The Potential of Using SDGSAT-1 TIS Data to Identify Industrial Heat Sources in the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. SDGSAT-1 TIS Product
2.2.2. Landsat 8/9 OLI Product
2.2.3. POI Data
2.2.4. Auxiliary Data
2.3. Methods
2.3.1. Data Preprocessing
2.3.2. Multifeature Extraction
- 1.
- Thermal Features
- 2.
- Optical Features
2.3.3. Industrial Heat Source Production Area Identification Model Based on SVM
2.3.4. Industrial Heat Source and Production Area Identification
2.3.5. Industrial Heat Source Classification and Validation
3. Results
3.1. Validation of Industrial Heat Source Production Areas Identified Using Multiple Features and SVM
3.2. Analysis of Industrial Heat Source Detection and Identification Results for BTH
3.3. Analysis of Industrial Heat Source Classification and Identification Results for BTH
3.4. Spatial Distribution Characteristics of Industrial Heat Source Identification Results in BTH Region
3.4.1. Spatial Distribution Characteristics of Industrial Heat Sources at Provincial Scale
3.4.2. Spatial Distribution Characteristics of Industrial Heat Sources at Municipal Scale
3.4.3. Spatial Distribution Characteristics of Industrial Heat Sources at County Scale
4. Discussion
4.1. Effectiveness of Industrial Heat Source Production Area Detection Based on Nighttime SDGSAT-1 TIS Data Compared to Other TIS Data
4.2. Analysis of Spatial Distribution of Brightness Temperature Using Nighttime SDGSAT-1 TIS Data for Different Categories of Industrial Heat Sources
4.3. Comparison with Existing Industrial Heat Source Data
4.4. Study Significance and Uncertainties
5. Conclusions
- The use of SDGSAT-1 TIS thermal features combined with Landsat 8/9 OLI optical features for identifying industrial heat sources significantly enhances the distinction between production and background areas while also providing high accuracy and visual quality;
- Compared to the ACF data (375 m) and Landsat 8/9 TIRS data (100 m), the nighttime SDGSAT-1 TIS data (30 m) can be used to more accurately detect industrial heat source production areas;
- More than 2~6 times more industrial heat sources were detected in the BTH region using our model than were reported by Ma and Liu. Some industrial heat sources with low-heat emissions and small areas, such as 53 thermal power plants, were detected using TIS data but were not in the other cases;
- The industrial heat source objects were mainly concentrated in the Tangshan–Tianjin and Shijiazhuang–Xingtai–Handan regions, revealing a spatial distribution pattern of high values in the southeast and low values in the northwest;
- The spatial distributions and statistical characteristics of the brightness temperature differed for the different categories of industrial heat sources. The production areas of the cement plants exhibited the highest brightness temperatures, reaching 301.78 K, while the thermal power plants exhibited the lowest brightness temperatures, averaging 277.31 K.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inayat, A. Current Progress of Process Integration for Waste Heat Recovery in Steel and Iron Industries. Fuel 2023, 338, 127237. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Maghrabie, H.M.; Sayed, E.T.; Kais, E.-C.A.; Abo-Khalil, A.G.; Radi, M.A.; Baroutaji, A.; Olabi, A.G. Heat Pipe-Based Waste Heat Recovery Systems: Background and Applications. Therm. Sci. Eng. Prog. 2022, 29, 101221. [Google Scholar] [CrossRef]
- Bataille, C.G.F. Physical and Policy Pathways to Net-Zero Emissions Industry. WIREs Clim. Chang. 2020, 11, e633. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, Y.; Li, S.; Luo, S.; Jiang, X.; Shen, Z.; Wu, H. Towards Achieving the Sustainable Development Goal of Industry: How Does Industrial Agglomeration Affect Air Pollution? Innov. Green Dev. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Adebiyi, F.M. Air Quality and Management in Petroleum Refining Industry: A Review. Environ. Chem. Ecotoxicol. 2022, 4, 89–96. [Google Scholar] [CrossRef]
- Conejo, A.N.; Birat, J.-P.; Dutta, A. A Review of the Current Environmental Challenges of the Steel Industry and Its Value Chain. J. Environ. Manag. 2020, 259, 109782. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.M. Global CO2 Emissions from Cement Production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Chatkin, J.; Correa, L.; Santos, U. External Environmental Pollution as a Risk Factor for Asthma. Clin. Rev. Allerg. Immunol. 2022, 62, 72–89. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, L.; Zhang, Y.; Zhao, Y.; Liu, Y. Air Pollution: A Culprit of Lung Cancer. J. Hazard. Mater. 2022, 434, 128937. [Google Scholar] [CrossRef]
- Gourgiotis, A.; Kyvelou, S.S.; Lainas, I. Industrial Location in Greece: Fostering Green Transition and Synergies between Industrial and Spatial Planning Policies. Land 2021, 10, 271. [Google Scholar] [CrossRef]
- Li, R.; Tao, M.; Zhang, M.; Chen, L.; Wang, L.; Wang, Y.; He, X.; Wei, L.; Mei, X.; Wang, J. Application Potential of Satellite Thermal Anomaly Products in Updating Industrial Emission Inventory of China. Geophys. Res. Lett. 2021, 48, e2021GL092997. [Google Scholar] [CrossRef]
- Sarkar, A.; Chouhan, P. Modeling Spatial Determinants of Urban Expansion of Siliguri a Metropolitan City of India Using Logistic Regression. Model. Earth Syst. Environ. 2020, 6, 2317–2331. [Google Scholar] [CrossRef]
- Morand, S.; Lajaunie, C. Outbreaks of Vector-Borne and Zoonotic Diseases Are Associated With Changes in Forest Cover and Oil Palm Expansion at Global Scale. Front. Vet. Sci. 2021, 8, 661063. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.; Kim, J.-A. Quantifying the Influence of Urban Sources on Night Light Emissions. Landsc. Urban Plan. 2020, 204, 103936. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, C.; Sun, Q.; Liu, A.; You, S.; Li, X.; Zhang, Y.; Jiao, X.; Sun, D.; Sun, M.; et al. Satellite-Based Detection and Characterization of Industrial Heat Sources in China. Environ. Sci. Technol. 2019, 53, 11031–11042. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Zhizhin, M.; Sparks, T.; Ghosh, T.; Pon, S.; Bazilian, M.; Sutton, P.C.; Miller, S.D. Global Satellite Monitoring of Exothermic Industrial Activity via Infrared Emissions. Remote Sens. 2023, 15, 4760. [Google Scholar] [CrossRef]
- Taranik, J.V.; Coolbaugh, M.F.; Vaughan, R.G. An Overview of Thermal Infrared Remote Sensing with Applications to Geothermal and Mineral Exploration in the Great Basin, Western United States. In Remote Sensing and Spectral Geology; Bedell, R., Crósta, A.P., Grunsky, E., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2009; Volume 16, ISBN 978-1-934969-13-7. [Google Scholar]
- Junaidi, S.N.; Khalid, N.; Othman, A.N.; Hamid, J.R.A.; Saad, N.M. Analysis of the Relationship between Forest Fire and Land Surface Temperature Using Landsat 8 OLI/TIRS Imagery. IOP Conf. Ser. Earth Environ. Sci. 2021, 767, 012005. [Google Scholar] [CrossRef]
- Coskuner, K.A. Assessing the Performance of MODIS and VIIRS Active Fire Products in the Monitoring of Wildfires: A Case Study in Turkey. Iforest-Biogeosciences For. 2022, 15, 85. [Google Scholar] [CrossRef]
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative Performance of AVHRR-Based Multichannel Sea Surface Temperatures. J. Geophys. Res. Ocean. 1985, 90, 11587–11601. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; He, J.; Zhang, T. First Study of Sentinel-3 SLSTR Active Fire Detection and FRP Retrieval: Night-Time Algorithm Enhancements and Global Intercomparison to MODIS and VIIRS AF Products. Remote Sens. Environ. 2020, 248, 111947. [Google Scholar] [CrossRef]
- Flasse, S.P.; Ceccato, P. A Contextual Algorithm for AVHRR Fire Detection. Int. J. Remote Sens. 1996, 17, 419–424. [Google Scholar] [CrossRef]
- Shi, K.; Touge, Y. Characterization of Global Wildfire Burned Area Spatiotemporal Patterns and Underlying Climatic Causes. Sci. Rep. 2022, 12, 644. [Google Scholar] [CrossRef]
- Sathishkumar, V.E.; Cho, J.; Subramanian, M.; Naren, O.S. Forest Fire and Smoke Detection Using Deep Learning-Based Learning without Forgetting. Fire Ecol. 2023, 19, 9. [Google Scholar] [CrossRef]
- Jethva, H. Assessing Predictability of Post-Monsoon Crop Residue Fires in Northwestern India. Front. Earth Sci. 2022, 10, 2473. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, H.; Zhang, S.; Hao, D. Application of GIS Technology in Environmental Impact Assessment—Taking a Steel Plant as an Example. Sci. Consult. (Decis. Manag.) 2009, 76–77. (In Chinese) [Google Scholar]
- Chen, P.; Lu, L.; Zhu, H.; Zhu, Y.; Wang, Y. Research on the Suitability of Image at Different Resolutions for the Identification of Steel Enterprise Using Remote Sensing. J. Geo-Inf. Sci. 2015, 17, 1119–1127. [Google Scholar]
- Liu, Y.; Hu, C.; Zhan, W.; Sun, C.; Murch, B.; Ma, L. Identifying Industrial Heat Sources Using Time-Series of the VIIRS Nightfire Product with an Object-Oriented Approach. Remote Sens. Environ. 2018, 204, 347–365. [Google Scholar] [CrossRef]
- Ma, C.; Yang, J.; Chen, F.; Ma, Y.; Liu, J.; Li, X.; Duan, J.; Guo, R. Assessing Heavy Industrial Heat Source Distribution in China Using Real-Time VIIRS Active Fire/Hotspot Data. Sustainability 2018, 10, 4419. [Google Scholar] [CrossRef]
- Lai, J.; Zhu, J.; Chai, J.; Xu, B. Spatial-Temporal Analysis of Industrial Heat and Productivity in China. Appl. Geogr. 2022, 138, 102618. [Google Scholar] [CrossRef]
- Gemitzi, A.; Dalampakis, P.; Falalakis, G. Detecting Geothermal Anomalies Using Landsat 8 Thermal Infrared Remotely Sensed Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102283. [Google Scholar] [CrossRef]
- Ichi, E.; Dorafshan, S. Effectiveness of Infrared Thermography for Delamination Detection in Reinforced Concrete Bridge Decks. Autom. Constr. 2022, 142, 104523. [Google Scholar] [CrossRef]
- Han, F.; Zhao, F.; Li, F.; Shi, X.; Wei, Q.; Li, W.; Wang, W. Improvement of Monitoring Production Status of Iron and Steel Factories Based on Thermal Infrared Remote Sensing. Sustainability 2023, 15, 8575. [Google Scholar] [CrossRef]
- Baugh, K. Characterization of Gas Flaring in North Dakota Using the Satellite Data Product, VIIRS Nightfire. AGU Fall Meet. Abstr. 2015, 2015, A23N-05. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.-C.; Ghosh, T. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data. Energies 2016, 9, 14. [Google Scholar] [CrossRef]
- Tkachenko, N.; Tang, K.; McCarten, M.; Reece, S.; Kampmann, D.; Hickey, C.; Bayaraa, M.; Foster, P.; Layman, C.; Rossi, C.; et al. Global Database of Cement Production Assets and Upstream Suppliers. Sci. Data 2023, 10, 696. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, F.; Wang, S.; Liu, W.; Wang, L. A Method for Monitoring Iron and Steel Factory Economic Activity Based on Satellites. Sustainability 2018, 10, 1935. [Google Scholar] [CrossRef]
- Huang, W.; Jiao, J.; Zhao, L.; Hu, Z.; Peng, X.; Yang, L.; Li, X.; Chen, F. Thermal Discharge Temperature Retrieval and Monitoring of NPPs Based on SDGSAT-1 Images. Remote Sens. 2023, 15, 2298. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Hu, Z.; Gao, L.; Li, X.; Ni, X.; Chen, F. On-Orbit Monitoring Flying Aircraft Day and Night Based on SDGSAT-1 Thermal Infrared Dataset. Remote Sens. Environ. 2023, 298, 113840. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Z.; Zou, L.; Chen, F. Lunar Surface Temperature and Emissivity Retrieval From SDGSAT-1 Thermal Imager Spectrometer. IEEE Geosci. Remote Sens. Lett. 2023, 20, 7000805. [Google Scholar] [CrossRef]
- National Bureau of Statistics China Statistical Yearbook. 2022. Available online: http://www.stats.gov.cn/sj/ndsj/2022/indexeh.htm (accessed on 1 November 2023).
- Shen, L.; Yang, Z.; Du, X.; Wei, X.; Chen, X. A Health Risk-Based Threshold Method to Evaluate Urban Atmospheric Environment Carrying Capacity in Beijing-Tianjin-Hebei (BTH) Region. Environ. Impact Assess. Rev. 2022, 92, 106692. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, X.; Mao, R.; Xu, J.; Kim, S.-J. Predictability of the Winter Haze Pollution in Beijing–Tianjin–Hebei Region in the Context of Stringent Emission Control. Atmos. Pollut. Res. 2022, 13, 101392. [Google Scholar] [CrossRef]
- Zhou, J.; Yin, T.; Tian, J. Research on the Impact of Beijing–Tianjin–Hebei Electric Power and Thermal Power Industry on Haze Pollution. Energy Rep. 2022, 8, 1698–1710. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Ye, C.; Li, Z.; Dong, Y.; Wang, N.; Wang, L. Temporal Expansion of the Nighttime Light Images of SDGSAT-1 Satellite in Illuminating Ground Object Extraction by Joint Observation of NPP-VIIRS and Sentinel-2A Images. Remote Sens. Environ. 2023, 295, 113691. [Google Scholar] [CrossRef]
- Qi, L.; Li, L.; Ni, X.; Zhou, X.; Chen, F. On-Orbit Spatial Quality Evaluation of SDGSAT-1 Thermal Infrared Spectrometer. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7507505. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Zhao, L.; Jiao, J.; Jiang, L.; Yang, L.; Chen, F.; Sun, S. In-Orbit Geometric Calibration for Long-Linear-Array and Wide-Swath Whisk-Broom TIS of SDGSAT-1. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1000214. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.-M.; Dou, C.; Jia, G.; Hu, Z.; Xu, A.; Ren, Y.; Yan, L.; Wang, N.; Cui, Z.; et al. Absolute Radiometric Calibration Evaluation of the Thermal Infrared Spectrometer Onboard SDGSAT-1. Int. J. Digit. Earth 2023, 16, 4492–4511. [Google Scholar] [CrossRef]
- Guo, H.; Dou, C.; Chen, H.; Liu, J.; Fu, B.; Li, X.; Zou, Z.; Liang, D. SDGSAT-1: The World’s First Scientific Satellite for Sustainable Development Goals. Sci. Bull 2023, 68, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhu, M.; Wang, Q.; Su, X.; Chen, F. SDGSAT-1 TIS Prelaunch Radiometric Calibration and Performance. Remote Sens. 2022, 14, 4543. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, X.-M.; Guo, H. Spaceborne Thermal Infrared Observations of Arctic Sea Ice Leads at 30m Resolution. EGUsphere 2023, 17, 2829–2849. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Zhang, Y.; Zhao, L.; Cheng, Q. Preflight Radiometric Calibration of TIS Sensor Onboard SDG-1 Satellite and Estimation of Its LST Retrieval Ability. Remote Sens. 2021, 13, 3242. [Google Scholar] [CrossRef]
- Ye, X.; Ren, H.; Zhu, J.; Fan, W.; Qin, Q. Split-Window Algorithm for Land Surface Temperature Retrieval From Landsat-9 Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7507205. [Google Scholar] [CrossRef]
- Adiri, Z.; Lhissou, R.; El Harti, A.; Jellouli, A.; Chakouri, M. Recent Advances in the Use of Public Domain Satellite Imagery for Mineral Exploration: A Review of Landsat-8 and Sentinel-2 Applications. Ore Geol. Rev. 2020, 117, 103332. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty Years of Landsat Science and Impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Herrick, C.; Steele, B.G.; Brentrup, J.A.; Cottingham, K.L.; Ducey, M.J.; Lutz, D.A.; Palace, M.W.; Thompson, M.C.; Trout-Haney, J.V.; Weathers, K.C. lakeCoSTR: A Tool to Facilitate Use of Landsat Collection 2 to Estimate Lake Surface Water Temperatures. Ecosphere 2023, 14, e4357. [Google Scholar] [CrossRef]
- Xue, B.; Xiao, X.; Li, J.; Xie, X. Analysis of Spatial Economic Structure of Northeast China Cities Based on Points of Interest Big Data. Sci. Geogr. Sin. 2020, 40, 691–700. [Google Scholar]
- Yu, C.; Ren, F.; Du, Q.; Zhao, Z.; Nie, K. Web Map-Based POI Visualization for Spatial Decision Support. Cartogr. Geogr. Inf. Sci. 2013, 40, 172–182. [Google Scholar] [CrossRef]
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and Exploring POI Configurations of Urban Regions on POI-Type Semantic Space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Survey, U.S.G. Landsat Collection 2 Level-2 Science Products; U.S. Geological Survey: Reston, VA, USA, 2021. [Google Scholar]
- Arunachalam, M.; Joshua, R.M.; Kochuparampil, A.J.; Saravanavel, J. ArcOLITIRS: A Toolbox for Radiometric Calibration and Surface Temperature Estimation from Landsat 8 Products in ArcGIS Environment. J. Indian Soc. Remote Sens. 2023, 51, 453–468. [Google Scholar] [CrossRef]
- Wu, T.; Xu, Z.; Chen, R.; Wang, S.; Li, T. Channel Activity Remote Sensing Retrieval Model: A Case Study of the Lower Yellow River. Remote Sens. 2023, 15, 3636. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, Z.; Li, L.; Zhang, Q. Construction of Multidimensional Features to Identify Tea Plantations Using Multisource Remote Sensing Data: A Case Study of Hangzhou City, China. Ecol. Inform. 2023, 77, 102185. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, F.; Zhang, M.; Meng, Q.; Jim, C.Y.; Shi, J.; Tan, M.L.; Ma, X. Landscape and Vegetation Traits of Urban Green Space Can Predict Local Surface Temperature. Sci. Total Environ. 2022, 825, 154006. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, S.; Ma, Y.; Chen, Z. Comparison on Scale Effect of Urban Heat Island Defined by Brightness Temperature and Land Surface Temperature. Geogr. Geo-Inf. Sci. 2007, 23, 73–77. [Google Scholar] [CrossRef]
- Liu, Y.; Zhi, W.; Xu, B.; Xu, W.; Wu, W. Detecting High-Temperature Anomalies from Sentinel-2 MSI Images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 174–193. [Google Scholar] [CrossRef]
- Solcerova, A.; van de Ven, F.; van de Giesen, N. Nighttime Cooling of an Urban Pond. Front. Earth Sci. 2019, 7, 156. [Google Scholar] [CrossRef]
- Chavan, G.; Kulkarni, S. Identification of Plant Species Using Remote Sensing Techniques: A Review. High Technol. Lett. 2023, 29, 267–271. [Google Scholar]
- Weng, S.; Yu, S.; Guo, B.; Tang, P.; Liang, D. Non-Destructive Detection of Strawberry Quality Using Multi-Features of Hyperspectral Imaging and Multivariate Methods. Sensors 2020, 20, 3074. [Google Scholar] [CrossRef]
- Weng, S.; Tang, P.; Yuan, H.; Guo, B.; Yu, S.; Huang, L.; Xu, C. Hyperspectral Imaging for Accurate Determination of Rice Variety Using a Deep Learning Network with Multi-Feature Fusion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118237. [Google Scholar] [CrossRef] [PubMed]
- Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M.A. Understanding Deep Learning in Land Use Classification Based on Sentinel-2 Time Series. Sci. Rep. 2020, 10, 17188. [Google Scholar] [CrossRef]
- Ibrahim, F.; Rasul, G. Urban Land Use Land Cover Changes and Their Effect on Land Surface Temperature: Case Study Using Dohuk City in the Kurdistan Region of Iraq. Climate 2017, 5, 13. [Google Scholar] [CrossRef]
- Chandra, M.A.; Bedi, S.S. Survey on SVM and Their Application in Imageclassification. Int. J. Inf. Tecnol. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, M.; Niu, Y.; Ji, G. Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM. Sensors 2022, 22, 6281. [Google Scholar] [CrossRef] [PubMed]
- Aziz, G.; Minallah, N.; Saeed, A.; Frnda, J.; Khan, W. Remote Sensing Based Forest Cover Classification Using Machine Learning. Sci. Rep. 2024, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, Y.; Dong, Y.; Xu, B.; Wei, X. Classifification of Urban Industrial Heat Sources Based on Suomi-NPP VIIRS Nocturnal Thermal Anomaly Product—A Case Study of Beijing-Tianjin-Hebei Region. Geogr. Inf. Sci. 2018, 34, 13–19. [Google Scholar]
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The Impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 Concentrations in Jing-Jin-Ji Region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef]
Sensor Type | Wavelength (μm) | Spatial Resolution (m) | Imaging Swath Width (km) | Designed Radiometric Accuracy |
---|---|---|---|---|
MII | B1: 0.38~0.42 | 10 | 300 | Relative: 2% Absolute: 5% |
B2: 0.42~0.46 | ||||
B3: 0.46~0.52 | ||||
B4: 0.52~0.60 | ||||
B5: 0.63~0.69 | ||||
B6: 0.765~0.805 | ||||
B7: 0.805~0.90 | ||||
TIS | B1: 8~10.5 | 30 | 300 | Relative: 5% Absolute: 1 K@300 K |
B2: 10.3~11.3 | ||||
B3: 11.5~12.5 | ||||
GIU | P: 0.45~0.90 | 10 | 300 | Relative: 2% Absolute: 5% |
B: 0.43~0.52 | 40 | |||
G: 0.52~0.615 | ||||
R: 0.615~0.69 |
SDGSAT-1 TIS | Landsat 8 OLI | Landsat 9 OLI | ||||
---|---|---|---|---|---|---|
3 January 2022 | 13:19:42 | 19 April 2022 | 02:53:12 | 28 March 2022 | 02:41:45 | |
13:19:13 | 02:53:36 | 02:41:22 | ||||
Date and time (UTC) | 13:18:43 | 26 April 2022 | 02:59:44 | 2 April 2022 | 03:00:42 | |
20 February 2022 | 13:31:21 | 02:59:20 | 18 April 2022 | 02:59:22 | ||
13:30:51 | 3 May 2022 | 03:05:57 | 22 May 2022 | 02:47:54 | ||
13:30:21 | 03:05:33 | 02:47:30 | ||||
13:30:21 | 21 May 2022 | 02:54:31 | 02:47:06 | |||
25 April 2023 | 13:18:19 | 02:54:07 | 02:46:43 | |||
13:17:49 | 28 May 2022 | 03:00:17 | 27 May 2022 | 03:06:26 | ||
30 May 2022 | 02:48:21 |
Items | Parameters | |||||
---|---|---|---|---|---|---|
Landsat satellite | 8 | 9 | ||||
Launch | 11 February 2013 | 27 September 2021 | ||||
Sensors | OLI/TIRS | OLI-2/TIRS-2 | ||||
Revisit cycle | 16 d | 16 d | ||||
Width | 185 km | 185 km | ||||
Radiometric resolution (bits) | 12 | 14 | ||||
Spectral (spatial) resolution | Pan | 500~680 nm | 15 m | Pan | 500~680 nm | 15 m |
Blue | 433~453 nm | 30 m | Blue | 430~450 nm | 30 m | |
450~515 nm | 450~510 nm | |||||
Green | 525~600 nm | Green | 530~590 nm | |||
Red | 630~680 nm | Red | 640~670 nm | |||
Near infrared (NIR) | 845~885 nm | NIR | 850~880 nm | |||
Shortwave infrared (SWIR) | 1560~1660 nm | SWIR | 1570~1650 nm | |||
1360~1390 nm | 1360~1380 nm | |||||
2100~2300 nm | 2110~2290 nm | |||||
TIRS | 10,600~11,190 nm | 100 m | TIRS | 10,600~11,190 nm | 100 m | |
11,500~12,510 nm | 11,500~12,510 nm |
Dataset Name | Period | Resolution | Website | |
---|---|---|---|---|
SDGSAT-1 TIS product | 2022–2023 | 30 m | http://124.16.184.48:6008 (accessed on 2 July 2023) | |
Landsat 8/9 OLI product | 2022 | 30 m | https://www.usgs.gov (accessed on 3 July 2023) | |
POI data | 2023 | Points | open API of Gaode Maps (https://lbs.amap.com/api/webservice/guide/api/search (accessed on 29 August 2023)) | |
NPP-VIIRS active-fire/hotspot data (ACF) | 2022 | 375 m | https://firms.modaps.eosdis.nasa.gov/ (accessed on 9 September 2023) | |
High-resolution optical images | / | 0.5 m | Google Earth (https://www.google.cn (accessed on 8 July 2023)) | |
Industrial heat source datasets | Liu’s datasets | 2018 | Polygon | https://doi.org/10.1016/j.rse.2017.10.019 (accessed on 9 October 2023) |
Ma’s datasets | 2018 | Polygon | https://doi.org/10.3390/su10124419 (accessed on 7 July 2023) | |
BTH administrative divisions | 2020 | Polygon | https://www.webmap.cn (accessed on 18 June 2023) |
Category | Keywords | ||||
---|---|---|---|---|---|
Cement plants | Cement | ||||
Steel plants | Steel | Foundry | Smelting | Casting | Metal products |
Coal chemical plants | Coal chemical | Coking | Coke making | Coal | Coal gas |
Oil and gas development plants | Petroleum | Natural gas | Energy | Petrochemical | Chemical industry |
Thermal power plants | Thermal power | ||||
Other plants | New energy | Building materials | Lime | Concrete | ... |
Feature Combination | Abbreviation | Features |
---|---|---|
Landsat 8/9 optical features | L8/9 OFs | NDVI, NDBI, NDWI |
Landsat 8/9 temperature features | L8/9 TFs | |
SDGSAT-1 thermal features | SDG TFs | , , , , , , |
Landsat 8/9 optical and temperature features | L8/9 OFs and TFs | NDVI, NDBI, NDWI, |
Landsat 8/9 optical features and SDGSAT-1 thermal features | L8/9 OFs and SDG TFs | NDVI, NDBI, NDWI, , , , , , , |
Feature Combination | PA | UA | OA | K |
---|---|---|---|---|
L8/9 OFs | 80.00 | 3.77 | 69.97 | 0.05 |
L8/9 TFs | 72.81 | 72.81 | 81.92 | 0.59 |
SDG TFs | 95.51 | 64.89 | 85.42 | 0.67 |
L8/9 OFs and TFs | 77.39 | 79.46 | 85.71 | 0.72 |
L8/9 OFs and SDG TFs | 98.86 | 74.36 | 90.96 | 0.79 |
Cement Plants | Steel Plants | Coal Chemical Plants | Oil and Gas Development Plants | Thermal Power Plants | Other Plants | Sum | |
---|---|---|---|---|---|---|---|
Tangshan | 29 | 63 | 18 | 20 | 12 | 105 | 247 |
Tianjin | 1 | 13 | 0 | 27 | 10 | 32 | 83 |
Handan | 8 | 21 | 6 | 8 | 6 | 29 | 78 |
Shijiazhuang | 3 | 7 | 1 | 15 | 8 | 42 | 76 |
Xingtai | 3 | 3 | 3 | 9 | 4 | 42 | 64 |
Cangzhou | 0 | 5 | 0 | 25 | 4 | 21 | 55 |
Baoding | 3 | 1 | 0 | 1 | 5 | 27 | 37 |
Beijing | 2 | 1 | 0 | 4 | 2 | 16 | 25 |
Qinhuangdao | 4 | 8 | 0 | 2 | 1 | 9 | 24 |
Hengshui | 0 | 0 | 0 | 6 | 0 | 15 | 21 |
Langfang | 0 | 4 | 0 | 1 | 1 | 12 | 18 |
Chengde | 6 | 3 | 1 | 2 | 0 | 4 | 16 |
Zhangjiakou | 1 | 1 | 1 | 1 | 0 | 0 | 4 |
Sum | 60 | 130 | 30 | 121 | 53 | 354 | 748 |
Category | Maximum Brightness Temperature (K) | Minimum Brightness Temperature (K) | Mean Brightness Temperature (K) | ||||||
---|---|---|---|---|---|---|---|---|---|
PA | N-PA | PA-NPA | PA | N-PA | PA-NPA | PA | N-PA | PA-NPA | |
Cement plants | 301.78 | 275.32 | 26.46 | 274.76 | 264.32 | 10.44 | 282.47 | 271.25 | 11.22 |
Steel plants | 292.31 | 276.12 | 16.19 | 274.10 | 269.51 | 4.59 | 278.16 | 272.77 | 5.38 |
Coal chemical plants | 294.82 | 275.78 | 19.03 | 275.23 | 270.38 | 4.85 | 280.84 | 273.90 | 6.94 |
Oil and gas development plants | 283.81 | 276.61 | 7.20 | 275.38 | 270.94 | 4.44 | 277.61 | 275.12 | 2.49 |
Thermal power plants | 277.31 | 275.01 | 2.30 | 273.88 | 270.08 | 3.80 | 275.70 | 273.00 | 2.70 |
Updated Year | Industrial Heat Sources Detected | Real Industrial Heat Sources | Accuracy | Closed | Real and Operating Industrial Heat Sources | Total Area (km2) | Average Area (km2) | |
---|---|---|---|---|---|---|---|---|
Our results | 2022 | 793 | 748 | 94.33% | / | 748 | 552.01 | 0.7 |
Ma’s inventory | 2021 | 493 | 469 | 95.13% | 255 | 214 | 506.76 | 1.03 |
Liu’s inventory | 2017 | 242 | 229 | 94.62% | 121 | 108 | 703.53 | 2.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Ma, C.; Zhao, Y.; Yan, D.; Cheng, B.; Hou, X.; Chen, H.; Fu, B.; Wan, G. The Potential of Using SDGSAT-1 TIS Data to Identify Industrial Heat Sources in the Beijing–Tianjin–Hebei Region. Remote Sens. 2024, 16, 768. https://doi.org/10.3390/rs16050768
Xie Y, Ma C, Zhao Y, Yan D, Cheng B, Hou X, Chen H, Fu B, Wan G. The Potential of Using SDGSAT-1 TIS Data to Identify Industrial Heat Sources in the Beijing–Tianjin–Hebei Region. Remote Sensing. 2024; 16(5):768. https://doi.org/10.3390/rs16050768
Chicago/Turabian StyleXie, Yanmei, Caihong Ma, Yindi Zhao, Dongmei Yan, Bo Cheng, Xiaolin Hou, Hongyu Chen, Bihong Fu, and Guangtong Wan. 2024. "The Potential of Using SDGSAT-1 TIS Data to Identify Industrial Heat Sources in the Beijing–Tianjin–Hebei Region" Remote Sensing 16, no. 5: 768. https://doi.org/10.3390/rs16050768
APA StyleXie, Y., Ma, C., Zhao, Y., Yan, D., Cheng, B., Hou, X., Chen, H., Fu, B., & Wan, G. (2024). The Potential of Using SDGSAT-1 TIS Data to Identify Industrial Heat Sources in the Beijing–Tianjin–Hebei Region. Remote Sensing, 16(5), 768. https://doi.org/10.3390/rs16050768