Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification
Abstract
:1. Introduction
- The Graph-based Feature Matching module designed attempts to enhance the transmission of group contextual information by adding matched features for the first time.
- The Pre-Processing module presented aims to solve the challenge of group member changes in the group re-ID, which can remove group members that do not belong to the current group through pruning operations.
- The Multi-Objects Context Graph module proposed tries to employ multi-level attention mechanisms within and between graphs to capture contextual information.
- Our proposed framework is examined on several datasets, and the experimental results demonstrate that the model surpasses the most advanced approaches.
2. Related Work
2.1. Single Object Re-Identification
2.2. Group Re-Identification
2.3. Graph Neural Network
3. Method
3.1. Overview
3.2. Graph-Based Feature Matching Module
3.3. Pre-Processing Module
3.4. Multi-Object Context Graph Module
3.4.1. The Relationship of Intra-Graph
3.4.2. The Relationship of Inter-Graph
3.4.3. Correspondence Learning
4. Experimental Results
4.1. Datasets and Experimental Settings
4.2. Comparison with Other Group Re-ID Methods
4.3. Person Re-ID in Groups
4.4. Model Analysis
4.5. The Visualization of the Results
4.6. Ablation Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Liu, W.; Matsui, Y.; Satoh, S. Effective and efficient: Toward open-world instance re-identification. In Proceedings of the 28th ACM International Conference on Multimedia, Virtual, 12–16 October 2020; pp. 4789–4790. [Google Scholar]
- Almazan, J.; Gajic, B.; Murray, N.; Larlus, D. Re-id done right: Towards good practices for person re-identification. arXiv 2018, arXiv:1801.05339. [Google Scholar]
- Wang, Y.; Wang, L.; You, Y.; Zou, X.; Chen, V.; Li, S.; Huang, G.; Hariharan, B.; Weinberger, K. Resource aware person re-identification across multiple resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8042–8051. [Google Scholar]
- Zhang, G.; Ge, Y.; Dong, Z.; Wang, H.; Zheng, Y.; Chen, S. Deep high-resolution representation learning for cross-resolution person re-identification. IEEE Trans. Image Process. 2021, 30, 8913–8925. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Shen, Y.; Yan, J.; Xu, M.; Wu, J.; Wang, J.; Lu, K. Learning correspondence structures for person re-identification. IEEE Trans. Image Process. 2017, 26, 2438–2453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, Y.; Lin, W. Low resolution information also matters: Learning multi-resolution representations for person re-identification. In Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 19–26 August 2021; pp. 1295–1301. [Google Scholar]
- Chen, S.; Guo, C.; Lai, J. Deep ranking for person re-identification via joint representation learning. IEEE Trans. Image Process. 2016, 25, 2353–2367. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Takala, V.; Pietikainen, M. Matching groups of people by covariance descriptor. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2744–2747. [Google Scholar]
- Zhu, F.; Chu, Q.; Yu, N. Consistent matching based on boosted salience channels for group re-identification. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Pheonix, AZ, USA, 25–28 September 2016; pp. 4279–4283. [Google Scholar]
- Zheng, W.; Gong, S.; Xiang, T. Associating groups of people. BMVC 2009, 6, 1–11. [Google Scholar]
- Zhu, J.; Yang, H.; Lin, W.; Liu, N.; Wang, J.; Zhang, W. Group re-identification with group context graph neural networks. IEEE Trans. Multimed. 2020, 23, 2614–2626. [Google Scholar] [CrossRef]
- Lin, W.; Li, Y.; Xiao, H.; See, J.; Zou, J.; Xiong, H.; Wang, J.; Mei, T. Group reidentification with multigrained matching and integration. IEEE Trans. Cybern. 2019, 51, 1478–1492. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, Q.; Ni, B.; Zhang, W.; Xu, M.; Yang, X. Learning context graph for person search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Yan, Y.; Qin, J.; Ni, B.; Chen, J.; Liu, L.; Zhu, F.; Zheng, W.; Yang, X.; Shao, L. Learning multi-attention context graph for group-based re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 45, 7001–7018. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z.; Tsai, C.; Satoh, S.; Lin, C. Dotscn: Group re-identification via domain-transferred single and couple representation learning. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 2739–2750. [Google Scholar] [CrossRef]
- Lisanti, G.; Martinel, N.; Del Bimbo, A.; Luca Foresti, G. Group re-identification via unsupervised transfer of sparse features encoding. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2449–2458. [Google Scholar]
- Zhang, G.; Luo, Z.; Chen, Y.; Zheng, Y.; Lin, W. Illumination unification for person re-identification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6766–6777. [Google Scholar] [CrossRef]
- Zheng, L.; Yang, Y.; Hauptmann, A. Person re-identification: Past, present and future. arXiv 2016, arXiv:1610.02984. [Google Scholar]
- Karanam, S.; Li, Y.; Radke, R. Person re-identification with discriminatively trained viewpoint invariant dictionaries. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4516–4524. [Google Scholar]
- Bak, S.; Zaidenberg, S.; Boulay, B. Improving person re-identification by viewpoint cues. In Proceedings of the 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Seoul, Republic of Korea, 26–29 August 2014; pp. 175–180. [Google Scholar]
- Li, X.; Zheng, W.; Wang, X.; Xiang, T.; Gong, S. Multi-scale learning for low-resolution person re-identification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3765–3773. [Google Scholar]
- Huang, Y.; Zha, Z.; Fu, X.; Zhang, W. Illumination-invariant person re-identification. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 365–373. [Google Scholar]
- Cho, Y.; Yoon, K. Improving person re-identification via pose-aware multi-shot matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1354–1362. [Google Scholar]
- Zhao, H.; Tian, M.; Sun, S.; Shao, J.; Yan, J.; Yi, S.; Wang, X.; Tang, X. Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1077–1085. [Google Scholar]
- Sarfraz, M.; Schumann, A.; Eberle, A.; Stiefelhagen, R. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 181–23 June 2018; pp. 420–429. [Google Scholar]
- Zhang, G.; Fang, W.; Zheng, Y.; Wang, R. SDBAD-Net: A Spatial Dual-Branch Attention Dehazing Network based on Meta-Former Paradigm. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 60–70. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Lu, Y.; Wang, Z.; Zheng, Y. Tipcb: A simple but effective part-based convolutional baseline for text-based person search. Neurocomputing 2022, 494, 171–181. [Google Scholar] [CrossRef]
- Liu, H.; Tang, X.; Shen, S. Depth-map completion for large indoor scene reconstruction. Pattern Recognit. 2020, 99, 107–112. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, J.; Chen, Y.; Zheng, Y.; Zhang, H. Multi-biometric unified network for cloth-changing person re-identification. IEEE Trans. Image Process. 2023, 32, 4555–4566. [Google Scholar] [CrossRef]
- Gray, D.; Tao, H. Viewpoint invariant pedestrian recognition with an ensemble of localized features. In Proceedings of the 10th European Conference on Computer Vision, Marseille, France, 12–18 October 2008; pp. 262–275. [Google Scholar]
- Farenzena, M.; Bazzani, L.; Perina, A.; Murino, V.; Cristani, M. Person re-identification by symmetry-driven accumulation of local features. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2360–2367. [Google Scholar]
- Farenzena, M.; Bazzani, L.; Perina, A.; Murino, V.; Cristani, M. Salient color names for person re-identification. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 536–551. [Google Scholar]
- Zheng, W.; Gong, S.; Xiang, T. Global relation-aware contrast learning for unsupervised person re-identification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 8599–8610. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, H.; Lin, W.; Chandran, A.K.; Jing, X. Camera contrast learning for unsupervised person re-identification. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4096–4107. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, H.; Zheng, Y.; Xia, G.; Feng, L.; Sun, Q. Optimal discriminative projection for sparse representation-based classification via bilevel optimization. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1065–1077. [Google Scholar] [CrossRef]
- Qiao, Y.; Cui, J.; Huang, F.; Liu, H.; Bao, C.; Li, X. Efficient style-corpus constrained learning for photorealistic style transfer. IEEE Trans. Image Process. 2021, 30, 3154–3166. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, L.; Xie, Z.; Liu, H.; Shen, S. Incremental rotation averaging. Int. J. Comput. Vis. 2021, 129, 1202–1216. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, L.; Yang, Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3754–3762. [Google Scholar]
- Li, W.; Zhao, R.; Xiao, T.; Wang, X. Deepreid: Deep filter pairing neural network for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 152–159. [Google Scholar]
- Leng, Q.; Ye, M.; Tian, Q. A survey of open-world person re-identification. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1092–1108. [Google Scholar] [CrossRef]
- Xiao, H.; Lin, W.; Sheng, B.; Lu, K.; Yan, J.; Wang, J.; Ding, E.; Zhang, Y.; Xiong, H. Group re-identification: Leveraging and integrating multi-grain information. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 192–200. [Google Scholar]
- Huang, Z.; Wang, Z.; Hu, W.; Lin, C.; Satoh, S. DoT-GNN: Domain-transferred graph neural network for group re-identification. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1888–1896. [Google Scholar]
- Hu, P.; Zheng, H.; Zheng, W. Part Relational Mean Model for Group Re-Identification. IEEE Access 2021, 9, 46265–46279. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Battaglia, P.; Hamrick, J.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R. Relational inductive biases, deep learning, and graph networks. arXiv 2018, arXiv:1806.01261. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef]
- Sarlin, P.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superglue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4938–4947. [Google Scholar]
- Gilmer, J.; Schoenholz, S.; Riley, P.; Vinyals, O.; Dahl, G. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1263–1272. [Google Scholar]
- Ukita, N.; Moriguchi, Y.; Hagita, N. People re-identification across non-overlapping cameras using group features. Comput. Vis. Image Underst. 2016, 144, 228–236. [Google Scholar] [CrossRef]
- Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P. Graph matching networks for learning the similarity of graph structured objects. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 3835–3845. [Google Scholar]
- Zhang, S.; Zhang, Q.; Yang, Y.; Wei, X.; Wang, P.; Jiao, B.; Zhang, Y. Person re-identification in aerial imagery. IEEE Trans. Multimed. 2020, 23, 281–291. [Google Scholar] [CrossRef]
- Xiong, J.; Lai, J. Similarity Metric Learning for RGB-Infrared Group Re-Identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 13662–13671. [Google Scholar]
- Wu, A.; Zheng, W.; Yu, H.; Gong, S.; Lai, J. Rgb-infrared cross-modality person re-identification. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5380–5389. [Google Scholar]
- Xia, G.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef]
- Brown, M.; Süsstrunk, S. Multi-spectral SIFT for scene category recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 20–25 June 2011; pp. 177–184. [Google Scholar]
- Luo, H.; Jiang, W.; Gu, Y.; Liu, F.; Liao, X.; Lai, S.; Gu, J. A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans. Multimed. 2019, 22, 2597–2609. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, L.; Yang, Y.; Tian, Q.; Wang, S. Beyond part models: Person retrieval with refined part pooling (and A strong convolutional baseline). In Proceedings of the IEEE/CVF Conference on European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Omni-scale feature learning for person re-identification. In Proceedings of the IEEE/CVF Conference on International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3701–3711. [Google Scholar]
- Sun, Y.; Cheng, C.; Zhang, Y.; Zhang, C.; Zheng, L.; Wang, Z.; Wei, Y. Circle loss: A unified perspective of pair similarity optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6398–6407. [Google Scholar]
Symbols | Description |
---|---|
s-th input group image | |
number of person in | |
group context graph in | |
t | the t-th layer |
the feature vector from the p-th part of background information b in | |
the feature vector from the q-th part of background information b in | |
the message from the p-th intra-part in | |
the message from the p-th inter-parts in | |
the message from the p-th inter-graphs in | |
graph representation in | |
graph representation in |
Methods | CUHK-SYSU-Group | Road Group | DukeMTMC Group | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | R5 | R10 | R20 | R1 | R5 | R10 | R20 | R1 | R5 | R10 | R20 | |
Crowd matching-based methods | ||||||||||||
CRRRO-BRO (BMVC2009) [10] | 10.4 | 25.8 | 37.5 | - | 17.8 | 34.6 | 48.1 | - | 9.9 | 26.1 | 40.2 | - |
Covariance (ICPR2010) [8] | 16.5 | 34.1 | 47.9 | 67.0 | 38.0 | 61.0 | 73.1 | 82.5 | 21.3 | 43.6 | 60.4 | 78.2 |
BSC+CM (ICIP2016) [9] | 24.6 | 38.5 | 55.1 | 73.8 | 58.6 | 80.6 | 87.4 | 92.1 | 23.1 | 44.3 | 56.4 | 70.4 |
PREF (CVPR2017) [16] | 19.2 | 36.4 | 51.8 | 70.7 | 43.0 | 68.7 | 77.9 | 85.2 | 22.3 | 44.3 | 58.5 | 74.4 |
LIMI (MM2018) [41] | - | - | - | - | 72.3 | 90.6 | 94.1 | - | 47.4 | 68.1 | 77.3 | - |
MGR (TCYB2021) [12] | 57.8 | 71.6 | 76.5 | 82.3 | 80.2 | 93.8 | 96.3 | 97.5 | 48.4 | 75.2 | 89.9 | 94.4 |
Features aggregation-based methods | ||||||||||||
DotGNN (MM2019) [42] | - | - | - | - | 74.1 | 90.1 | 92.6 | - | 53.4 | 72.7 | 80.7 | - |
GCGNN (TMM2020) [11] | - | - | - | - | 81.7 | 94.3 | 96.5 | 97.8 | 53.6 | 77.0 | 91.4 | 94.8 |
MACG(TPAMI2020) [14] | 63.2 | 75.4 | 79.7 | 84.4 | 84.5 | 95.0 | 96.9 | 98.1 | 57.4 | 79.0 | 90.3 | 94.3 |
DotSCN(TCSVT2021) [15] | - | - | - | - | 84.0 | 95.1 | 96.3 | 98.8 | 86.4 | 98.8 | 98.8 | 98.8 |
PRM (IEEEAccess2021) [43] | - | - | - | - | 62.4 | 75.9 | 82.1 | 88.3 | - | - | - | - |
Ours | 71.8 | 81.9 | 86.0 | 88.9 | 86.4 | 95.5 | 97.0 | 98.5 | 57.8 | 80.2 | 88.5 | 94.4 |
Model | Group | Rank-1 | Rank-5 | Rank-10 |
---|---|---|---|---|
Our CNN | - | 63.5 | 74.2 | 79.9 |
Strong-Baseline [56] | - | 63.1 | 80.3 | 84.3 |
PCB [57] | - | 63.7 | 80.2 | 83.9 |
OSNet [58] | - | 62.4 | 77.0 | 81.0 |
MGR [12] | ✓ | 63.8 | 79.9 | 83.8 |
CG [13] | ✓ | 62.7 | 78.4 | 82.6 |
MACG [14] | ✓ | 65.6 | 80.5 | 84.6 |
DSFG | ✓ | 68.2 | 81.2 | 84.9 |
Model | CSG —> PRAI-1581 | ||
---|---|---|---|
Rank-1 | Rank-5 | Rank-10 | |
Strong-Baseline [56] | 46.10 | 49.23 | 52.34 |
PCB [57] | 48.07 | 51.20 | 55.97 |
OSNet [58] | 54.40 | 58.85 | 62.37 |
Ours | 51.32 | 55.10 | 57.38 |
Model | CSG —> SYSU-MM01 | ||
---|---|---|---|
Rank-1 | Rank-5 | Rank-10 | |
Strong-Baseline [56] | 34.39 | 36.34 | 37.83 |
PCB [57] | 36.54 | 38.47 | 40.61 |
OSNet [58] | 40.18 | 43.64 | 45.59 |
Ours | 38.12 | 41.22 | 43.67 |
CM-Group —> SYSU-MM01 | |||
Ours | 52.24 | 55.83 | 57.92 |
CSG | RG | DG | |
---|---|---|---|
MACG | 63.2 | 84.5 | 57.4 |
MOCG + GFM | 64.9 | 84.4 | 44.7 |
MACG + PREP | 65.2 | 84.9 | 57.8 |
MOCG + GFM + PREP | 66.5 | 85.0 | 46.8 |
MOCG + GFM + PREP + CL | 71.8 | 86.4 | 49.5 |
Modules | Base | Variants | Variants | Variants | Variants | Variants | Variants |
---|---|---|---|---|---|---|---|
GFM | ✓ | ✓ | ✓ | ||||
PREP | ✓ | ✓ | ✓ | ||||
CL | ✓ | ✓ | ✓ | ✓ | |||
Rank-1 | 63.2 | 64.9 | 65.2 | 65.4 | 68.8 | 69.2 | 71.8 |
Rank-1 | Rank-5 | Rank-10 | |
---|---|---|---|
Manhattan distance | 55.2 | 62.3 | 66.9 |
Cosine distance | 60.7 | 70.4 | 74.1 |
Euclidean distance | 71.8 | 81.9 | 86.0 |
Rank-1 | Rank-5 | Rank-10 | Rank-20 | |
---|---|---|---|---|
Ours | 66.5 | 72.5 | 77.3 | 80.2 |
Ours + cross entropy loss | 52.6 | 67.8 | 74.2 | 78.5 |
Ours + triple loss | 68.4 | 75.6 | 82.3 | 86.2 |
Ours + circle loss_32 | 70.1 | 81.1 | 84.4 | 88.0 |
Ours + circle loss_64 | 71.8 | 81.9 | 86.0 | 88.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Liu, T.; Ye, Z. Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification. Remote Sens. 2024, 16, 775. https://doi.org/10.3390/rs16050775
Zhang G, Liu T, Ye Z. Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification. Remote Sensing. 2024; 16(5):775. https://doi.org/10.3390/rs16050775
Chicago/Turabian StyleZhang, Guoqing, Tianqi Liu, and Zhonglin Ye. 2024. "Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification" Remote Sensing 16, no. 5: 775. https://doi.org/10.3390/rs16050775
APA StyleZhang, G., Liu, T., & Ye, Z. (2024). Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification. Remote Sensing, 16(5), 775. https://doi.org/10.3390/rs16050775