Digital Mapping of Soil Particle Size Fractions in the Loess Plateau, China, Using Environmental Variables and Multivariate Random Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Data and Analyses
2.3. Environmental Variables
2.4. Multivariate Random Forest
2.5. Evaluation Criteria
3. Results and Discussion
3.1. Descriptive Statistics of Soil PSFs
3.2. Performances of Different Approaches
3.3. Importance of Environmental Variables
3.4. Distribution of Soil PSFs
3.5. Soil Erosion Management
3.6. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Cheshmberah, F.; Zolfaghari, A.A.; Taghizadeh-Mehrjardi, R.; Scholten, T. Evaluation of Mathematical Models for Predicting Particle Size Distribution Using Digital Soil Mapping in Semiarid Agricultural Lands. Geocarto Int. 2022, 37, 13016–13038. [Google Scholar] [CrossRef]
- Arrouays, D.; Marchant, B.P.; Saby, N.P.A.; Meersmans, J.; Orton, T.G.; Martin, M.P.; Bellamy, P.H.; Lark, R.M.; Kibblewhite, M. Generic Issues on Broad-Scale Soil Monitoring Schemes: A Review. Pedosphere 2012, 22, 456–469. [Google Scholar] [CrossRef]
- Zhu, A.X.; Liu, J.; Du, F.; Zhang, S.J.; Qin, C.Z.; Burt, J.; Behrens, T.; Scholten, T. Predictive Soil Mapping with Limited Sample Dat. Eur. J. Soil Sci. 2015, 66, 535–547. [Google Scholar] [CrossRef]
- Lu, Q.; Tian, S.; Wei, L. Digital Mapping of Soil pH and Carbonates at the European Scale Using Environmental Variables and Machine Learning. Sci. Total Environ. 2023, 856, 159171. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shao, Q.; Liu, J.; Zhai, J. Assessing the Effects of Land Use and Topography on Soil Erosion on the Loess Plateau in China. CATENA 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; Todd, A.J.; Triantafilis, J. Spatial Prediction of Soil Particle-Size Fractions as Compositional Data. Soil Sci. 2003, 168, 501–515. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, C.; Chen, X.; Ye, H.; Huang, Y.; Lai, S. Spatial Interpolation of Soil Texture Using Compositional Kriging and Regression Kriging with Consideration of the Characteristics of Compositional Data and Environment Variables. J. Integr. Agric. 2013, 12, 1673–1683. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, X.; Zhang, C. Particle Size Distribution of Soils (0–500 cm) in the Loess Plateau, China. Geoderma Reg. 2016, 7, 251–258. [Google Scholar] [CrossRef]
- Li, J.; Wan, H.; Shang, S. Comparison of Interpolation Methods for Mapping Layered Soil Particle-Size Fractions and Texture in an Arid Oasis. CATENA 2020, 190, 104514. [Google Scholar] [CrossRef]
- Wan, H.; Li, J.; Shang, S.; Rahman, K.U. Exploratory Factor Analysis-Based Co-Kriging Method for Spatial Interpolation of Multi-Layered Soil Particle-Size Fractions and Texture. J. Soils Sediments 2021, 21, 3868–3887. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Ahamed, S.; Carré, F.; Hartemink, A.E.; Hempel, J.; Huising, J.; Lagacherie, P.; McBratney, A.B.; McKenzie, N.J.; Mendonça-Santos, M.d.L.; et al. Digital Soil Map of the World. Science 2009, 325, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, M.; Spiess, K.; Baltensweiler, A.; Grob, U.; Keller, A.; Greiner, L.; Schaepman, M.E.; Papritz, A. Evaluation of Digital Soil Mapping Approaches with Large Sets of Environmental Covariates. Soil 2018, 4, 1–22. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Akpa, S.I.C.; Odeh, I.O.A.; Bishop, T.F.A.; Hartemink, A.E. Digital Mapping of Soil Particle-Size Fractions for Nigeria. Soil Sci. Soc. Am. J. 2014, 78, 1953–1966. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Jesus, J.; Tamene, L.; et al. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 2015, 10, 0125814. [Google Scholar] [CrossRef] [PubMed]
- Silva Chagas, C.; Carvalho Junior, W.; Bhering, S.B.; Calderano Filho, B. Spatial Prediction of Soil Surface Texture in a Semiarid Region Using Random Forest and Multiple Linear Regressions. CATENA 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.-L.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-Resolution and Three-Dimensional Mapping of Soil Texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, X.; Li, S.; Zhu, B.; Hou, J.; Song, K. Soil Texture Mapping in Songnen Plain of China Using Sentinel-2 Imagery. Remote Sens. 2023, 15, 5351. [Google Scholar] [CrossRef]
- Lark, R.M.; Bishop, T.F.A. Cokriging Particle Size Fractions of the Soil. Eur. J. Soil Sci. 2007, 58, 763–774. [Google Scholar] [CrossRef]
- Gozukara, G.; Akça, E.; Dengiz, O.; Kapur, S.; Adak, A. Soil Particle Size Prediction Using Vis-NIR and pXRF Spectra in a Semiarid Agricultural Ecosystem in Central Anatolia of Türkiye. CATENA 2022, 217, 106514. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Stein, A. A Generic Framework for Spatial Prediction of Soil Variables Based on Regression-Kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, W. Robust Variogram Estimation Combined with Isometric Log-Ratio Transformation for Improved Accuracy of Soil ParticlFraction Mapping. Geoderma 2018, 324, 56–66. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, W.; Xu, Z. Systematic Comparison of Five Machine-Learning Models in Classification and Interpolation of Soil Particle Size Fractions Using Different Transformed Data. Hydrol. Earth Syst. Sci. 2020, 24, 2505–2526. [Google Scholar] [CrossRef]
- Amirian-Chakan, A.; Minasny, B.; Taghizadeh-Mehrjardi, R.; Akbarifazli, R.; Darvishpasand, Z.; Khordehbin, S. Some Practical Aspects of Predicting Texture Data in Digital Soil Mapping. Soil Tillage Res. 2019, 194, 104289. [Google Scholar] [CrossRef]
- Lu, N.; Fu, B.; Jin, T.; Chang, R. Trade-off Analyses of Multiple Ecosystem Services by Plantations along a Precipitation Gradient across Loess Plateau Landscapes. Landsc. Ecol. 2014, 29, 1697–1708. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil Erosion, Conservation, and Eco-Environment Changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Huang, L.; Shao, M. Advances and Perspectives on Soil Water Research in China’s Loess Plateau. Earth Sci. Rev. 2019, 199, 102962. [Google Scholar] [CrossRef]
- He, X.B.; Li, Z.B.; Hao, M.D.; Tang, K.L.; Zheng, F.L. Down-Scale Analysis for Water Scarcity in Response to Soil–Water Conservation on Loess Plateau of China. Agric. Ecosyst. Environ. 2003, 94, 355–361. [Google Scholar] [CrossRef]
- Qiao, J.; Zhu, Y.; Jia, X.; Shao, M. Multifractal characteristics of particle size distributions (50–200 m) in soils in the vadose zone on the Loess Plateau, China. Soil Tillage Res. 2021, 205, 104786. [Google Scholar] [CrossRef]
- Liu, Z.P.; Shao, M.A.; Wang, Y.Q. Large-Scale Spatial Interpolation of Soil pH across the Loess Plateau, China. Environ. Earth Sci. 2013, 69, 2731–2741. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, M.; Jia, X.; Zhu, Y. Factors Affecting Soil Desiccation Spatial Variability in the Loess Plateau of China. Soil Sci. Soc. Am. J. 2019, 83, 266–275. [Google Scholar] [CrossRef]
- Cao, R.; Jia, X.; Huang, L.; Zhu, Y.; Wu, L.; Shao, M. Deep Soil Water Storage Varies with Vegetation Type and Rainfall Amount in the Loess Plateau of China. Sci. Rep. 2018, 8, 12346. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zhen, L. Soil Erosion Control Practices in the Chinese Loess Plateau: A Systematic Review. Environ. Dev. 2020, 34, 100493. [Google Scholar] [CrossRef]
- Shi, H.; Shao, M. Soil and Water Loss from the Loess Plateau in China. J. Arid Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of Climate Change Trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Tang, W.; Ding, L.; Ma, J.; Zhang, X. Daily 1-Km All-Weather Land Surface Temperature Dataset for the Chinese Landmass and Its Surrounding Areas (TRIMS LST; 2000-2021); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar]
- Zheng, C.; Jia, L.; Hu, G. ETMonitor Global Actual Evapotranspiration Dataset with 1-Km Resolution; National Tibetan Plateau Data Center: Beijing, China, 2022. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G.A. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Gallant, J.C.; Dowling, T.I. A Multiresolution Index of Valley Bottom Flatness for Mapping Depositional Areas. Water Resour. Res. 2003, 39, 1347. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Borchani, H.; Varando, G.; Bielza, C.; Larrañaga, P. A survey on multi-output regression. WIREs Data Min. Knowl. Discov. 2015, 5, 216–233. [Google Scholar] [CrossRef]
- Segal, M.; Xiao, Y. Multivariate random forests. Wiley Interdisc Rew Data Min. Knowl. Discov. 2011, 1, 80–87. [Google Scholar] [CrossRef]
- De’ath, G. Multivariate Regression Trees: A New Technique for Modeling Species-Environment Relationships. Ecology 2002, 83, 1105–1117. [Google Scholar] [CrossRef]
- Xu, D.; Shi, Y.; Tsang, I.W.; Ong, Y.-S.; Gong, C.; Shen, X. Survey on Multi-Output Learning. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 2409–2429. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Y.; Xiong, Y.; Liu, Y.; Cui, X.; Lei, G. A Data-Driven Shale Gas Production Forecasting Method Based on the Multi-Objective Random Forest Regression. J. Petrol. Sci. Eng. 2021, 196, 107801. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, W. Mapping Soil Particle-Size Fractions: A Comparison of Compositional Kriging and Log-Ratio Kriging. J. Hydrol. 2017, 546, 526–541. [Google Scholar] [CrossRef]
- Pawlowsky-Glahn, V.; Buccianti, A. Compositional Data Analysis: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mira, M.; Valor, E.; Boluda, R.; Caselles, V.; Coll, C. Influence of Soil Water Content on the Thermal Infrared Emissivity of Bare Soils: Implication for Land Surface Temperature Determination. J. Geophys. Res. Earth Surf. 2007, 112, F04003. [Google Scholar] [CrossRef]
- Müller, B.; Bernhardt, M.; Jackisch, C.; Karsten, S. Estimating Spatially Distributed Soil Texture Using Time Series of Thermal Remote Sensing—A Case Study in Central Europe. Hydrol. Earth Syst. Sci. 2016, 20, 3765–3775. [Google Scholar] [CrossRef]
- Osińska-Skotak, K. Studies of Soil Temperature on the Basis of Satellite Data. Int. Agrophysics 2007, 21, 275–284. [Google Scholar]
- Wang, D.-C.; Zhang, G.-L.; Zhao, M.-S.; Pan, X.-Z.; Zhao, Y.-G.; Li, D.-C.; Macmillan, B. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS. PLoS ONE 2015, 10, 0129977. [Google Scholar] [CrossRef] [PubMed]
- Sayão, V.M.; Demattê, J.A.M.; Bedin, L.G.; Nanni, M.R.; Rizzo, R. Satellite Land Surface Temperature and Reflectance Related with Soil Attributes. Geoderma 2018, 325, 125–140. [Google Scholar] [CrossRef]
- Wang, X.; Huo, Z.; Feng, S.; Guo, P.; Guan, H. Estimating Groundwater Evapotranspiration from Irrigated Cropland Incorporating Root Zone Soil Texture and Moisture Dynamics. J. Hydrol. 2016, 543, 501–509. [Google Scholar] [CrossRef]
- Walker, E.; García, G.A.; Venturini, V.; Carrasco, A. Regional Evapotranspiration Estimates Using the Relative Soil Moisture Ratio Derived from SMAP Products. Agric. Water Manag. 2019, 216, 254–263. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.; Mattar, C.; Galleguillos, M. Estimation of Real Evapotranspiration and Its Variation in Mediterranean Landscapes of Central-Southern Chile. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 160–169. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Wu, T.; Zhao, L.; Li, R.; Li, W.; Hu, G.; Zou, D.; Ni, J.; Du, Y.; et al. Soil Texture and Its Relationship with Environmental Factors on the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 3797. [Google Scholar] [CrossRef]
- Mehrabi-Gohari, E.; Mehrabi-Gohari, H.; Jafari, A.; Taghizadeh-Mehrjardi, R.; Triantafilis, J. The Spatial Prediction of Soil Texture Fractions in Arid Regions of Iran. Soil Syst. 2019, 3, 65. [Google Scholar] [CrossRef]
- Liao, K.; Xu, S.; Wu, J.; Zhu, Q. Spatial estimation of surface soil texture using remote sensing data. Soil Sci. Plant Nutr. 2013, 59, 488–500. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Chapter Five—Visible and Near Infrared Spectroscopy in Soil Science. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 163–215. [Google Scholar]
- Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Peterson, G.A. Soil Attribute Prediction Using Terrain Analysis. Soil Sci. Soc. Am. J. 1993, 57, 443–452. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Sarmadian, F.; Minasny, B.; Triantafilis, J.; Omid, M. Digital Mapping of Soil Classes Using Decision Tree and Auxiliary Data in the Ardakan Region, Iran. Arid Land Res. Manag. 2014, 28, 147–168. [Google Scholar] [CrossRef]
- Dharumarajan, S.; Hegde, R. Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use Manag. 2022, 38, 135–149. [Google Scholar] [CrossRef]
- Sun, J. Provenance of Loess Material and Formation of Loess Deposits on the Chinese Loess Plateau. Earth Planet. Sci. Lett. 2002, 203, 845–859. [Google Scholar] [CrossRef]
- Ding, Z.L.; Yu, Z.W.; Yang, S.L.; Sun, J.M.; Xiong, S.F.; Liu, T.S. Coeval Changes in Grain Size and Sedimentation Rate of Eolian Loess, the Chinese Loess Plateau. Geophys. Res. Lett. 2001, 28, 2097–2100. [Google Scholar] [CrossRef]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and Spatial Variations of Soil Erosion in Europe: A Study Based on Erosion Plot Data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Wang, X.; Feng, Y.; Labzovskii, L. Challenging the Land Degradation in China’s Loess Plateau: Benefits, Limitations, Sustainability, and Adaptive Strategies of Soil and Water Conservation. Ecol. Eng. 2019, 127, 135–150. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J. Soil Erosion and Its Response to the Changes of Precipitation and Vegetation Cover on the Loess Plateau. J. Geogr. Sci. 2013, 23, 1091–1106. [Google Scholar] [CrossRef]
- Li, P.; Mu, X.; Holden, J.; Wu, Y.; Irvine, B.; Wang, F.; Gao, P.; Zhao, G.; Sun, W. Comparison of Soil Erosion Models Used to Study the Chinese Loess Plateau. Earth-Sci. Rev. 2017, 170, 17–30. [Google Scholar] [CrossRef]
- Wen, X.; Théau, J. Assessment of ecosystem services in restoration programs in China: A systematic review. Ambio 2020, 49, 584–592. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Wu, F. Tillage—Impact on Infiltration of the Loess Plateau of China. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2014, 64, 341–349. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching Practices for Reducing Soil Water Erosion: A Review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.; Chen, L.; Lü, Y.; Gao, Y. Check Dam in the Loess Plateau of China: Engineering for Environmental Services and Food Security. Environ. Sci. Technol. 2011, 45, 10298–10299. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Ran, L.; Lu, X.X. Soil Erosion Control and Sediment Load Reduction in the Loess Plateau: Policy Perspectives. Int. J. Water Resour. Dev. 2012, 28, 325–341. [Google Scholar] [CrossRef]
- Mohammad, A.G.; Adam, M.A. The Impact of Vegetative Cover Type on Runoff and Soil Erosion under Different Land Uses. CATENA 2010, 81, 97–103. [Google Scholar] [CrossRef]
- Sun, X.-L.; Wu, Y.-J.; Wang, H.-L.; Zhao, Y.-G.; Zhang, G.-L. Mapping Soil Particle Size Fractions Using Compositional Kriging, Cokriging and Additive Log-Ratio Cokriging in Two Case Studies. Math. Geosci. 2014, 46, 429–443. [Google Scholar] [CrossRef]
- Fu, C.-F.; Bian, Z.-H.; Xi, J.-J.; Zhao, J.-B. Spatial Distribution Characteristics of Soil Moisture in Different Types of Sand Dune in the Mu Us Sandy Land, Adjacent to North of Chinese Loess Plateau. Environ. Earth Sci. 2018, 77, 151. [Google Scholar] [CrossRef]
- Jia, X.; Wang, Y.; Shao, M.; Luo, Y.; Zhang, C. Estimating regional losses of soil water due to the conversion of agricultural land to forest in China’s Loess Plateau. Ecohydrology 2017, 10, 1851. [Google Scholar] [CrossRef]
- Cao, S.; Sun, G.; Zhang, Z.; Chen, L.; Feng, Q.; Fu, B.; McNulty, S.; Shankman, D.; Tang, J.; Wang, Y.; et al. Greening China Naturally. Ambio 2011, 40, 828–831. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuizen, S.; Heuvelink, G.B.M.; Hofmeyr, D.P. Multivariate random forest for digital soil mapping. Geoderma 2023, 431, 116365. [Google Scholar] [CrossRef]
Variable | Abbreviation | Brief Description | |
---|---|---|---|
Remote sensing | Band 3 | B3 | Red band (0.63–0.69 μm) |
Band 4 | B4 | Near-infrared band (0.77–0.90 μm) | |
Band 5 | B5 | Shortwave infrared band (1.55–1.75 μm) | |
Normalized difference vegetation index [39] | NDVI | Quantifies vegetation by measuring the difference between near-infrared and red reflectance | |
Enhanced vegetation index [40] | EVI | Quantifies vegetation using near-infrared, red, and blue reflectance | |
Triangular vegetation index [41] | TVI | Quantifies vegetation using near-infrared, red, and green reflectance | |
Terrain attributes | Elevation | Original value of the DEM | |
Slope | Rate of elevation change | ||
Aspect | Orientation of slope | ||
Slope length and steepness factor [42] | LS-factor | Describes effects of slope length and slope gradient on soil erosion | |
Topographic wetness index [43] | TWI | Quantifies the topographic control on hydrological processes | |
Valley depth | VD | Vertical distance to a channel network base level | |
Flow accumulation | FA | Sum of all flows from upstream of a pixel | |
Plan curvature | PC | Curvature along the horizontal plan | |
Multiresolution index of valley bottom flatness [44] | MrVBF | Describes the flatness and lowness characteristics of valley bottoms at a range of scales | |
Wind exposition index | WEI | Expresses how open a location is to the wind | |
Climate variables | Precipitation | Pre | Amount of precipitation in a year |
Evapotranspiration | ET | Total water loss to the atmosphere from the land surface | |
Daytime land surface temperature | LST_D | Temperature of the Earth’s lands during the daytime | |
Nighttime land surface temperature | LST_N | Temperature of the Earth’s lands during the nighttime |
PSFs | Max | Min | Mean | Median | SD | CV | |
---|---|---|---|---|---|---|---|
Training | Sand | 95.74 | 3.77 | 18.45 | 15.39 | 13.47 | 0.73 |
Silt | 74.79 | 3.62 | 63.72 | 66.73 | 9.93 | 0.15 | |
Clay | 29.53 | 0.63 | 17.83 | 17.97 | 4.57 | 0.25 | |
Test | Sand | 67.17 | 3.72 | 21.17 | 17.25 | 13.92 | 0.65 |
Silt | 71.16 | 23.57 | 62.30 | 66.65 | 10.30 | 0.16 | |
Clay | 26.33 | 6.89 | 16.53 | 16.12 | 4.62 | 0.28 |
R2 | RMSE (%) | MAE (%) | CCC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | Sand | Silt | Clay | Sand | Silt | Clay | Sand | Silt | Clay | |
MRF | 0.62 | 0.53 | 0.73 | 8.53 | 7.04 | 2.40 | 5.68 | 4.66 | 1.96 | 0.74 | 0.66 | 0.83 |
ALR | 0.56 | 0.44 | 0.65 | 9.23 | 7.71 | 2.75 | 5.79 | 4.86 | 2.26 | 0.69 | 0.59 | 0.76 |
CLR | 0.60 | 0.49 | 0.69 | 8.76 | 7.35 | 2.59 | 5.46 | 4.71 | 2.04 | 0.72 | 0.63 | 0.80 |
ILR | 0.53 | 0.36 | 0.69 | 9.59 | 8.24 | 2.59 | 5.90 | 5.31 | 2.08 | 0.67 | 0.53 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Xiao, Z.; Lu, Q.; Wei, L.; Liu, X. Digital Mapping of Soil Particle Size Fractions in the Loess Plateau, China, Using Environmental Variables and Multivariate Random Forest. Remote Sens. 2024, 16, 785. https://doi.org/10.3390/rs16050785
He W, Xiao Z, Lu Q, Wei L, Liu X. Digital Mapping of Soil Particle Size Fractions in the Loess Plateau, China, Using Environmental Variables and Multivariate Random Forest. Remote Sensing. 2024; 16(5):785. https://doi.org/10.3390/rs16050785
Chicago/Turabian StyleHe, Wenjie, Zhiwei Xiao, Qikai Lu, Lifei Wei, and Xing Liu. 2024. "Digital Mapping of Soil Particle Size Fractions in the Loess Plateau, China, Using Environmental Variables and Multivariate Random Forest" Remote Sensing 16, no. 5: 785. https://doi.org/10.3390/rs16050785
APA StyleHe, W., Xiao, Z., Lu, Q., Wei, L., & Liu, X. (2024). Digital Mapping of Soil Particle Size Fractions in the Loess Plateau, China, Using Environmental Variables and Multivariate Random Forest. Remote Sensing, 16(5), 785. https://doi.org/10.3390/rs16050785