Spatio-Temporal Deep Learning-Based Forecasting of Surface Solar Irradiance: Leveraging Satellite Data and Feature Selection
Abstract
:1. Introduction
1.1. Motivation
1.2. Problem Statement
1.3. Related Works
1.4. Contributions of Study
- Use of GK2A satellite data
- This dataset is relatively free from locational constraints within the observation area of GK2A. It can be used flexibly and usefully, especially in areas without weather observation sensors or far from a weather station.
- Feature variables affecting SSI can be effectively searched/extracted/utilized from GK2A satellite data.
- Feature engineering based on solar geometry
- It is possible to generate solar geometry parameters that effectively reflect the fundamental characteristics and periodicity of SSI for a target location.
- Solar geometry parameters help clarify the influence of each feature variable on SSI attenuated by the atmosphere.
- Solar geometry parameters effectively improve SSI forecasting performance.
- Deep learning-based feature selection
- Based on both the linear and non-linear relationships between SSI and feature variables considered simultaneously, feature variables suitable for forecasting SSI can be selected.
- Feature variables can be selected by considering not only the one-to-one relationships between the feature variables and SSI but also the many-to-one relationships.
- SSI forecasting using a spatio-temporal deep learning model
- SSI forecasting performance can be improved using a spatio-temporal deep learning model that combines a CNN model, which can reflect spatial characteristics, and an LSTM or GRU model specialized in time-series prediction.
2. Proposed Method
2.1. Data Acquisition
2.1.1. GEO-KOMPSAT-2A (GK2A)
2.1.2. Automated Synoptic Observing System (ASOS)
2.2. Data Analysis & Preprocessing
2.2.1. Search for Missing Values
2.2.2. Analysis of Data Characteristics
2.2.3. ROI Extraction and Calibration
2.2.4. Feature Extraction
2.2.5. Feature Engineering
- : Julian Day.
- n: Number of days from J2000.0 (=Julian Day for 1 January 2000 at 12:00 noon).
- L: Mean longitude of the sun corrected for aberration in degrees.
- g: Mean anomaly in degrees.
- : Ecliptic longitude in degrees.
- : Obliquity of the ecliptic in degrees.
- : Declination angle of the sun in degrees.
- : Right ascension in degrees.
- : Equation of time in minute.
- : Time in Coordinated Universal Time (UTC).
- : Longitude of the subsolar point at which the sun is perceived to be directly overhead (at the zenith) in degrees.
- : Latitude in degrees.
- : Longitude in degrees.
- : Solar elevation angle or altitude angle in degrees.
- : Hour angle at sunrise in degrees.
- : Hour angle at sunset in degrees.
- : Day of year (sequential day number starting with day 1 on 1 January).
- : Solar constant (=1367 W/m2).
- : Extraterrestrial solar radiation incident on the plane normal to the radiation on the in W/m2.
- : Hour angle in degrees.
- : Extraterrestrial solar radiation incident on a horizontal plane outside of the atmosphere at in W/m2.
- : Accumulated extraterrestrial solar radiation from to in MJ/m2.
2.2.6. Data Process for Deep Learning
2.2.7. Data Visualization and Pattern Analysis
2.3. Feature Selection
2.4. Forecasting Model Design & Evaluation
Algorithm 1: Deep Learning-based Feature Selection (Deep-FS). |
3. Experimental Results
- Performance comparison between using feature variables selected through Deep-FS and that through conventional feature selection methods.
- Performance comparison between spatio-temporal models (CNN-LSTM, CNN-GRU) and single models (ANN, CNN, LSTM, GRU).
- Performance comparison depending on the use of the SG dataset.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
GHI | Global horizontal irradiance |
DHI | Diffuse horizontal irradiance |
DNI | Direct normal irradiance |
ARMA | Autoregressive moving average |
ARIMA | Autoregressive integrated moving average |
SARIMA | Seasonal autoregressive integrated moving average |
RF | Random forest |
SVR | Support vector regression |
ANN | Artificial neural network |
LSTM | Long short-term memory |
GRU | Gated recurrent unit |
CNN | Convolutional neural networks |
MAE | Mean absolute error |
RMSE | Root mean square error |
MBE | Mean bias error |
NMAE | Normalized mean absolute error |
NRMSE | Normalized root mean square error |
BP | Back propagation network |
LightGBM | Light gradient boosting machine |
ESR | Extra-terrestrial solar radiation |
SHAP | Shapley additive explanation |
Bi-LSTM | Bi-directional LSTM |
WPD | Wavelet packet decomposition |
MLP | Multi-layer perceptron |
CAL | Effective cloud albedo |
ConvLSTM | Convolutional long short-term memory |
ST-GCN | Spatio-temporal graph convolutional network |
Conv1D | One-dimensional convolution layer |
Bi-GRU | Bi-directional gated recurrent unit |
SAM | Self-attention mechanism |
PCC | Pearson correlation coefficient |
SCC | Spearman correlation coefficient |
SSI | Surface solar irradiance |
GK2A | GEO-KOMPSAT-2A |
ASOS | Automated synoptic observing system |
KMA | Korea Meteorological Administration |
Deep-FS | Deep learning-based feature selection |
RRMSE | Relative root mean square error |
R2 | Coefficient of determination |
ROI | Region of interest |
AMI | Advanced meteorological imager |
NMSC | National Meteorological Satellite Center |
FD | Full Disk |
EA | East Asia |
KO | Korea |
KST | Korea Standard Time |
NaN | Not a Number |
BT | Brightness temperature |
SD | Solar declination |
SEA | Solar elevation angle |
SG | Solar geometry |
UTC | Time in Coordinated Universal Time |
Seq2Seq | Sequence-to-Sequence |
I/O | Input/Output |
Adam | Adaptive moment estimation |
mRMR | Minimum redundancy maximum relevance |
Appendix A
References
- Li, P.; Zhou, K.; Lu, X.; Yang, S. A hybrid deep learning model for short-term PV power forecasting. Appl. Energy 2020, 259, 114216. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Mayer, M.J.; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 2021, 283, 116239. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Appl. Energy 2019, 251, 113315. [Google Scholar] [CrossRef]
- Kim, B.; Suh, D.; Otto, M.O.; Huh, J.S. A novel hybrid spatio-temporal forecasting of multisite solar photovoltaic generation. Remote Sens. 2021, 13, 2605. [Google Scholar] [CrossRef]
- Kim, M.; Song, H.; Kim, Y. Direct short-term forecast of photovoltaic power through a comparative study between COMS and Himawari-8 meteorological satellite images in a deep neural network. Remote Sens. 2020, 12, 2357. [Google Scholar] [CrossRef]
- Chuluunsaikhan, T.; Kim, J.H.; Shin, Y.; Choi, S.; Nasridinov, A. Feasibility Study on the Influence of Data Partition Strategies on Ensemble Deep Learning: The Case of Forecasting Power Generation in South Korea. Energies 2022, 15, 7482. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, L.A.; Muñoz-Jimenez, A.; Falces, A.; Mendoza-Villena, M.; Garcia-Garrido, E.; Lara-Santillan, P.M.; Zorzano-Alba, E.; Zorzano-Santamaria, P.J. Short-term power forecasting system for photovoltaic plants. Renew. Energy 2012, 44, 311–317. [Google Scholar] [CrossRef]
- Hossain, M.S.; Mahmood, H. Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast. IEEE Access 2020, 8, 172524–172533. [Google Scholar] [CrossRef]
- Yang, D.; Jirutitijaroen, P.; Walsh, W.M. Hourly solar irradiance time series forecasting using cloud cover index. Sol. Energy 2012, 86, 3531–3543. [Google Scholar] [CrossRef]
- Colak, I.; Yesilbudak, M.; Genc, N.; Bayindir, R. Multi-period prediction of solar radiation using ARMA and ARIMA models. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; pp. 1045–1049. [Google Scholar]
- Hussain, S.; Al Alili, A. Day ahead hourly forecast of solar irradiance for Abu Dhabi, UAE. In Proceedings of the 2016 IEEE Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 21–24 August 2016; pp. 68–71. [Google Scholar]
- Alharbi, F.R.; Csala, D. A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach. Inventions 2022, 7, 94. [Google Scholar] [CrossRef]
- Urraca, R.; Antonanzas, J.; Alia-Martinez, M.; Martinez-de Pison, F.; Antonanzas-Torres, F. Smart baseline models for solar irradiation forecasting. Energy Convers. Manag. 2016, 108, 539–548. [Google Scholar] [CrossRef]
- Yang, X.; Ji, Y.; Wang, X.; Niu, M.; Long, S.; Xie, J.; Sun, Y. Simplified Method for Predicting Hourly Global Solar Radiation Using Extraterrestrial Radiation and Limited Weather Forecast Parameters. Energies 2023, 16, 3215. [Google Scholar] [CrossRef]
- Brahma, B.; Wadhvani, R. Solar irradiance forecasting based on deep learning methodologies and multi-site data. Symmetry 2020, 12, 1830. [Google Scholar] [CrossRef]
- Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Zhang, J.; Shi, J.; Gao, B.; Liu, W. Hybrid deep neural model for hourly solar irradiance forecasting. Renew. Energy 2021, 171, 1041–1060. [Google Scholar] [CrossRef]
- Rajagukguk, R.A.; Kamil, R.; Lee, H.J. A deep learning model to forecast solar irradiance using a sky camera. Appl. Sci. 2021, 11, 5049. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Iosifidis, A.; Karstoft, H. IrradianceNet: Spatiotemporal deep learning model for satellite-derived solar irradiance short-term forecasting. Sol. Energy 2021, 228, 659–669. [Google Scholar] [CrossRef]
- Niu, T.; Li, J.; Wei, W.; Yue, H. A hybrid deep learning framework integrating feature selection and transfer learning for multi-step global horizontal irradiation forecasting. Appl. Energy 2022, 326, 119964. [Google Scholar] [CrossRef]
- Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018, 148, 461–468. [Google Scholar] [CrossRef]
- Wojtkiewicz, J.; Hosseini, M.; Gottumukkala, R.; Chambers, T.L. Hour-ahead solar irradiance forecasting using multivariate gated recurrent units. Energies 2019, 12, 4055. [Google Scholar] [CrossRef]
- Jalali, S.M.J.; Ahmadian, S.; Kavousi-Fard, A.; Khosravi, A.; Nahavandi, S. Automated deep CNN-LSTM architecture design for solar irradiance forecasting. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 52, 54–65. [Google Scholar] [CrossRef]
- Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. Renew. Energy 2020, 160, 26–41. [Google Scholar] [CrossRef]
- Jebli, I.; Belouadha, F.Z.; Kabbaj, M.I.; Tilioua, A. Prediction of solar energy guided by pearson correlation using machine learning. Energy 2021, 224, 120109. [Google Scholar] [CrossRef]
- Husein, M.; Chung, I.Y. Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: A deep learning approach. Energies 2019, 12, 1856. [Google Scholar] [CrossRef]
- Yang, D.; Ye, Z.; Lim, L.H.I.; Dong, Z. Very short term irradiance forecasting using the lasso. Sol. Energy 2015, 114, 314–326. [Google Scholar] [CrossRef]
- Castangia, M.; Aliberti, A.; Bottaccioli, L.; Macii, E.; Patti, E. A compound of feature selection techniques to improve solar radiation forecasting. Expert Syst. Appl. 2021, 178, 114979. [Google Scholar] [CrossRef]
- Jang, J.C.; Sohn, E.H.; Park, K.H. Estimating hourly surface solar irradiance from GK2A/AMI data using machine learning approach around Korea. Remote Sens. 2022, 14, 1840. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Daytime cloud detection algorithm based on a multitemporal dataset for GK-2A imagery. Remote Sens. 2021, 13, 3215. [Google Scholar] [CrossRef]
- Zhang, T.; Stackhouse, P.W., Jr.; Macpherson, B.; Mikovitz, J.C. A solar azimuth formula that renders circumstantial treatment unnecessary without compromising mathematical rigor: Mathematical setup, application and extension of a formula based on the subsolar point and atan2 function. Renew. Energy 2021, 172, 1333–1340. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
Ref. | Model | Input | Output | RMSE (W/m2) |
---|---|---|---|---|
SVR | Relative humidity, wind speed, solar elevation angle, cos(solar zenith angle), solar hour angle, ESR, clear-sky index, and GHI | 100.55 | ||
[14] | 1 h–ahead GHI | |||
RF | Rainfall, boolean variable of rain, solar elevation angle, solar azimuth angle, cos(solar zenith angle), ESR, and GHI | 96.21 | ||
BP | 138.7 | |||
[15] | SVM | ESR, weather type, cloud cover, air temperature, relative humidity, and time | Hourly global solar radiation | 135.5 |
LightGBM | 126.1 | |||
1 day-ahead solar irradiance | 9.536 (location 1) 8.724 (location 2) | |||
Bi-LSTM | 4 day-ahead solar irradiance | 11.30 (location 1) 10.25 (location 2) | ||
10 day-ahead solar irradiance | 12.18 (location 1) 11.19 (location 2) | |||
[16] | Historical multi-site solar irradiance | |||
1 day-ahead solar irradiance | 9.695 (location 1) 8.735 (location 2) | |||
Attention-LSTM | 4 day-ahead solar irradiance | 11.26 (location 1) 10.34 (location 2) | ||
10 day-ahead solar irradiance | 11.99 (location 1) 11.16 (location 2) | |||
[17] | WPD-CNN -LSTM-MLP | Irradiance, temperature, humidity, wind speed, and hour | Hourly solar irradiance | 32.1 |
[18] | LSTM | Sky image | 1 to 10 min-ahead solar irradiance | 137.00–199.75 (partly cloudy days) 20.59–45.70 (clear days) 15.60–20.46 (overcast days) |
[19] | ConvLSTM | CAL, elevation map, longitude, latitude, hour, day, and month | 1 to 4 h-ahead surface solar irradiance | 57.79–107.329 (cloudy) 36.42–90.14 (cloud-free) |
[20] | TL-RReliefF- Conv1D-BiGRU -SAM | Historical GHI | 1 to 3 h-ahead GHI | 138.6641–162.5480 |
Channel No. | Name | Wavelength (μm) | Spatial Resolution | Spatial Coverage | |
---|---|---|---|---|---|
Min. | Max. | ||||
Ch01 | VIS004 (Visible 0.47 m) | 0.431 | 0.479 | 1 km | FD (10 Min.) EA (2 Min.) KO (2 Min.) |
Ch02 | VIS005 (Visible 0.51 m) | 0.5025 | 0.5175 | 1 km | |
Ch03 | VIS006 (Visible 0.64 m) | 0.625 | 0.660 | 0.5 km | |
Ch04 | VIS008 (Visible 0.86 m) | 0.8495 | 0.8705 | 1 km | |
Ch05 | NIR013 (Near Infrared 1.38 m) | 1.373 | 1.383 | 2 km | |
Ch06 | NIR016 (Near Infrared 1.6 m) | 1.601 | 1.619 | 2 km | |
Ch07 | SWIR038 (Shortwave Infrared 3.8 m) | 3.74 | 3.96 | 2 km | |
Ch08 | WV063 (Water Vapor 6.3 m) | 6.061 | 6.425 | 2 km | |
Ch09 | WV069 (Water Vaper 6.9 m) | 6.89 | 7.01 | 2 km | |
Ch10 | WV073 (Water Vaper 7.3 m) | 7.258 | 7.433 | 2 km | |
Ch11 | IR087 (Infrared 8.7 m) | 8.44 | 8.76 | 2 km | |
Ch12 | IR096 (Infrared 9.6 m) | 9.543 | 9.717 | 2 km | |
Ch13 | IR105 (Infrared 10.5 m) | 10.25 | 10.61 | 2 km | |
Ch14 | IR112 (Infrared 11.2 m) | 11.08 | 11.32 | 2 km | |
Ch15 | IR123 (Infrared 12.3 m) | 12.15 | 12.45 | 2 km | |
Ch16 | IR133 (Infrared 13.3 m) | 13.21 | 13.39 | 2 km |
Dataset | Name | Num. of Data | Num. of Missing Data | Missing Rate (%) |
---|---|---|---|---|
GK2A | VIS004 | 35,041 | 588 | 1.678 |
VIS005 | 588 | 1.678 | ||
VIS006 | 589 | 1.680 | ||
VIS008 | 589 | 1.680 | ||
NIR013 | 589 | 1.680 | ||
NIR016 | 588 | 1.678 | ||
SWIR038 | 588 | 1.678 | ||
WV063 | 589 | 1.680 | ||
GK2A | WV069 | 35,041 | 588 | 1.678 |
WV073 | 588 | 1.678 | ||
IR087 | 587 | 1.675 | ||
IR096 | 587 | 1.675 | ||
IR105 | 589 | 1.680 | ||
IR112 | 588 | 1.678 | ||
IR123 | 589 | 1.680 | ||
IR133 | 588 | 1.678 | ||
SSI | SSI | 35,041 | 15,913 | 45.413 |
Category | Name | Characteristic | Observation Target |
---|---|---|---|
Visible Channel (Ch01∼Ch04) | VIS004 VIS005 VIS006 VIS008 |
| Surface and coastal aerosol Fog/Smog Synthesis of true color Cloud/Fog Solar irradiance Vegetation Land surface/sea level distinction |
Near Infrared Channel (Ch05∼Ch06) | NIR013 NIR016 |
| Cirrus Cloud waver droplet, Ice, Snow cover |
Shortwave Infrared Channel (Ch07) | SWIR038 |
| Nighttime cloud/Fog/Fire |
Water Vapor Channel (Ch08∼Ch10) | WV063 WV069 WV073 |
| Upper layer waver vapor Middle layer water vapor Lower layer waver vapor/SO2 |
Infrared Channel (Ch11∼Ch16) | IR087 IR096 IR105 IR112 IR123 IR133 |
| Cloud particles/Dust storm/SO2/Aerosol Ozon Size of cloud particle, Surface property Sea surface temperature/Cloud/Precipitation Lower layer water vapor/Volcanic ash Cloud altitude/Cloud cover |
Variable | Description | Unit | Variable | Description | Unit |
---|---|---|---|---|---|
VIS004 | Albedo | IR096−IR123 | |||
VIS005 | IR096−IR133 | ||||
VIS006 | IR105−IR112 | ||||
VIS008 | IR105−IR123 | ||||
NIR013 | IR105−IR133 | ||||
NIR016 | IR112−IR123 | ||||
SWIR038 | IR112−IR133 | ||||
WV063 | IR123−IR133 | ||||
WV069 | SWIR038/WV063 | ||||
WV073 | SWIR038/WV069 | ||||
IR087 | SWIR038/WV073 | ||||
IR096 | SWIR038/IR087 | ||||
IR105 | SWIR038/IR096 | ||||
IR112 | SWIR038/IR105 | ||||
IR123 | SWIR038/IR112 | ||||
IR133 | SWIR038/IR123 | ||||
SWIR038−WV063 | SWIR038/IR133 | ||||
SWIR038−WV069 | WV063/WV069 | ||||
SWIR038−WV073 | WV063/WV073 | ||||
SWIR038−IR087 | WV063/IR087 | ||||
SWIR038−IR096 | WV063/IR096 | ||||
SWIR038−IR105 | WV063/IR105 | ||||
SWIR038−IR112 | WV063/IR112 | ||||
SWIR038−IR123 | WV063/IR123 | ||||
SWIR038−IR133 | Brightness Temperature (K) | WV063/IR133 | Brightness Temperature (K) | ||
WV063−WV069 | WV069/WV073 | ||||
WV063−WV073 | WV069/IR087 | ||||
WV063−IR087 | WV069/IR096 | ||||
WV063−IR096 | WV069/IR105 | ||||
WV063−IR105 | WV069/IR112 | ||||
WV063−IR112 | WV069/IR123 | ||||
WV063−IR123 | WV069/IR133 | ||||
WV063−IR133 | WV073/IR087 | ||||
WV069−WV073 | WV073/IR096 | ||||
WV069−IR087 | WV073/IR105 | ||||
WV069−IR096 | WV073/IR112 | ||||
WV069−IR105 | WV073/IR123 | ||||
WV069−IR112 | WV073/IR133 | ||||
WV069−IR123 | IR087/IR096 | ||||
WV069−IR133 | IR087/IR105 | ||||
WV073−IR087 | IR087/IR112 | ||||
WV073−IR096 | IR087/IR123 | ||||
WV073−IR105 | IR087/IR133 | ||||
WV073−IR112 | IR096/IR105 | ||||
WV073−IR123 | IR096/IR112 | ||||
WV073−IR133 | IR096/IR123 | ||||
IR087−IR096 | IR096/IR133 | ||||
IR087−IR105 | IR105/IR112 | ||||
IR087−IR112 | IR105/IR123 | ||||
IR087−IR123 | IR105/IR133 | ||||
IR087−IR133 | IR112/IR123 | ||||
IR096−IR105 | IR112/IR133 | ||||
IR096−IR112 | IR123/IR133 |
Variable | Description | Unit |
---|---|---|
Solar Declination | Radian | |
Solar Elevation Angle | Radian | |
Extraterrestrial Solar Radiation | MJ/m2 |
Model | Structure | Option |
---|---|---|
LSTM | Input Layer | Input Size: N × S |
LSTM Layer | Number of Node: 6 | |
Output Layer | Output Size: 1 × 1 Cost Function: Mean Square Error | |
GRU | Input Layer | Input Size: N × 1 |
GRU Layer | Number of Node: 6 | |
Output Layer | Output Size: 1 × S Cost Function: Mean Square Error | |
Input | Output | |
Default | Candidate | |
{} at timestamp , t & {ssi} at timestamp | {} at timestamp , t | ssi at timestamp t |
Model | Structure | Option |
---|---|---|
CNN-LSTM | Input Layer | Input Size: 9 × 9 × N × S |
Convolution Layer | Size of Filter: 3 × 3 Number of Filter: 16 Stride: 1 Padding: Same Activation Function: ReLU | |
Convolution Layer | Size of Filter: 3 × 3 Number of Filter: 8 Stride: 1 Padding: Same Activation Function: ReLU | |
Max Pooling Layer | Size of Filter: 3 × 3 Stride: 3 | |
Flatten Layer | - | |
LSTM Layer | Node: 8 Activation Function: ReLU | |
Output Layer | Output Size: 1 × S Cost Function: Mean Square Error | |
CNN-GRU | Input Layer | Input Size: 9 × 9 × N × S |
Convolution Layer | Size of Filter: 3 × 3 Number of Filter: 16 Stride: 1 Padding: Same Activation Function: ReLU | |
Convolution Layer | Size of Filter: 3 × 3 Number of Filter: 8 Stride: 1 Padding: Same Activation Function: ReLU | |
Max Pooling Layer | Size of Filter: 3 × 3 Stride: 3 | |
Flatten Layer | - | |
GRU Layer | Node: 8 Activation Function: ReLU | |
Output Layer | Output Size: 1 × S Cost Function: Mean Square Error | |
Input | Output | |
{} at time t, & {} at time t | ssi at time |
Option | Description |
---|---|
Data source | GK2A dataset provided by NMSC SSI dataset provided by KMA SG dataset calculated based on solar geometry Period of data: 2 July 2019, 00:00:00∼1 July 2023, 00:00:00 |
Period of training data | 2 July 2019, 00:00:00∼1 July 2022, 00:00:00 |
Period of validation data | 1 July 2022, 01:00:00∼1 January 2023, 00:00:00 |
Period of test data | 1 January 2023, 01:00:00∼1 July 2023, 00:00:00 |
Training epoch | 1000 |
Size of mini-batch | 64 |
Initial learning rate | 0.001 |
Decay schedule | Decay learning rate by 0.8 times every 100 epochs |
L2 normalization | 0.0001 |
Cycle of validation | (Num. of train data)/(Size of mini-batch) |
Patience of early stopping | 30 |
Optimization function | Adaptive moment estimation (Adam) |
Output model | Model with the lowest validation loss |
Feature Selection Method | Selected Features | Num. of Selected Features |
---|---|---|
All | 106 | |
PCC Top 5% | 5 | |
PCC Top 10% | 11 | |
PCC Top 15% | 16 | |
mRMR Top 5% | 5 | |
mRMR Top 10% | 11 | |
mRMR Top 15% | 16 | |
Deep-FS (LSTM) | 10 | |
Deep-FS (GRU) | 11 |
Model | Feature Selection Method | Performance | |||
---|---|---|---|---|---|
RMSE
(MJ/m2) | RRMSE | R2 |
MAE (MJ/m2) | ||
CNN-LSTM | All | 0.2324 | 0.1643 | 0.9385 | 0.1651 |
PCC Top 5% | 0.3207 | 0.2266 | 0.8883 | 0.2230 | |
PCC Top 10% | 0.3104 | 0.2194 | 0.8903 | 0.2108 | |
PCC Top 15% | 0.3095 | 0.2188 | 0.9036 | 0.2105 | |
mRMR Top 5% | 0.2192 | 0.1549 | 0.9578 | 0.1558 | |
mRMR Top 10% | 0.2082 | 0.1472 | 0.9611 | 0.1447 | |
mRMR Top 15% | 0.2041 | 0.1443 | 0.9598 | 0.1400 | |
Deep-FS (LSTM) | 0.1979 | 0.1399 | 0.9623 | 0.1313 | |
Deep-FS (GRU) | 0.1966 | 0.1389 | 0.9627 | 0.1316 | |
CNN-GRU | All | 0.2128 | 0.1504 | 0.9605 | 0.1490 |
PCC Top 5% | 0.3189 | 0.2254 | 0.9097 | 0.2260 | |
PCC Top 10% | 0.3086 | 0.2181 | 0.9133 | 0.2200 | |
PCC Top 15% | 0.3009 | 0.2127 | 0.9170 | 0.2148 | |
mRMR Top 5% | 0.2185 | 0.1544 | 0.9606 | 0.1506 | |
mRMR Top 10% | 0.2083 | 0.1473 | 0.9594 | 0.1519 | |
mRMR Top 15% | 0.2089 | 0.1476 | 0.9629 | 0.1435 | |
Deep-FS (LSTM) | 0.2032 | 0.1436 | 0.9654 | 0.1343 | |
Deep-FS (GRU) | 0.1986 | 0.1404 | 0.9655 | 0.1360 |
Feature Selection Method | Model | Performance | |||
---|---|---|---|---|---|
RMSE (MJ/m2) | RRMSE | R2 | MAE (MJ/m2) | ||
Deep-FS (LSTM) | ANN | 0.2195 | 0.1552 | 0.9597 | 0.1521 |
CNN | 0.2163 | 0.1529 | 0.9597 | 0.1495 | |
LSTM | 0.2092 | 0.1478 | 0.9623 | 0.1418 | |
GRU | 0.2090 | 0.1477 | 0.9622 | 0.1416 | |
CNN-LSTM | 0.1979 | 0.1399 | 0.9623 | 0.1313 | |
CNN-GRU | 0.2032 | 0.1436 | 0.9654 | 0.1343 | |
Deep-FS (GRU) | ANN | 0.2202 | 0.1556 | 0.9580 | 0.1506 |
CNN | 0.2179 | 0.1540 | 0.9600 | 0.1524 | |
LSTM | 0.2124 | 0.1501 | 0.9607 | 0.1471 | |
GRU | 0.2088 | 0.1476 | 0.9625 | 0.1430 | |
CNN-LSTM | 0.1966 | 0.1389 | 0.9627 | 0.1316 | |
CNN-GRU | 0.1986 | 0.1404 | 0.9655 | 0.1360 |
Feature Selection Method | Model | Use of SG
Parameters * | Performance | |||
---|---|---|---|---|---|---|
RMSE
(MJ/m2) | RRMSE | R2 |
MAE (MJ/m2) | |||
Deep-FS (LSTM) | ANN | X * | 0.5372 | 0.3797 | 0.7554 | 0.4207 |
O * | 0.2195 | 0.1552 | 0.9597 | 0.1521 | ||
CNN | X | 0.3771 | 0.2665 | 0.8785 | 0.2946 | |
O | 0.2163 | 0.1529 | 0.9597 | 0.1495 | ||
LSTM | X | 0.3959 | 0.2798 | 0.8731 | 0.2954 | |
O | 0.2092 | 0.1478 | 0.9623 | 0.1418 | ||
GRU | X | 0.4005 | 0.2831 | 0.8707 | 0.3032 | |
O | 0.2090 | 0.1477 | 0.9622 | 0.1416 | ||
CNN-LSTM | X | 0.2780 | 0.1965 | 0.9078 | 0.1954 | |
O | 0.1979 | 0.1399 | 0.9623 | 0.1313 | ||
CNN-GRU | X | 0.2709 | 0.1915 | 0.9423 | 0.1950 | |
O | 0.2032 | 0.1436 | 0.9654 | 0.1343 | ||
Deep-FS (GRU) | ANN | X | 0.5024 | 0.3551 | 0.7817 | 0.3897 |
O | 0.2202 | 0.1556 | 0.9580 | 0.1506 | ||
CNN | X | 0.3636 | 0.2570 | 0.8856 | 0.2789 | |
O | 0.2179 | 0.1540 | 0.9600 | 0.1524 | ||
LSTM | X | 0.4355 | 0.3078 | 0.8471 | 0.3238 | |
O | 0.2124 | 0.1501 | 0.9607 | 0.1471 | ||
GRU | X | 0.4275 | 0.3022 | 0.8598 | 0.3219 | |
O | 0.2088 | 0.1476 | 0.9625 | 0.1430 | ||
CNN-LSTM | X | 0.2863 | 0.2023 | 0.9306 | 0.2045 | |
O | 0.1966 | 0.1389 | 0.9627 | 0.1316 | ||
CNN-GRU | X | 0.2836 | 0.2004 | 0.9392 | 0.2085 | |
O | 0.1986 | 0.1404 | 0.9655 | 0.1360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, E.; Jung, S.; Kim, M.; Kim, B.; Kim, S. Spatio-Temporal Deep Learning-Based Forecasting of Surface Solar Irradiance: Leveraging Satellite Data and Feature Selection. Remote Sens. 2024, 16, 888. https://doi.org/10.3390/rs16050888
Kim J, Kim E, Jung S, Kim M, Kim B, Kim S. Spatio-Temporal Deep Learning-Based Forecasting of Surface Solar Irradiance: Leveraging Satellite Data and Feature Selection. Remote Sensing. 2024; 16(5):888. https://doi.org/10.3390/rs16050888
Chicago/Turabian StyleKim, Jinyong, Eunkyeong Kim, Seunghwan Jung, Minseok Kim, Baekcheon Kim, and Sungshin Kim. 2024. "Spatio-Temporal Deep Learning-Based Forecasting of Surface Solar Irradiance: Leveraging Satellite Data and Feature Selection" Remote Sensing 16, no. 5: 888. https://doi.org/10.3390/rs16050888
APA StyleKim, J., Kim, E., Jung, S., Kim, M., Kim, B., & Kim, S. (2024). Spatio-Temporal Deep Learning-Based Forecasting of Surface Solar Irradiance: Leveraging Satellite Data and Feature Selection. Remote Sensing, 16(5), 888. https://doi.org/10.3390/rs16050888