1984 to 2021 at four
sites in the Salish Sea, BC, representing various coastal dynamic conditions. Specifically,
data were analyzed at (i) farshore (>10 km from the coast) and (ii) nearshore (<360 m from
the coast) sites to consider the impacts of distance from the shore, season, sensor, and water
column mixing conditions on Landsat SST retrieval with reference to in situ SST. From that,
we define the best general conditions and considerations for the application of Landsat
ARD SST for monitoring nearshore regions.

2. Materials
2.1. Study Area

Located along the southern region of Canada’s Pacific coast (Figure 1), the Salish Sea
(48.3295◦N, 123.1407◦W) is a marginal sea characterized by interannual variability in SST
due to large-scale oceanographic drivers, such as the Pacific Decadal Oscillation (PDO) and
the El Niño–Southern Oscillation (ENSO) and freshwater river inputs [25]. Tides, currents,
and winds also cause diurnal and seasonal SST variability that is highly localized [7,26].
This mid-latitude temperate region experiences balanced winters and summers, with SSTs
ranging from approximately 4.0 ◦C to 23.0 ◦C [7,27]. Spatially, this region shows a general
SST gradient of cold water from the open ocean on the southwest coast of Vancouver Island,
through the Juan de Fuca Strait and Haro Strait, into generally warmer conditions in the
Strait of Georgia, which is accentuated during the summer [25,27,28]. Temporally, SST in
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the Salish Sea has increased between 0.7 ◦C and 2.2 ◦C from 1935 to 2014 [7], with present
models predicting an average SST increase of about 1.5 ◦C by 2095 [29].
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Figure 1. Map of the Salish Sea study area (48.3295◦N, 123.1407◦W), a marginal sea off the coast of
British Columbia, Canada, in the Northeast Pacific. In situ sampling locations (lighthouse = green
triangle; buoy = pink pentagon) around Southern Vancouver Island are included.

To capture the varying thermal regimes and diverse geographies of this region [30,31], the
four monitoring stations presented in Table 1 were chosen for this study, with geographic
locations presented in Figure 1. For the lighthouse stations, fetch was used to represent the
gradient of exposure experienced at each site (Canada Open Data: https://open.canada.
ca/data/en/dataset/412431c4-7363-410e-86a4-76feb9a6dcde (accessed on 15 June 2023)).
The sum fetch (m), calculated by summing the distance in meters to the nearest land mass
at every 5-degree bearing around a point on the shoreline, is described for the nearest point
to the sample site.

https://open.canada.ca/data/en/dataset/412431c4-7363-410e-86a4-76feb9a6dcde
https://open.canada.ca/data/en/dataset/412431c4-7363-410e-86a4-76feb9a6dcde
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Table 1. In situ SST site information.

Site Name Location Adjacent to Coast? Temporal Resolution Description

Halibut Bank
buoy

49◦20′24′′N,
123◦43′48′′W No Hourly

Operated by Environment and Climate
Change Canada, this buoy is located about
10.7 km offshore in the central Strait of
Georgia (Figure 1) and has been used in the
past to validate other satellite SST
products [5]. Seasonally, the SST ranges
from 4.2 ◦C to 22.0 ◦C [32].

Race Rocks
lighthouse

48◦17′54′′N,
123◦31′54′′W Yes Daily

Located on an island at the southern tip of
Vancouver Island (Figure 1), this lighthouse
station experiences the most stable SSTs
year-round (5.9–13.3 ◦C) [32] due to
consistent upwelling of deep water along
the west coast of Vancouver Island and
strong currents and wind–wave action
(fetch = 989,674 m) from the Strait of Juan
de Fuca [30].

Entrance
Island
lighthouse

49◦12′33′′N,
123◦48′29′′W Yes Daily

This is a moderately exposed
(fetch = 686,219 m) lighthouse located
midway into the Salish Sea, Vancouver
Island (Figure 1). This lighthouse
undergoes strong seasonal variation in SST
(5.8–22.8 ◦C) [32] and wave action from the
Strait of Georgia [31].

Departure Bay
lighthouse

49◦12′39′′N,
123◦57′20′′W Yes Daily

The most sheltered (fetch = 32,093 m) of the
lighthouse stations, Departure Bay
undergoes strong seasonal variation in SST
(6.1–22.5 ◦C) because of limited tide mixing
and strong influences from nearby
freshwater outfalls [7]. This station is
located on the north side of Nanaimo
Harbour (Figure 1), protected by the
Brandon Islands, and presents the most
complex geography among the
selected sites.

2.2. Datasets
2.2.1. In Situ SST Data

Generally, measured in situ SST is a function of the measurement technique, sensor
characteristics, depth within the water column, local heat flux conditions at the air–water in-
terface, and time of day the measurement was obtained [33,34]. In this study, both farshore
and nearshore in situ SST are representative of bulk subsurface temperatures (~1 m) within
the upper mixed layer, where turbulent heat transfer processes dominate [34]. In compar-
ison, satellite radiometers measure thermal radiance from the top microns (∼10–20 µm)
of the water surface [10], also known as skin temperature, where conductive and diffu-
sive heat transfer processes generally result in cooling at the water side of the air–sea
interface [33,34].

(i) Farshore In Situ Site (Halibut Bank Buoy)

For the Halibut Bank buoy (established in 1992), we obtained hourly water temperature
data (in ◦C) measured by the sensor at ~1 m depth (Tz), as well as horizontal wind speed
data (in meters/second at 5 m above the surface). These data were sourced from the Marine
Environmental Data Section Archive [35,36] (https://meds-sdmm.dfo-mpo.gc.ca/isdm-
gdsi/waves-vagues/data-donnees/data-donnees-eng.asp?medsid=C46146 (accessed on
19 November 2021)). To facilitate comparison with corresponding Landsat images, which
are captured at noon local time (within +/−20 min), we isolated the nearest water tempera-

https://meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/data-donnees-eng.asp?medsid=C46146
https://meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/data-donnees-eng.asp?medsid=C46146
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ture observation to noon (+/−1 h) for matchup. This approach also enabled us to compare
farshore and nearshore matchup results, as in situ sampling at the lighthouses is only
conducted during daylight hours. Additionally, farshore in situ SST measurements were
modified to skin temperature [12,33,34,37], by applying a subsurface-to-skin temperature
adjustment [12,34], adapted from Zeng et al. [38], as the following:

a = 0.05 − 0.6
w

+ 0.03ln(w) (1)

Ts = Tz − az − d (2)

The thermal gradient (a) was calculated based on the 24 h average wind speed mea-
sured at the buoy (w). Hourly wind speed data (m/s) was averaged for the 24 h prior to
satellite overpass (w). Low wind conditions (24 h average < 1 m/s) were removed due
to little mixing between subsurface and near-surface waters, causing poor correlation be-
tween the temperatures [12]. Next, this gradient was incorporated to adjust the subsurface
temperature (Tz) observed by the buoy in ◦C at depth z (in meters) to the bulk subsurface
temperature ( Tz − az). Finally, the bulk subsurface was adjusted to skin temperature (Ts)
using a constant d (0.17 ◦C), from Donlon et al. [33], as an approximate for the surface cool
skin effect under a range of clear sky conditions. Ts is hereafter called SSTin situ.

(ii) Nearshore In Situ Sites (BC Lighthouse Stations)

Daily mean ST measurements are recorded at lighthouse stations (British Columbia
Shore Station Oceanographic Program) using the “bucket method”, whereby observations
are made from seawater collected by lowering a bucket into surface waters at or near
daytime high tide (6 a.m.–6 p.m. LST) [32]. Archived SST data were downloaded from the
DFO data server (https://open.canada.ca/data/en/dataset/719955f2-bf8e-44f7-bc26-6bd6
23e82884 (accessed on 19 November 2021)). For each site, information on the location of in
situ SST sampling (Figure 2) was considered based on illustrative maps provided by DFO
(pers. comm., [36]) and occurs specifically as the following:

(1) Race Rocks—off the dock at the northwest side of the island;
(2) Entrance Island—off the dock on the island’s south side;
(3) Departure Bay—off the dock to the southwest of the Pacific Biological Station.

No additional adjustments were made to the nearshore SST (◦C), also referred to as
the SSTin situ, due to the sufficient mixing of surface waters (<1 m) during “bucket method”
retrieval.

https://open.canada.ca/data/en/dataset/719955f2-bf8e-44f7-bc26-6bd623e82884
https://open.canada.ca/data/en/dataset/719955f2-bf8e-44f7-bc26-6bd623e82884
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Figure 2. Sampling polygons at incremental distances from the coast used to extract SSTLsat at
lighthouse locations—(a) Race Rocks, (b) Entrance Island, and (c) Departure Bay. Legend is shown
in (d). A Canadian Hydrographic Service (CHS) Low Water Mark (LWM) was used as a land mask
(white area).

2.2.2. Landsat ARD ST Images

For this study, Level-2 ST products, part of the Landsat ARD suite, were utilized with
limited additional processing to assess their accuracy for direct application by end-users.
The 30 m resolution ARD products come atmospherically corrected, tiled, geometrically
corrected, and defined in an equal-area projection [11,16,39]. For ST product generation,
thermal data from Landsat TM (120 m), ETM+ (60 m), and TIRS (100 m) were resampled
to 30 m using a cubic convolution resampling algorithm [10]. ARD ST products were
calculated by applying a single-channel algorithm [40], developed by Cook et al. [12] and
later refined by Malakar et al. [10], on TIRS Band 10 (10.6–11.2 µm) and TM/ETM+ Band 6
(10.4–12.5 µm), generated from the Landsat Level-2 Surface Temperature algorithm version
1.3.0. (derived from the June 2017 version of RIT ST code) [11]. This algorithm includes sev-
eral auxiliary data inputs for calibration: (i) the North America Regional Reanalysis (NARR)
data from the National Centers for Environmental Prediction (NCEP) to characterize the at-
mosphere (air pressure, temperature, and relative humidity) alongside; (ii) the MODTRAN
5.2 radiative transfer code [39] to calculate atmospheric transmission, upwelling, and down-
welling radiances for multiple levels in the atmosphere; and (iii) the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Emissivity Dataset (ASTER GED) by
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the Land Processes Distributed Active Archive Center (LP DAAC) to convert at-surface
brightness temperature to surface temperature based on surface emissivity maps [10–12,41].
Links to ARD product development guides can be found through https://www.usgs.
gov/landsat-missions/landsat-collection-2-us-analysis-ready-data (accessed on 2 Septem-
ber 2021), with detailed data format information available in the Data Format Control
Book (https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-
public/media/files/LSDS-1435_Landsat-C2_US-ARD_Data-Format-Control-Book-v4.pdf
(accessed on 2 September 2021)).

ARD ST images were downloaded from the Collection 2 archive (https://earthexplorer.
usgs.gov (accessed on 2 September 2021)) according to the following criteria: (i) image
coverage coinciding with in situ sampling sites and (ii) cloud cover threshold of <10% [6].
The initial search resulted in 1505 images, which were pared down to 351 after visual
assessment using the corresponding Pixel Quality Assessment (PIXELQA) layer [6,10,41].
Landsat 7 ETM+ images acquired after 31 May 2003 were removed due to the poor quality
associated with the malfunction of the Scan Line Corrector [42]. Images were also excluded
if cloud contamination was assessed within 500 m of the in situ site location. Overall, our
final dataset of 351 images consisted of 76 acquired by Landsat 8 TIRS, 38 by Landsat 7
ETM+, and 237 by Landsat 5 TM, covering the entire time series (4 to 19 images per year
from 1984 to 2021, except for 2012 due to a lack of matchups).

The selected images represented the surface temperature in Kelvin following the
application of Landsat-defined conversion coefficients (K = DN × 0.00341802 + 149) [11].
Image values were then converted to degrees Celsius (◦C = K − 273.15), hereafter called
SSTLsat, for ease of comparison with the SSTin situ. Next, the images were organized
according to the (1) sensor (Landsat 5, 7, and 8), (2) site overlap, and (3) season. Images
were categorized into two seasons (winter = α ≤ 30◦ and spring/summer = α > 30◦)
based on the local noon solar elevation angle (α), accessed from the National Oceanic
and Atmospheric Administration (NOAA)’s online Solar Geometry Calculator (https:
//gml.noaa.gov/grad/antuv/SolarCalc.jsp (accessed on 11 October 2021)). Under this
method, 7% of usable images (23 of 351) were classified as winter, and 93% (328 of 351)
were classified as spring/summer.

3. Methods

The SSTLsat validation considered the following data scenarios:

(i) At the farshore buoy location (Figure 1), an 8100 m2 polygon (Landsat ARD 3 × 3 pixel
window) centred over the site was used to extract image zonal statistics of mean and
standard deviation SSTLsat for matchup comparison with corresponding SSTin situ buoy
observations. Matchups were removed if the standard deviation was >2.0 ◦C within the
pixel window to limit errors associated with surface heterogeneity [10,41,43].

(ii) For the three nearshore locations, a Canadian Hydrographic Service (CHS) Low Water
Mark (LWM) (https://catalogue.data.gov.bc.ca/dataset/chs-low-water-mark-lines
(accessed on 1 September 2021)) was used to delineate the coastline around the
lighthouse locations (Figure 1). From the derived coastline, a 3 × 12 pixel transect was
defined as perpendicular to the coast from the local dock where SSTin situ was collected
(Figure 2). Each transect was then subdivided into four distance groups covering nine
(3 × 3) pixels each: 0–90 m, 90–180 m, 180–270 m, and 270–360 m. For the Departure
Bay lighthouse site, sampling was not possible past 180 m from the coast because a
small island offshore from the lighthouse created a geographical constraint (Figure 2c).
The mean SSTLsat value and standard deviation of each 3 × 3 pixel window were
extracted for each data analysis scenario [10,41,43].

For both the farshore and nearshore, a linear regression relationship between SSTin situ
and SSTLsat, and mean bias (◦C; MB), mean relative bias (%; MRB), root mean square error

https://www.usgs.gov/landsat-missions/landsat-collection-2-us-analysis-ready-data
https://www.usgs.gov/landsat-missions/landsat-collection-2-us-analysis-ready-data
https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1435_Landsat-C2_US-ARD_Data-Format-Control-Book-v4.pdf
https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1435_Landsat-C2_US-ARD_Data-Format-Control-Book-v4.pdf
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://gml.noaa.gov/grad/antuv/SolarCalc.jsp
https://gml.noaa.gov/grad/antuv/SolarCalc.jsp
https://catalogue.data.gov.bc.ca/dataset/chs-low-water-mark-lines
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(◦C; RMSE), and proportional root mean square error (%; pRMSE) were used to evaluate
retrieved SSTLsat [6,10,41,43,44].

MB =
1
N

× ∑(SSTLsat − SSTin situ

)
(3)

MRB = 100 × 1
N

× ∑
(

SSTLsat − SSTin situ

SSTin situ

)
(4)

RMSE =

√
1
N

× ∑(SSTLsat − SSTin situ)2 (5)

pRMSE =

√
100 × 1

N
× ∑

(
SSTLsat − SSTin situ

SSTin situ
)2 (6)

Evaluations were conducted considering different sample populations based on the
site location, Landsat sensor, season, distance from the coastline, and SST range, to isolate
conditions that may have impacted the quality of the SSTLsat.

4. Results
4.1. Farshore Results

SSTin situ observed at the Halibut Bank buoy were between 4.0 ◦C and 22.7 ◦C, thus
providing a good range of values to validate the Landsat ARD. Winter temperatures ranged
from 4.0 ◦C to 8.8 ◦C, while spring/summer temperatures ranged from 6.5 ◦C to 22.7 ◦C. A
total of 134 images, and therefore data points (Figure 3, Table 2), revealed the high accuracy
of the SSTLsat when compared to the SSTin situ (MB of 0.03 ◦C, with an associated pRMSE
of 8.39%, and a high R2 value of 0.96). For the entire SSTin situ dataset, the relationship
between the SSTLsat (y) and SSTin situ (x) is described by the regression y = 1.08 × x + −1.1,
with the largest SSTLsat residual of 3.01 ◦C from Landsat 5 in 2009. Overall, this population
displayed a mean of 0.03 ◦C, a standard deviation of 0.97 ◦C, and a 95% confidence interval
of biases between −0.14 ◦C and 0.19 ◦C.

Of note, the SSTLsat shows an underestimation (−0.46 ◦C) at the lower temperatures
and an overestimation (0.51 ◦C) at the higher temperatures (Figure 3, Table 2). Furthermore,
the pRMSE (%) is greatest at low temperatures (13.76% at <10 ◦C) and generally decreases
as temperatures increase (5.09% at >20 ◦C). General low temperature underestimation was
well captured with the separation of winter from spring/summer matchups (Figure 4,
Table 3), where the MBs (pRMSEs) are −0.69 ◦C (17.07%) and 0.20 ◦C (6.31%), respectively.
Regression results improved across all satellites with the isolation of spring/summer
matchups (Figure 4, Table 3), improving the offset from −1.1 ◦C to −0.82 ◦C, and slightly
improving the slope from 1.08 to 1.06. For datasets from each Landsat satellite (Figure 5,
Table 4), the results showed similar relationships for Landsat 5 (L5), 7 (L7), and 8 (L8) across
all seasons, with the lowest MB from L5 (−0.28 ◦C), highest MB from L8 (0.65 ◦C), and
pRMSEs between 9.42% (L5) and 6.17% (L8). R2 values varied slightly across satellites but
remained very high in all cases (between 0.96 and 0.98).
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Table 2. Statistical output for farshore SSTLsat matchups for the entire dataset and 5 ◦C ranges of
temperature (Figure 3).

Thermal Range MB (◦C) MRB (%) RMSE (◦C) pRMSE (%) Slope Offset R Squared N

Total 0.03 −0.96 0.97 8.39 1.08 −1.1 0.96 134
<10 ◦C −0.46 −7.39 0.88 13.76 N/A N/A N/A 25

10–15 ◦C 0.02 −0.12 0.83 6.34 N/A N/A N/A 37
15–20 ◦C 0.33 1.88 1.10 6.44 N/A N/A N/A 68
>20 ◦C 0.51 2.42 1.04 5.09 N/A N/A N/A 4
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Table 3. Statistical output for farshore SSTLsat categorized by season (Figure 4).

Season MB (◦C) MRB (%) RMSE (◦C) pRMSE (%) Slope Offset R Squared N

Spring/Summer 0.12 0.38 0.95 6.23 1.06 −0.82 0.94 120
Winter −0.76 −12.51 1.15 18.51 1.34 −3.52 0.82 14
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Table 4. Statistical output for farshore SSTLsat matchups, categorized by sensor (Figure 5), where
Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 TIRS are represented by L5, L7 and L8, respectively.

Sensor MB (◦C) MRB (%) RMSE (◦C) pRMSE (%) Slope Offset R Squared N

L5 −0.28 −3.28 0.96 9.42 1.05 −1.05 0.96 79
L7 0.1 −0.58 1.05 7.54 1.09 −1.26 0.96 18
L8 0.65 3.79 0.98 6.17 1.09 −0.72 0.98 37

4.2. Nearshore Results

Global analysis of the nearshore sites led to 512 matchups each for the 0–90 m and
90–180 m distance groups across all three lighthouse locations along with 334 matchups
each for 180–270 m and 270–360 m distance groups from the Race Rocks and Entrance Island
sites (Table 5) due to geographic constraints at the Departure Bay site. Winter SSTin situ at
the nearshore sites ranged from 5.6 ◦C to 9.3 ◦C, while spring/summer SSTin situ ranged
from 6.0 ◦C to 22.6 ◦C. Year-round, Race Rocks experienced the lowest and most consistent
SST (5.7 ◦C to 13.1 ◦C), while Entrance Island and Departure Bay stations experienced a
wider range of thermal conditions (5.6 ◦C to 22.6 ◦C and 5.9 ◦C to 22.3 ◦C, respectively).

SSTLsat from all distance groups produced relatively high R2 values between 0.87 and
0.91 (Table 5). Generally, SSTLsat directly adjacent to the coast, within the 0–90 m distance
group, overestimated SSTin situ by an MB (RMSE) of 0.58 ◦C (1.78 ◦C) (Figure 6, Table 5).
Moving away from the coast, SSTLsat at 90–180 m was lower than SSTin situ by an MB
(RMSE) of −0.61 ◦C (1.74 ◦C). SSTLsat from both 180 to 270 m and 270 to 360 m further
underestimated SSTin situ by about 1.0 ◦C.
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Table 5. Statistical output for SSTLsat matchups at varying distances from the coastline (Figure 6).
* = no data from Departure Bay.

Distance
from Coast MB (◦C) MRB (%) RMSE (◦C) pRMSE (%) Slope Offset R Squared N

0–90 m 0.58 3.35 1.78 13.74 1.08 −0.56 0.88 512
90–180 m −0.61 −4.98 1.74 12.98 1.01 −0.72 0.87 512

180–270 m * −1.25 −9.31 1.78 13.12 0.91 0.05 0.91 334
270–360 m * −1.27 −9.44 1.79 13.28 0.92 0.15 0.91 334

Next, considering only the two distance groups that most closely matched the SSTin situ
statistically (0–90 m and 90–180 m), seasonal impacts to SSTLsat were investigated by
separating data acquired during the winter and spring/summer. We observed similar
negative biases at 0–90 m and 90–180 m during the winter (Figure 7, Table 6) of −1.05 ◦C and
−1.10 ◦C as well as high pRMSE values of 23.75% and 22.35%, respectively. In comparison,
the isolation of the spring/summer observations showed a positive MB (RMSE) at 0–90 m
of 0.71 ◦C (12.63%) and improved trendline offsets and slopes for both distances (Figure 7,
Table 6). The overall best-performing population (and low variance) from this analysis was
the spring/summer matchups at 90–180 m, which produced an MB of −0.57 ◦C (pRMSE of
11.95%) and an R2 of 0.83.
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Table 6. Statistical output for SSTLsat matchups 0–90 m and 90–180 m from the coast, categorized by
season (Figure 7).

Distance: Season MB (◦C) MRB (%) RMSE (◦C) pRMSE (%) Slope Offset R Squared N

0–90 m:
Spring/Summer 0.71 4.28 1.78 12.63 1.03 0.22 0.85 475

0–90 m: Winter −1.05 −15.43 1.70 23.75 1.60 −5.49 0.64 37
90–180:

Spring/Summer −0.57 −4.13 1.75 11.95 0.99 −0.39 0.83 475

90–180 m: Winter −1.1 −15.84 1.55 22.35 1.44 −4.35 0.67 37

Breaking down the spring/summer 90–180 m population by site (Figure 8, Table 7)
revealed a positive MB (0.67 ◦C) at the most protected lighthouse location, Departure
Bay (Figure 1), compared to the two more exposed lighthouse locations, Race Rocks and
Entrance Island (−0.93 ◦C and −1.43 ◦C, respectively). The R2 was the lowest at Race Rocks
(0.46), which also experienced the narrowest range of thermal conditions (7.4 ◦C versus
~17.0 ◦C dynamic range at the other two sites).
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Table 7. Statistical output for spring/summer matchups 90–180 m from the coast, categorized by site
and binned into 5 ◦C in situ temperature ranges (Figure 8).

90–180 m,
Spring/Summer MB (◦C) MRB (%) RMSE (◦C) pRMSE (%) Slope Offset R Squared N

Location
Race Rocks −0.93 −8.39 1.41 12.84 0.81 1.14 0.46 127

Entrance Island −1.43 −8.71 2.03 12.41 0.90 0.16 0.83 183
Departure Bay 0.67 4.23 1.65 10.64 1.03 0.13 0.84 165

Temp. Range

<10 ◦C −0.42 −4.7 1.13 12.72 N/A N/A N/A 55
10–15 ◦C −0.68 −5.91 1.54 13.06 N/A N/A N/A 183
15–20 ◦C −0.31 −1.69 1.8 10.28 N/A N/A N/A 210
>20 ◦C −1.84 −8.63 2.94 13.86 N/A N/A N/A 27

Beyond different results among the stations, across temperature ranges (binned 5 ◦C in
situ intervals) (Figure 8, Table 7), the MB remained negative, was the smallest at mid-range
temperatures (−0.42 ◦C at 15.0–20.0 ◦C), and was the largest at high temperatures (−1.84 ◦C
at >20.0 ◦C). In addition, the RMSE increased with temperature (1.13 ◦C at <10.0 ◦C, to
2.94 ◦C at >20.0 ◦C); however, the pRMSE (10.28–13.86%) remained relatively stable across
the thermal ranges (Table 7). For spring/summer 90–180 m biases, the histogram in
Figure 8 shows a slightly left-skewed (negative MB) distribution, with a peak around
−1.00 ◦C. A Shapiro–Wilk normality test resulted in a W-statistic of 0.99216 and a p-value
of 0.01335, suggesting the data was normally distributed. As such, this population had
a mean of −0.57 ◦C, with a 95% confidence interval between −0.72 ◦C and −0.42 ◦C. For
this population, the relationship between the SSTLsat (y) and SSTin situ (x) is described by
the regression y = 0.99x + −0.39, with a largest SSTLsat residual of −5.04 ◦C observed by
Landsat 5 at Entrance Island in September 1993 (Figure 8).

5. Discussion

Matchup analysis between in situ and satellite-derived measurements is generally con-
sidered a standard approach for validating satellite products [41,45,46]. However, spatial
and temporal differences between in situ and satellite data [47], including errors introduced
by in situ sampling methods and satellite sensor calibration, introduce uncertainty [48].
This is especially true for dynamic coastal environments, which are often flagged and
removed from analysis [8], but which are extremely valuable regions of study [5,6,19].
As such, the following discussion will review considerations for the use of Landsat ARD
for nearshore SST retrieval based on our results, including possible sources of matchup
uncertainty, sensor-specific, and calibration algorithm biases.

5.1. Considerations for the Use of LANDSAT ARD for Nearshore SST

This research used a dataset of 646 matchups between 345 images and in situ data
to validate SST retrievals from Landsat ARD ST products for nearshore environments
in the Northeast Pacific. Landsat 5, 7, and 8 thermal sensors originally acquire data at
spatial resolutions of 120 m, 60 m, and 100 m, respectively, with the resampled 30 m ARD
pixels representing a temperature value calculated by a cubic convolution interpolation
kernel [10,49,50]. Schaeffer et al. [6] showed that, considering resampling [6,10,11] and
Landsat’s general geolocation uncertainty of <12 m [2], pixel mixing and interference from
land pixel thermal radiance into water pixel thermal radiance can occur up to a maximum
of 180 m from the land. Our results support this finding, showing the highest positive
MB (RMSE) of 0.58 ◦C (1.78 ◦C) by SSTLsat for retrievals closest to the coast (0–90 m)
(Figure 6, Table 5). Here, SSTLsat biases were amplified seasonally, overestimating in the
spring/summer (0.71 ◦C) and underestimating in the winter (−1.05 ◦C), likely as a direct
result of land thermal contributions. Interestingly, moving further from the land–water
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boundary, the 90–180 m distance group exhibited a negative spring/summer MB (RMSE)
of −0.57 ◦C (1.75 ◦C) and MRB of −4.13%. At this distance, winter matchups (Figure 7,
Table 6) again underestimated nearshore SST (MB of −1.10 ◦C, MRB −15.84%, and RMSE
of 1.55). Beyond land thermal contributions, cold temperature (<15.0 ◦C) underestimation
by Landsat has been reported in the literature [10,12,37,51,52]. At lower temperatures,
there is a greater signal-to-noise ratio due to weak target signal strength, causing thermal
calibration algorithms to overcompensate for perceived noise interference [10,51]. Similar to
the nearshore data, our SSTLsat retrievals from the farshore (where there are no land thermal
contributions) showed that winter temperatures (<9.0 ◦C) were consistently underestimated
by almost 1.0 ◦C (MB of −0.76 ◦C and MRB −7.39%). As such, further adjustment may
be required for using winter SSTLsat retrievals in future applications. At the mid−high
dynamic temperature range (10.0–25.0 ◦C), farshore matchups resulted in an average MB
of 0.23 ◦C and MRB 1.23%. Specifically, during the spring/summer, the MB and MRB
were 0.12 ◦C and 0.38%, respectively. These findings indicate a high level of confidence
in using SSTLsat retrievals during the spring and summer months in coastal regions of the
Northeast Pacific.

Geographically, the nearshore in situ sites included in this analysis covered different
levels of exposure to wind/tidal mixing (Table 1), leading to slightly different SSTLsat
validation results. For instance, for the spring/summer 90–180 m matchups (Figure 8)
from Race Rocks and Entrance Island (Figure 2), which are relatively more exposed coastal
locations with high mixing [28], a negative SSTLsat MB of on average −1.23 ◦C and MRB
of ~−8.5% were observed. In comparison, at Departure Bay, a significantly less exposed
location (Figure 2), a positive SSTLsat MB of 0.67 ◦C and MRB 4.23% were observed (Table 7).
Land adjacency occurs at all sites; however, it may be enhanced in sheltered areas where
geographies are more complex (e.g., added contributions from small islets off the coast
of the Departure Bay site) [8]. Additionally, local bathymetry may impact the quality of
matchups by enhancing the sensitivity of the region to surface warming by insolation and
stratification [28]. Therefore, areas that experience less mixing are perhaps more sensitive
to matchup uncertainties due to temporal differences compared to exposed sites.

Although we observed small average biases, with 95% confidence intervals between
−0.14 ◦C and 0.19 ◦C (MB of 0.03 ◦C) and −0.72 ◦C and −0.42 ◦C (MB of −0.57 ◦C) for the
farshore and nearshore environments, respectively, the difference in an individual matchup
can be much larger than the population MB. For the farshore, five samples were more than
2 ◦C different than the SSTin situ. For the nearshore (Figure 8), 35 samples displayed a differ-
ence larger than 3 ◦C of SSTin situ. However, the low overall bias observed in the majority
of nearshore data (95%) gives confidence in using the Landsat SST retrievals to synoptically
characterize temperature trends in coastal waters. However, as with any satellite retrieval,
end-users interested in Landsat ARD should use caution when interpreting single SSTLsat
measurements rather than averages or larger populations, particularly in the nearshore
environment.

5.2. Sources of Uncertainty: Matchup Quality and Characteristics

Other important considerations in the validation of SSTLsat are the quality and charac-
teristics of the in situ data considered. Discrepancies between the depth of water where
measurements are taken can lead to differences during validation that are not actually
reflective of satellite product accuracy [12,34,41,53,54]. To reduce the impact of depth
discrepancies on the matchup analysis, a subsurface-to-skin temperature adjustment was
applied to farshore in situ measurements [12,34,37,38]. The results are presented in Supple-
mentary Material Figure S1 and generally altered the SSTin situ within 0.2 ◦C of observed
buoy temperatures at a 1 m depth. At the nearshore locations, it is assumed that the “bucket
method” [32] retrieves well-mixed surface waters from <1 m depth directly off the local
lighthouse dock (pers. comm., [36]). It is likely that the exact depth of sampling may vary
over time due to differing personnel, which may have introduced inconsistencies into
the BC Lighthouse SST dataset, though the sampling methods themselves have remained
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consistent since 1914 [32,36]. Nonetheless, this is our only source of long-term in situ
nearshore SST for the Salish Sea.

Furthermore, skin water temperatures measured by Landsat are extremely sensitive
to the effects of insolation [12,55]. Insolation, in this context, refers to heating by sun rays,
and generally follows a diurnal pattern [12,38]. To limit farshore matchup uncertainty
associated with temporal heating differences, buoy SSTin situ measurements were selected
within 1 h of the noon LST, as close as possible to the satellite overpass. However, there is a
time lag between surface heating by insolation and mixing with subsurface waters [34,38].
This depends on the depth of the ocean-mixed layer, which fluctuates seasonally in the
Salish Sea [25,56], largely as a function of wind speed [38]. The exclusion of low-wind
condition (<1 m/s) matchups [12,38,57] from the farshore analysis reduced errors associated
with the intense stratification of surface waters. Additionally, since all matchups occurred
within the same day (within +/−6 h), we expected reduced uncertainty associated with
diurnal surface heating differences compared to past work by Schaeffer et al. [6], where
multiday in situ and satellite matchups were considered to validate the SST from Landsat 5
and 7. Schaeffer et al. [6] reported a mean absolute error (MAE) of 2.40 ◦C for +/−3-day
matchups, and 1.12 ◦C for +/−1-day matchups [6]. In comparison, for same day (+/−6 h),
nearshore 90–180 m, spring/summer matchups, we found an MAE of 1.31 ◦C.

Across all three lighthouse sites (Figure 8, Table 3), the nearshore SSTLsat from spring/
summer at 90–180 m was negatively biased across the entire in situ thermal range (5.6 ◦C
to 22.6 ◦C), with the largest general underestimation by SSTLsat (MB of −1.84 ◦C; MRB
−8.63%) during the warmest ocean temperatures (>20 ◦C). This is an unexpected finding
compared to the farshore analysis, which experienced general overestimation (0.51 ◦C; MRB
of 2.42%) at the upper range of ocean temperatures (>20 ◦C). However, these results may
be an artifact of the aforementioned depth and temporal differences between matchups
rather than intrinsic properties of the Landsat ARD products themselves. During warm
water conditions (>20 ◦C) in the Salish Sea, enhanced heating by insolation in shallow
areas directly adjacent to the coast [29], where the SSTin situ is sampled, may be poorly
captured by the SSTLsat at 90–180 m from the coast, where the water is deeper and greater
mixing occurs. Such characteristics of the data could be an important consideration for
future studies using Landsat ARD ST products to investigate marine heat waves and other
extreme temperature events [18–20].

5.3. Sources of Uncertainties: Sensor-Specific and Calibration Biases

Given the highly dynamic nature of coastal waters in the Northeast Pacific, much of
the matchup differences reported here are likely associated with depth and temporal dis-
crepancies [6,37] rather than properties of the Landsat ARD products themselves. However,
sensor-specific and thermal product calibration biases also need to be considered. Dwyer
et al. [11] provided a comprehensive explanation of Landsat ARD, including calibration
methods.

Sensor-specific biases are an especially important consideration for time-series analysis
when multiple satellites are included [49]. At the farshore site, Landsat 5, 7, and 8 (Figure 5,
Table 1) showed mean biases (RMSE) of −0.28 ◦C (0.96 ◦C), 0.10 ◦C (1.05 ◦C), and 0.65 ◦C
(0.98 ◦C), respectively. These results align with the described margins of error for Landsat
ARD ST products across satellites [11,12,51] and follow a similar pattern to those reported
by the literature in which, generally, Landsat 5 retrievals underestimate and Landsat
8 generally overestimate the SST [10,12,41]. During the development of Landsat ARD
products, Cook et al. [12] reported an ARD bias ± standard deviation of −0.52 ◦C ± 0.72 ◦C
for Landsat 5, −0.24 ◦C ± 0.81 ◦C for Landsat 7, and −0.01 ◦C ± 0.90 ◦C for Landsat 8
Band 10 retrieval of SST compared to in situ NOAA buoys. Hook et al. [52] reported the
negative bias of Landsat 5 as possibly related to changes in the instrument temperature
associated with instrument usage. Challenges with Landsat 8 TIRS have been attributed to
stray light contamination issues [48,51] and the absolute calibration of thermal data, which
can change spatially/temporally [48].
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During the vicarious calibration of Landsat thermal bands, uncertainty in observed
thermal radiance can be introduced during Level-1 data acquisition [51], which is inherited
into Level-2 ARD products. Schott et al. [58] identified uncertainty in predicted thermal
radiance due to instrument noise during radiometric calibration. Further down the process-
ing pipeline, uncertainty inherited from auxiliary datasets used to extract ST from Level-1
TOA thermal radiance can further introduce errors. Malakar et al. [10] attributed land
ST retrieval uncertainty (RMSE of 1.23 ◦C over a variety of surface types) with surface
emissivity estimates derived from ASTER GED data [12]. However, due to the well-known
emissivity and relative homogeneity of water [59], the error introduced from surface emis-
sivity correction is likely far less significant during SST retrieval than land ST retrieval [10].
As such, the MB (RMSE) over inland water bodies was reported by Malakar et al. [10] as
−0.2 ◦C (0.6 ◦C) and 0.4 ◦C (0.8 ◦C) for Landsat 5 and 7, respectively.

Furthermore, Cook et al. [12] attributed the larger bias ± standard deviation
(−0.52 ◦C ± 0.72 ◦C) of Landsat 5 to the atmospheric (water vapour) compensation compo-
nent of product calibration, which incorporates NARR atmospheric data into the MOD-
TRAN radiative transfer model during the atmospheric correction of Level-1 data. The
proximity of clouds to sample locations increases matchup uncertainty [12,60]. For example,
the removal of six cloud-contaminated points from a 603-point Landsat 5 matchup dataset
by Cook et al. [12] altered the MB ± RMSE from 0.57 K ± 0.084 K to −0.52 K ± 0.72. The
effect of clouds to Landsat 7-retrieved ST was also reported by Laraby and Schott [43],
where RMSE increased when clouds were <1 km from the sample site (RMSE of 2.61 ◦C)
compared to clouds >40 km away (RMSE of 0.51 ◦C). Beyond initial image filtering for
<10% cloud cover [12], the stringent flagging of nearby cloud-contaminated image pixels
using associated quality assessment (QA) layers is recommended.

Currently, Landsat ARD products are only available for the continental US, Alaska, and
Hawaii. Proximity of the study area to the US border allowed for the validation of ARD in
Canadian waters. However, global ST coverage is available with Landsat Level-2 Science
Products (L2SP), which follow nearly identical data production protocols as ARD (Land-
sat 4–7: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-
public/media/files/LSDS-1618_Landsat-4-7_C2-L2-ScienceProductGuide-v4.pdf (accessed
on 13 February 2022), Landsat 8–9: https://d9-wret.s3.us-west-2.amazonaws.com/assets/
palladium/production/s3fs-public/media/files/LSDS-1619_Landsat8-9-Collection2-Level2
-Science-Product-Guide-v5.pdf (accessed on 13 February 2022)). The main difference between
ARD and L2SP ST products is the use of tile-based versus scene-based organizational systems.
Future validation is recommended for L2SP to assess the accuracy of SST retrieval in dynamic
coastal regions.

6. Conclusions

Level-2 ARD ST products from Landsat 5, 7, and 8 have proven to be a very reliable
source for high-resolution satellite-derived SST for the spring and summer that can provide
insights into synoptic temperature conditions of nearshore areas on the west coast of
Canada. In this novel study, metrics were tested for the selection of the highest quality
nearshore SSTLsat pixels. These methods can be implemented by a wide variety of end-
users for large-scale studies (geographically and temporally) with limited additional image
processing requirements. Such information is highly valuable to researchers, decision-
makers, and local communities for marine habitat monitoring and climate change resiliency
planning [5,10,61].

The agreement of the SSTLsat bias with those reported in the literature [6,10,12,41,51] sup-
ports the confidence of this analysis and the recommendation of Landsat ARD products for
SST retrieval in the Northeast Pacific, given the consideration of a general spring/summer
farshore (>10 km) SSTLsat bias (MRB; RMSE) of 0.12 ◦C (0.38%; 0.95 ◦C) and a nearshore
(90–180 m) SSTLsat bias (MRB; RMSE) of −0.57 ◦C (−4.13%; 1.75 ◦C). Here, nearshore
results represent the best sampling distance from the Low Water Mark to minimize un-
certainty associated with adjacent land contamination and pixel mixing on satellite SST,

https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1618_Landsat-4-7_C2-L2-ScienceProductGuide-v4.pdf
https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1618_Landsat-4-7_C2-L2-ScienceProductGuide-v4.pdf
https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1619_Landsat8-9-Collection2-Level2-Science-Product-Guide-v5.pdf
https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1619_Landsat8-9-Collection2-Level2-Science-Product-Guide-v5.pdf
https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1619_Landsat8-9-Collection2-Level2-Science-Product-Guide-v5.pdf
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while sampling as close as possible to the critical nearshore habitats of interest [9,18–20].
However, as with any satellite-acquired thermal data, end-users interested in Landsat ARD
should use caution when interpreting single SSTLsat measurements rather than averages
or larger populations [8,10,11,15], particularly in the nearshore environment, where we
observed 35 samples (out of 475) with a difference larger than 3 ◦C of SSTin situ.

Sensor-specific calibration uncertainties can be minimized during SSTLsat retrieval
by excluding winter or very low-temperature images [12,51] and ensuring that there are
no clouds < 1 km of the sample site during satellite overpass [43]. However, varying
biases across the sensor—(MB ± RMSE) for Landsat 5 (−0.28 ◦C ± 0.95 ◦C), Landsat 7
(0.10 ◦C ± 1.05 ◦C), and Landsat 8 (0.65 ◦C ± 0.98 ◦C)—may impact time-series analysis
of SST trends. Therefore, continued quality assurance of regional SSTLsat accuracy via
validation with SSTin situ is recommended for future studies [43]. These considerations may
also be extended to Landsat L2SP ST products where ARD coverage is unavailable.

Overall, atmospherically and geometrically corrected Landsat ARD products provide
thermal data that are accessible to a broad demographic of end-users [11,19,61]. At 30 m
resolution, it is able to capture nuanced coastal SST dynamics across vast regions with min-
imal additional image processing. Such satellite-derived SST can complement traditional
in situ sampling and should be considered part of the comprehensive management toolbox
in the age of global ocean warming and biodiversity loss.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16050920/s1, Figure S1: (Above) Results for buoy in situ SST
adjustment from subsurface water temperature to skin water temperature based on formulas 1 and
2 adapted from Cook et al. [12] and Zeng et al. [38]. (Below) Distribution of subsurface-to-skin
temperature adjustment magnitudes.
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