Long-Term and Decadal Sea-Level Trends of the Baltic Sea Using Along-Track Satellite Altimetry
Abstract
:1. Introduction
2. Methodology
3. Study Area
4. Datasets
4.1. Satellite Altimetry
4.2. Tide Gauge Data
4.3. Geoid Model
4.4. Vertical Land Motion and Geoid Rise Models
4.5. Model Data
- Global SA gridded SLA (https://doi.org/10.48670/moi-00148 (accessed on 9 October 2023)) computed with respect to a twenty-year 1993–2012 mean from the Copernicus Marine Data Store (www.data.marine.copernicus.eu (accessed on 9 October 2023)): This SLA (denoted as global gridded SLA in Section 5.4.3) is estimated by Optimal Interpolation, merging the Level-3 along-track measurement from the different available SA data. This product is processed by the DUACS (Data Unification and Altimeter Combination System) multi-mission altimeter data processing system.
- The Baltic Sea Physical Reanalysis product (https://doi.org/10.48670/moi-00013 (accessed on 15 May 2023), which provides a reanalysis of the physical conditions of the whole Baltic Sea area: The product (denoted by Baltic Sea Nemo, gridded in Section 5.4.3) is produced by using the ice–ocean model system Nemo. The data are available at the native model resolution (1-nautical-mile horizontal resolution, 56 vertical layers).
- Baltic + SEAL gridded SA data over the Baltic Sea region: This product provides SSH after the multi-mission cross-calibration and outlier detection [29]. In this product, the SA observations are interpolated on an unstructured triangular grid (i.e., geodesic polyhedron) with a spatial resolution of 6–7 km.
5. Results
5.1. ASL and RSL Trends by Hourly TG Observations
5.2. Long-Term ASL Trend
5.3. Decadal Regional ASL Trend
5.3.1. Comparison between Long-Term and Decadal Trends
5.3.2. Decadal Trend from SA and TG
5.4. Inter-Comparisons of SA-Based ASL Trends
5.4.1. SA Data Optimality Regarding the Distance to TG
5.4.2. Sea-Level Trends of Different SA Orbit Inclination Categories
5.4.3. Gridded vs. Instantaneous SA-Derived ASL Trends
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | Station | Measurement Device History | Data Provider |
---|---|---|---|
1 | Dirhami | 01.01.1995–30.04.2009: manual observations, twice a day at 06 and 18 UTC. 21.09.2010–present: high-precision-level sensor PAA-36XW/H from Keller AG. | www.keskkonnaagentuur.ee |
2 | Ristna | 01.01.1995–24.09.2010: mareograph. 22.09.2010–present: high-precision-level sensor PAA-36XW/H from Keller AG. | |
3 | Ventspils | 23.02.1996–25.08.2004: HMS—1820 sensor from MARIMATECH 26.08.2004–13.09.2011: OTT ODS sensor from OTT HydroMet. 14.09.2011–present: OTT PLS sensor from OTT HydroMet | |
4 | Ustka | 1995–2015.12.1: Limnigraph LPU-10 from Zootechnics 2005.09.01–2023.07.05: Float Telemetry from Sutron 2023.07.06–present: Pressure sensor DST 22 from Seba | www.imgw.pl |
5 | Kolobrzeg | 1995–2009.06.01: Limnigraph LPU 10 Zootechnics 2009.01.07–2012.04.30: Limnimeter ORPHEUS from OTT 2004.05.19–2023.08.23: Float Telemetry Xlite 9210 from Sutron 2023.08.24–present: HD-01 from Envag | |
6 | Swinoujscie | 1995–2015.12.2: Limnigraph LPU-10 from Zootechnics 2006.02.08–2019.06.26: Float Telemetry from Sutron 2019.06.27–2023.09.24: OTT PLS device (subpress) from OTT 2023.05.09–present: Pressure sensor DST 22 from Seba | |
7 | Sassnitz | 1970–1996: STEREMAT-Recording Stage indicator (Model 195109) 01.06.1996–2013: angle encoder from Rittmeyer and beginning of water level remote transmission. 20.10.2013–present: Ott-Hydromet pressure sensor (Model 194772) as redundant system. | www.bsh.de |
8 | Rodvig | 1995–February 2015: Data collected by Farvandsvæsenet institute and not enough details of the instruments are available. February 2015–October 2021: CBS–Compact Bubbler Sensor by OTT October 2021–present: Radar measurement Time-of-Flight Micropilot FMR52 from Endress | www.dmi.dk |
9 | Simrishamn | 1995–07.08.2004: Float measurement collection, data manual dialling of the station (telepegel). 07.08.2004–15.05.2018: Shaft encoder AD150A 2018.05.15–Present: Radar Vega puls61 | www.videscentrs.lvgmc.lv |
10 | Kungsholmsfort | 1995–08.07.2004: Float measurement collection, data manual dialling of the station (telepegel). 28.11.2002–12.11.2018: Shaft encoder AD150A. 12.11.2018–Present: Radar Vega puls61. | |
11 | Marviken/Arkö | 1995–07.08.2004: Float measurement collection, data manual dialling of the station (telepegel). 03.05.2004–01.10.2019: Shaft encoder AD150A (station closed). 29.08.2017–Present: Radar Vega Puls 61 (from 01.10.2019, Arkö data are used). |
ID | TG Data (hourly) | |||||||
---|---|---|---|---|---|---|---|---|
1995–2022 | 2000–2009 | 2010–2019 | 2000–2019 | |||||
No. | Gap | No. | Gap | No. | Gap | No. | Gap | |
1 | 117,833 | 52.0 | 6807 | 92.2 | 81,110 | 7.5 | 87,917 | 49.9 |
2 | 244,427 | 0.4 | 87,475 | 0.2 | 86,824 | 0.9 | 174,299 | 0.6 |
3 | 200,199 | 18.4 | 76,839 | 12.4 | 87,141 | 0.6 | 163,980 | 6.5 |
4 | 175,622 | 28.4 | 50,654 | 42.2 | 87,622 | 0.0 | 138,276 | 21.1 |
5 | 170,399 | 30.6 | 47,122 | 46.3 | 85,944 | 1.9 | 133,066 | 24.1 |
6 | 175,157 | 28.6 | 50,114 | 42.8 | 87,595 | 0.1 | 137,709 | 21.5 |
7 | 237,694 | 2.6 | 87,672 | 0.0 | 86,278 | 1.6 | 173,950 | 0.8 |
8 | 226,479 | 7.7 | 72,081 | 17.8 | 86,621 | 1.2 | 158,702 | 9.5 |
9 | 234,745 | 0.0 | 87,672 | 0.0 | 87,648 | 0.0 | 175,320 | 0.0 |
10 | 245,439 | 0.0 | 87,672 | 0.0 | 87,648 | 0.0 | 175,320 | 0.0 |
11 | 245,448 | 0.0 | 87,672 | 0.0 | 87,648 | 0.0 | 175,320 | 0.0 |
12 | 245,448 | 0.0 | 87,672 | 0.0 | 87,648 | 0.0 | 175,320 | 0.0 |
13 | 244,728 | 0.3 | 87,672 | 0.0 | 86,928 | 0.8 | 174,600 | 0.4 |
References
- Hooijer, A.; Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 2021, 12, 3592. [Google Scholar] [CrossRef]
- Dangendorf, S.; Hay, C.; Calafat, F.M.; Marcos, M.; Piecuch, C.G.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Change 2019, 9, 705–710. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J.; Konikow, L.F.; Domingues, C.M.; Cogley, J.G.; Rignot, E.; Gregory, J.M.; van den Broeke, M.R.; Monaghan, A.J.; Velicogna, I. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 2011, 38, 4066. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.; Hinkel, J.; Van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; Deconto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. In The Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Abdalla, S.; Kolahchi, A.A.; Ablain, M.; Adusumilli, S.; Bhowmick, S.A.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Pytharouli, S.; Chaikalis, S.; Stiros, S.C. Uncertainty and bias in electronic tide-gauge records: Evidence from collocated sensors. Measurement 2018, 125, 496–508. [Google Scholar] [CrossRef]
- Slangen, A.B.; Church, J.A.; Agosta, C.; Fettweis, X.; Marzeion, B.; Richter, K. Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Change 2016, 6, 701–705. [Google Scholar] [CrossRef]
- Marzeion, B.; Cogley, J.G.; Richter, K.; Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 2014, 345, 919–921. [Google Scholar] [CrossRef] [PubMed]
- Prandi, P.; Meyssignac, B.; Ablain, M.; Spada, G.; Ribes, A.; Benveniste, J. Local Sea level trends, accelerations, and uncertainties over 1993–2019. Sci. Data 2021, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Ablain, M.; Cazenave, A.; Valladeau, G.; Guinehut, S. A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean. Sci. 2009, 5, 193–201. [Google Scholar] [CrossRef]
- Ablain, M.; Cazenave, A.; Larnicol, G.; Balmaseda, M.; Cipollini, P.; Faugère, Y.; Fernandes, M.J.; Henry, O.; Johannessen, J.A.; Knudsen, P.; et al. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci. 2015, 11, 67–82. [Google Scholar] [CrossRef]
- Ablain, M.; Meyssignac, B.; Zawadzki, L.; Jugier, R.; Ribes, A.; Spada, G.; Benveniste, J.; Cazenave, A.; Picot, N. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth Syst. Sci. Data 2019, 11, 1189–1202. [Google Scholar] [CrossRef]
- Watson, C.S.; White, N.J.; Church, J.A.; King, M.A.; Burgette, R.J.; Legresy, B. Unabated global mean sea-level rise over the satellite altimeter era. Nat. Clim. Change 2015, 5, 565–568. [Google Scholar] [CrossRef]
- Guérou, A.; Meyssignac, B.; Prandi, P.; Ablain, M.; Ribes, A.; Bignalet-Cazalet, F. Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty. Ocean Sci. 2023, 19, 431–451. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Letetrel, C.; Santamaria, A.; Bouin, M.N.; Collilieux, X.; Altamimi, Z.; Williams, S.D.P.; Miguez, B.M. Rates of sea-level change over the past century in a geocentric reference frame. Geophys. Res. Lett. 2009, 36, L12607. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A.; Woodworth, P.L. Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Cazenave, A.; Dieng, H.B.; Meyssignac, B.; Von Schuckmann, K.; Decharme, B.; Berthier, E. The rate of sea-level rise. Nat. Clim. Change 2014, 4, 358–361. [Google Scholar] [CrossRef]
- Ablain, M.; Legeais, J.F.; Prandi, P.; Marcos, M.; Fenoglio-Marc, L.; Dieng, H.B.; Benveniste, J.; Cazenave, A. Satellite Altimetry-based Sea Level at Global and Regional Scales. In Integrative Study of the Mean Sea Level and Its Components; Springer International Publishing: Cham, Switzerland, 2017; pp. 9–33. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim Change 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Legeais, J.F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef]
- Rateb, A.; Scanlon, B.R. Demystifying the Dynamics of Global and Regional Sea Level Trends from 1993 to 2021. EarthArXiv 2023, X5K38R. [Google Scholar] [CrossRef]
- Simpson, M.J.; Nilsen, J.E.Ø.; Ravndal, O.R.; Breili, K.; Sande, H.; Kierulf, H.P.; Steffen, H.; Jansen, E.; Carson, M.; Vestøl, O. Sea Level Change for Norway: Past and Present Observations and Projections to 2100. Norwegian Centre for Climate Services Report. no. 1/2015. Available online: https://www.researchgate.net/profile/Jan-Even-Nilsen/publication/281626674_Sea_Level_Change_for_Norway_Past_and_Present_Observations_and_Projections_to_2100/links/55f0774708ae199d47c212f6/Sea-Level-Change-for-Norway-Past-and-Present-Observations-and-Projections-to-2100.pdf (accessed on 20 December 2022).
- Slangen, A.B.A.; Carson, M.; Katsman, C.A.; Van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D. Projecting twenty-first century regional sea-level changes. Clim. Change 2014, 124, 317–332. [Google Scholar] [CrossRef]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2014, 2, 383–406. [Google Scholar] [CrossRef]
- Grinsted, A.; Jevrejeva, S.; Riva, R.E.; Dahl-Jensen, D. Sea level rise projections for northern Europe under RCP8. 5. Clim. Res. 2015, 64, 15–23. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Adalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Anna, P., Conners, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1211–1362. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter09.pdf (accessed on 20 December 2022).
- Passaro, M.; Müller, F.L.; Oelsmann, J.; Rautiainen, L.; Dettmering, D.; Hart-Davis, M.G.; Abulaitijiang, A.; Andersen, O.B.; Høyer, J.L.; Madsen, K.S.; et al. Absolute Baltic Sea level trends in the satellite altimetry era: A revisit. Front. Mar. Sci. 2021, 8, 647607. [Google Scholar] [CrossRef]
- Pellikka, H.; Johansson, M.M.; Nordman, M.; Ruosteenoja, K. Probabilistic projections and past trends of sea level rise in Finland. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 2022, 1613–1630. [Google Scholar] [CrossRef]
- IPCC; Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Weyer, N.M. The Ocean and Cryosphere in a Changing Climate. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK, 2019; p. 1155. [Google Scholar] [CrossRef]
- IPCC Working Group III: Climate Change 2022 Mitigation of Climate Change. Available online: https://report.ipcc.ch/ar6/wg3/IPCC_AR6_WGIII_Full_Report.pdf (accessed on 20 December 2022).
- Mostafavi, M.; Delpeche-Ellmann, N.; Ellmann, A.; Jahanmard, V. Determination of Accurate Dynamic Topography for the Baltic Sea Using Satellite Altimetry and a Marine Geoid Model. Remote Sens. 2023, 15, 2189. [Google Scholar] [CrossRef]
- Varbla, S.; Ågren, J.; Ellmann, A.; Poutanen, M. Treatment of tide gauge time series and marine GNSS measurements for vertical land motion with relevance to the implementation of the Baltic Sea Chart Datum 2000. Remote Sens. 2022, 14, 920. [Google Scholar] [CrossRef]
- Bingham, R.J.; Knudsen, P.; Andersen, O.; Pail, R. An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Knudsen, P.; Bingham, R.; Andersen, O.; Rio, M.H. Enhanced mean dynamic topography and ocean circulation estimation using GOCE preliminary models. J. Geod. 2011, 85, 861–879. [Google Scholar] [CrossRef]
- Knudsen, P.; Andersen, O.; Maximenko, N. A new ocean mean dynamic topography model, derived from a combination of gravity, altimetry and drifter velocity data. Adv. Space Res. 2021, 68, 1090–1102. [Google Scholar] [CrossRef]
- Dean, R.G.; Houston, J.R. Recent sea level trends and accelerations: Comparison of tide gauge and satellite results. Coast. Eng. 2013, 75, 4–9. [Google Scholar] [CrossRef]
- Räike, A.; Oblomkova, N.; Svendsen, L.M.; Kaspersson, R.; Haapaniemi, J.; Eklund, K.; Brynska, W.; Hytteborn, J.; Tornbjerg, H.; Kotilainen, P.; et al. Background Information on the Baltic Sea Catchment Area for the Sixth Baltic Sea Pollution Load Compilation (PLC-6). 2019. Available online: https://helcom.fi/wp-content/uploads/2020/01/PLC-6-background-report.pdf (accessed on 20 December 2022).
- Ekman, M. Climate changes detected through the world’s longest sea level series. Glob. Planet. Change 1999, 21, 215–224. [Google Scholar] [CrossRef]
- Dailidienė, I.; Davulienė, L.; Tilickis, B.; Stankevičius, A.; Myrberg, K. Sea level variability at the Lithuanian coast of the Baltic Sea. Boreal Environ. Res. 2006, 11, 109–121. [Google Scholar]
- Tervo, M.; Poutanen, M.; Koivula, H. Tide gauge monitoring using GPS. In Proceedings of the Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools IAG Symposium, Cairns, Australia, 22–26 August 2005; Springer: Berlin/Heidelberg, Germany, 2007; pp. 75–79. [Google Scholar] [CrossRef]
- Richter, A.; Groh, A.; Dietrich, R. Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys. Chem. Earth Parts A/B/C 2012, 53, 43–53. [Google Scholar] [CrossRef]
- Lyszkowicz, A.; Bernatowicz, A. Geocentric changes of the mean sea level of the Baltic Sea from altimeter and tide gauge data. In Proceedings of the 2018 Baltic Geodetic Congress (BGC Geomatics), Olsztyn, Poland, 21–23 June 2018; IEEE: New York, NY, USA, 2018; pp. 202–206. [Google Scholar] [CrossRef]
- Madsen, K.S.; Høyer, J.L.; Suursaar, Ü.; She, J.; Knudsen, P. Sea level trends and variability of the Baltic Sea from 2D statistical reconstruction and altimetry. Front. Earth Sci. 2019, 7, 243. [Google Scholar] [CrossRef]
- Kapsi, I.; Kall, T.; Liibusk, A. Sea Level Rise and Future Projections in the Baltic Sea. J. Mar. Sci. Eng. 2023, 11, 1514. [Google Scholar] [CrossRef]
- Pajak, K.; Blaszczak-Bak, W. Baltic sea level changes from satellite altimetry data based on the OptD method. Acta Geodyn. Geomater. 2019, 16, 235–244. [Google Scholar] [CrossRef]
- Couhert, A.; Cerri, L.; Legeais, J.F.; Ablain, M.; Zelensky, N.P.; Haines, B.J.; Lemoine, F.G.; Bertiger, W.I.; Desai, S.D.; Otten, M. Towards the 1 mm/y stability of the radial orbit error at regional scales. Adv. Space Res. 2015, 55, 2–23. [Google Scholar] [CrossRef]
- Ekman, M. Postglacial rebound and sea level phenomena, with special reference to Fennoscandia and the Baltic Sea. Suom. Geodeettisen Laitok. Julk. 1993, 115, 7–70. [Google Scholar]
- Jahanmard, V.; Delpeche-Ellmann, N.; Ellmann, A. Towards realistic dynamic topography from coast to offshore by incorporating hydrodynamic and geoid models. Ocean Model. 2022, 180, 102124. [Google Scholar] [CrossRef]
- Jahanmard, V.; Hordoir, R.; Delpeche-Ellmann, N.; Ellmann, A. Quantification of hydrodynamic model sea level bias utilizing deep learning and synergistic integration of data sources. Ocean Model. 2023, 186, 102286. [Google Scholar] [CrossRef]
- Schwabe, J.; Ågren, J.; Liebsch, G.; Westfeld, P.; Hammarklint, T.; Mononen, J.; Andersen, O.B. The Baltic Sea Chart Datum 2000 (BSCD2000): Implementation of a common reference level in the Baltic Sea. Int. Hydrogr. Rev. 2020, 29, 63–82. [Google Scholar]
- Cazenave, A.; Llovel, W. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef] [PubMed]
- Masters, D.; Nerem, R.S.; Choe, C.; Leuliette, E.; Beckley, B.; White, N.; Ablain, M. Comparison of global mean sea level time series from TOPEX/Poseidon, Jason-1, and Jason-2. Mar. Geod. 2012, 35 (Suppl. 1), 20–41. [Google Scholar] [CrossRef]
- Dieng, H.B.; Cazenave, A.; Von Schuckmann, K.; Ablain, M.; Meyssignac, B. Sea level budget over 2005–2013: Missing contributions and data errors. Ocean Sci. 2015, 11, 789–802. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Standard deviations and standard errors. bmj 2005, 331, 903. [Google Scholar] [CrossRef] [PubMed]
- Hamlington, B.D.; Chambers, D.P.; Frederikse, T.; Dangendorf, S.; Fournier, S.; Buzzanga, B.; Nerem, R.S. Observation-based trajectory of future sea level for the coastal United States tracks near high-end model projections. Commun. Earth Environ. 2022, 3, 230. [Google Scholar] [CrossRef]
- Chang, J.H.; Lee, W.S. A sliding window method for finding recently frequent itemsets over online data streams. J. Inf. Sci. Eng. 2004, 20, 753–762. [Google Scholar] [CrossRef]
- Ku-Mahamud, K.R.; Zakaria, N.; Katuk, N.; Shbier, M. Third Asia International Conference on Modelling & Simulation. In Proceedings of the 2009 Third Asia International Conference on Modelling & Simulation, Bandung, Indonesia, 25–29 May 2009; IEEE: New York, NY, USA, 2009; pp. 45–50. [Google Scholar] [CrossRef]
- Delpeche-Ellmann, N.; Giudici, A.; Rätsep, M.; Soomere, T. Observations of surface drift and effects induced by wind and surface waves in the Baltic Sea for the period 2011–2018. Estuar. Coast. Shelf Sci. 2021, 249, 107071. [Google Scholar] [CrossRef]
- Rajabi-Kiasari, S.; Delpeche-Ellmann, N.; Ellmann, A. Forecasting of absolute dynamic topography using deep learning algorithm with application to the Baltic Sea. Comput. Geosci. 2023, 178, 105406. [Google Scholar] [CrossRef]
- Gräwe, U.; Klingbeil, K.; Kelln, J.; Dangendorf, S. Decomposing mean sea level rise in a semi-enclosed basin, the Baltic Sea. J. Clim. 2019, 32, 3089–3108. [Google Scholar] [CrossRef]
- Weisse, R.; Dailidienė, I.; Hünicke, B.; Kahma, K.; Madsen, K.; Omstedt, A.; Parnell, K.; Schöne, T.; Soomere, T.; Zhang, W.; et al. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dyn. 2021, 12, 871–898. [Google Scholar] [CrossRef]
- Pindsoo, K.; Soomere, T. Basin-wide variations in trends in water level maxima in the Baltic Sea. Cont. Shelf Res. 2020, 193, 104029. [Google Scholar] [CrossRef]
- Delpeche-Ellmann, N.; Mingelaitė, T.; Soomere, T. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea. J. Mar. Syst. 2017, 171, 21–30. [Google Scholar] [CrossRef]
- Jakimavičius, D.; Kriaučiūnienė, J.; Šarauskienė, D. Assessment of wave climate and energy resources in the Baltic Sea nearshore (Lithuanian territorial water). Oceanologia 2018, 60, 207–218. [Google Scholar] [CrossRef]
- Tuomi, L.; Rautiainen, L.; Passaro, M. User Manual Along-Track Data Baltic + SEAL. Project: ESA AO/1-9172/17/I-BG-BALTIC+ BALTIC+ Theme 3 Baltic+ SEAL (Sea Level) Requirements Baseline Document/BG-BALTIC+ SEAL (Sea Level) Category: ESA Express Procurement Plus-EXPRO+ Deliverable: D1.1 Code: TUM_BSEAL_RBD; Baltic SEAL: München, Germany, 2020; Available online: http://balticseal.eu/wp-content/uploads/2020/04/Baltic_SEAL_D1.1_RequirementsBaselineDoc_V3.1-signed.pdf (accessed on 9 October 2023).
- Müller, K. (Ed.) Coastal Research in the Gulf of Bothnia; Springer Science & Business Media: Berlin, Germany, 1982; Volume 45, Available online: https://link.springer.com/book/9789061930983 (accessed on 9 October 2023).
- Bonsdorff, E.; Blomqvist, E.M.; Mattila, J.; Norkko, A. Long-term changes and coastal eutrophication. Examples from the Aland Islands and the Archipelago Sea, northern Baltic Sea. Ocean. Acta 1997, 20, 319–329. [Google Scholar]
- Mäkinen, J.; Ihde, J. The permanent tide in height systems. In Observing Our Changing Earth; Springer: Berlin/Heidelberg, Germany, 2009; pp. 81–87. [Google Scholar] [CrossRef]
- Boucher, C.; Altamimi, Z. Memo: Specifications for Reference Frame Fixing in the Analysis of a EUREF GPS Campaign. Version 2011, 8, 18-05. Available online: http://etrs89.ensg.ign.fr/memo-V8.pdf (accessed on 9 October 2023).
- Barbosa, S.M. Quantile trends in Baltic sea level. Geophys. Res. Lett. 2008, 35, L22704. [Google Scholar] [CrossRef]
- Kollo, K.; Ellmann, A. Geodetic reconciliation of tide gauge network in Estonia. Geophysica 2019, 54, 27–38. Available online: https://www.geophysica.fi/pdf/geophysica_2019_54_1_027_kollo.pdf (accessed on 9 October 2023).
- Vestøl, O.; Ågren, J.; Steffen, H.; Kierulf, H.; Tarasov, L. NKG2016LU: A new land uplift model for Fennoscandia and the Baltic Region. J. Geod. 2019, 93, 1759–1779. [Google Scholar] [CrossRef]
- Ågren, J.; Strykowski, G.; Bilker-Koivula, M.; Omang, O.; Märdla, S.; Forsberg, R.; Ellmann, A.; Oja, T.; Liepins, I.; Parseliunas, E.; et al. The NKG2015 gravimetric geoid model for the Nordic-Baltic region. In Proceedings of the 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems, Thessaloniki, Greece, 19–23 September 2016; pp. 19–23. [Google Scholar]
- Agha Karimi, A.; Bagherbandi, M.; Horemuz, M. Multidecadal sea level variability in the Baltic Sea and its impact on acceleration estimations. Front. Mar. Sci. 2021, 8, 702512. [Google Scholar] [CrossRef]
- Olivieri, M.; Spada, G. Spatial sea-level reconstruction in the Baltic Sea and in the pacific Ocean from tide gauges observations. Ann. Geophys. 2016, 59, P0323. [Google Scholar] [CrossRef]
- Omstedt, A.; Pettersen, C.; Rodhe, J.; Winsor, P. Baltic Sea climate: 200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Clim. Res. 2004, 25, 205–216. [Google Scholar] [CrossRef]
- Lehmann, A.; Getzlaff, K.; Harlaß, J. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. 2011, 46, 185–196. [Google Scholar] [CrossRef]
- Soomere, T.; Pindsoo, K.; Kudryavtseva, N.; Eelsalu, M. Variability of distributions of wave set-up heights along a shoreline with complicated geometry. Ocean Sci. 2020, 16, 1047–1065. [Google Scholar] [CrossRef]
- Mostafavi, M.; Delpeche-Ellmann, N.; Ellmann, A. Accurate sea surface heights from Sentinel-3A and Jason-3 retrackers by incorporating high-resolution marine geoid and hydrodynamic models. J. Geod. Sci. 2021, 11, 58–74. [Google Scholar] [CrossRef]
- Naeije, M.; Di Bella, A.; Geminale, T.; Visser, P. CryoSat Long-Term Ocean Data Analysis and Validation: Final Words on GOP Baseline-C. Remote Sens. 2023, 15, 5420. [Google Scholar] [CrossRef]
- HELCOM, Climate Change in the Baltic Sea. 2021 Fact Sheet. Baltic Sea Environment Proceedings n°180. HELCOM/Baltic Earth 2021. Available online: https://helcom.fi/post_type_publ/climate-change-in-the-baltic-sea-2021-fact-sheet/ (accessed on 9 October 2023).
ID | SA | Altitude [km] | Inclination [°] | Cycle [Days] | Data Frequency [Hz] | Data Period (Baltic + SEAL) | Data Period (Standard Data) | ||
---|---|---|---|---|---|---|---|---|---|
1 | ERS2 | 785 | 98.5 | 35 | 20 | 16 May 1995 | 01 Jul 2003 | - | - |
2 | ENV | 800 | 98.5 | 35 | 18 | 18 Jun 2002 | 18 Oct 2010 | - | - |
3 | JA1 | 1324 | 66 | 10 | 20 | 15 Jan 2002 | 20 Jun 2013 | - | - |
4 | JA2 | 1324 | 66 | 10 | 20 | 12 Jul 2008 | 17 May 2017 | - | - |
5 | CS2 | 717 | 92 | w/o exact revisit cycle | 20 | 19 Jul 2010 | 04 May 2019 | - | - |
6 | SRL | 800 | 98.5 | 35 | 40 | 14 Mar 2013 | 04 Jul 2016 | - | - |
7 | S3A | 814 | 98.6 | 27 | 20 | 04 Jan 2017 | 13 Jun 2019 | 13 Jun 2019 | 31 Dec 2022 |
8 | JA3 | 1336 | 66 | 10 | 20 | 17 Feb 2016 | 31 May 2019 | 31 May 2019 | 31 Dec 2022 |
9 | S3B | 814 | 98.6 | 27 | 20 | 01 Nov 2018 | 19 May 2019 | 19 May 2019 | 31 Dec 2022 |
10 | S6A | 1336 | 66 | 10 | 20 | - | - | 1 Apr 2022 | 31 Dec 2022 |
ID | Station | Latitude [°] | Longitude [°] | Country | VLM [mm/yr] | [mm/yr] | No. Hourly Data (i) | Missing Hourly Data [%] |
---|---|---|---|---|---|---|---|---|
1 | Dirhami | 59.21 | 23.50 | Estonia | 3.09 | 0.4 | 117,833 | 51.99 1 |
2 | Ristna | 58.92 | 22.06 | Estonia | 3.46 | 0.4 | 244,427 | 0.42 |
3 | Ventspils | 57.40 | 21.53 | Latvia | 1.56 | 0.3 | 200,199 | 18.41 |
4 | Ustka | 54.59 | 16.85 | Poland | 0.13 | 0.1 | 175,622 | 28.45 |
5 | Kolobrzeg | 54.19 | 15.55 | Poland | −0.06 | 0.1 | 170,399 | 30.58 |
6 | Swinoujscie | 53.91 | 14.25 | Poland | −0.18 | 0.1 | 175,157 | 28.64 |
7 | Sassnitz | 54.51 | 13.64 | Germany | 0.09 | 0.1 | 237,694 | 2.58 |
8 | Rodvig | 55.25 | 12.37 | Denmark | 0.62 | 0.2 | 226,479 | 7.73 |
9 | Simrishamn | 55.56 | 14.36 | Sweden | 0.89 | 0.2 | 234,745 | 0.00 |
10 | Kungsholmsfort | 56.11 | 15.59 | Sweden | 1.36 | 0.2 | 245,439 | 0.00 |
11 | Marviken/Arkö 2 | 58.55 | 16.84 | Sweden 3 | 4.46 | 0.4 | 245,448 | 0.00 |
12 | Hanko | 59.82 | 22.98 | Finland | 4.16 | 0.4 | 245,448 | 0.00 |
13 | Pori | 61.59 | 21.46 | Finland | 7.44 | 0.7 | 244,728 | 0.29 |
ID | Station | MDT [cm] | ASL Trend [mm/yr] | RSL Trend 1 [mm/yr] | ASL–RSL Difference [mm/yr] |
---|---|---|---|---|---|
1 | Dirhami | 29.03 | 3.58 ± 0.024 | 0.49 | 3.09 |
2 | Ristna | 26.87 | 4.56 ± 0.012 | 1.11 | 3.45 |
3 | Ventspils | 23.73 | 2.12 ± 0.014 | 0.56 | 1.56 |
4 | Ustka | 18.46 | 2.36± 0.014 | 2.22 | 0.14 |
5 | Kolobrzeg | 18.10 | 2.06 ± 0.014 | 2.12 | −0.06 |
6 | Swinoujscie | 15.29 | 2.66 ± 0.014 | 2.84 | −0.18 |
7 | Sassnitz | 10.66 | 3.22 ± 0.010 | 3.13 | 0.09 |
8 | Rodvig | 10.55 | 5.13 ± 0.011 | 4.51 | 0.62 |
9 | Simrishamn | 17.60 | 3.55 ± 0.010 | 2.66 | 0.89 |
10 | Kungsholmsfort | 18.34 | 4.81 ± 0.009 | 3.45 | 1.36 |
11 | Marviken | 19.57 | 4.90 ± 0.009 | 0.44 | 4.46 |
12 | Hanko | 26.79 | 5.37 ± 0.011 | 1.21 | 4.16 |
13 | Pori | 28.67 | 5.41 ± 0.011 | −2.02 | 7.43 |
ID | 1995–2022 | January 2000–December 2009 | January 2010–December 2019 | January 2000–December 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SA | TG | Diff (%) | SA | TG | Diff (%) | SA | TG | Diff (%) | SA | TG | Diff (%) | |
1 | 2954 | 2094 | 860 (29%) | 962 | 373 | 589 (61%) | 1498 | 1391 | 107 (7%) | 2460 | 1764 | 696 (28%) |
2 | 3600 | 3578 | 22 (1%) | 1286 | 1283 | 3 (0%) | 1721 | 1705 | 16 (1%) | 3007 | 2988 | 19 (1%) |
3 | 3229 | 3010 | 219 (7%) | 1059 | 996 | 63 (6%) | 1572 | 1566 | 6 (0%) | 2631 | 2562 | 69 (3%) |
4 | 2781 | 2780 | 1 (0%) | 956 | 956 | 0 (0%) | 1390 | 1389 | 1 (0%) | 2346 | 2345 | 1 (0%) |
5 | 1843 | 1786 | 57 (3%) | 482 | 438 | 44 (9%) | 987 | 974 | 13 (1%) | 1469 | 1412 | 57 (4%) |
6 | 2854 | 2853 | 1 (0%) | 1004 | 1004 | 0 (0%) | 1505 | 1505 | 0 (0%) | 2509 | 2509 | 0 (0%) |
7 | 3211 | 3141 | 70 (2%) | 1129 | 1129 | 0 (0%) | 1633 | 1622 | 11 (1%) | 2762 | 2751 | 11 (0%) |
8 | 3272 | 2995 | 277 (8%) | 1206 | 960 | 246 (20%) | 1598 | 1583 | 15 (1%) | 2804 | 2543 | 261 (9%) |
9 | 2806 | 2714 | 92 (3%) | 989 | 989 | 0 (0%) | 1319 | 1319 | 0 (0%) | 2308 | 2308 | 0 (0%) |
10 | 2582 | 2581 | 1 (0%) | 653 | 653 | 0 (0%) | 1401 | 1401 | 0 (0%) | 2054 | 2054 | 0 (0%) |
11 | 2812 | 2811 | 1 (0%) | 873 | 873 | 0 (0%) | 1542 | 1542 | 0 (0%) | 2415 | 2415 | 0 (0%) |
12 | 3717 | 3716 | 1 (0%) | 1349 | 1349 | 0 (0%) | 1857 | 1857 | 0 (0%) | 3206 | 3206 | 0 (0%) |
13 | 3225 | 3206 | 19 (1%) | 1118 | 1118 | 0 (0%) | 1628 | 1615 | 13 (1%) | 2746 | 2733 | 13 (0%) |
ID | |||||||||
---|---|---|---|---|---|---|---|---|---|
January 2000–December 2009 | January 2010–December 2019 | January 2000–December 2009 | January 2010–December 2019 | January 2000–December 2009 | January 2010–December 2019 | 1995–2022 | 1995–2022 | 1995–2022 | |
1 | 7.7 ± 0.04 | 4.9 ± 0.04 | 8.6 ± 0.20 | −1.7 ± 0.06 | 12.9 ± 0.08 | −4.6 ± 0.03 | 2.8 ± 0.01 | 3.6 ± 0.02 | 1.3 ± 0.01 |
2 | 6.7 ± 0.03 | 7.1 ± 0.03 | 8.4 ± 0.06 | 9.0 ± 0.05 | 10.1 ± 0.03 | 7.8 ± 0.03 | 4.8 ± 0.01 | 4.6 ± 0.01 | 4.4 ± 0.01 |
3 | 4.8 ± 0.04 | 6.4 ± 0.03 | 6.6 ± 0.06 | 5.3 ± 0.05 | 2.3 ± 0.04 | 2.9 ± 0.03 | 5.4 ± 0.01 | 2.1 ± 0.01 | 2.9 ± 0.01 |
4 | 7.7 ± 0.04 | 5.0 ± 0.04 | 2.4 ± 0.07 | 3.4 ± 0.05 | 10.5 ± 0.04 | 1.2 ± 0.04 | 4.1 ± 0.01 | 2.4 ± 0.01 | 3.0 ± 0.01 |
5 | 7.2 ± 0.05 | 2.7 ± 0.04 | 0.1 ± 0.07 | 1.5 ± 0.05 | 5.7 ± 0.05 | −0.4 ± 0.04 | 3.1 ± 0.01 | 2.1 ± 0.01 | 1.6 ± 0.01 |
6 | 7.4 ± 0.05 | 6.3 ± 0.04 | −1.5 ± 0.07 | 2.5 ± 0.05 | 2.8 ± 0.05 | 2.8 ± 0.03 | 3.4 ± 0.01 | 2.7 ± 0.01 | 2.7 ± 0.01 |
7 | 8.1 ± 0.03 | 5.0 ± 0.02 | 6.8 ± 0.05 | 2.0 ± 0.05 | 9.3 ± 0.03 | 1.8 ± 0.02 | 2.7 ± 0.01 | 3.2 ± 0.01 | 1.3 ± 0.01 |
8 | 7.0 ± 0.04 | 4.6 ± 0.03 | 16.0 ± 0.05 | 6.3 ± 0.05 | 15.6 ± 0.04 | 6.7 ± 0.03 | 2.5 ± 0.01 | 5.1 ± 0.01 | 3.7 ± 0.01 |
9 | 6.5 ± 0.04 | 7.8 ± 0.03 | 5.1 ± 0.04 | 4.8 ± 0.04 | 5.8 ± 0.03 | 4.3 ± 0.03 | 4.1 ± 0.01 | 3.5 ± 0.01 | 2.9 ± 0.01 |
10 | 6.1 ± 0.04 | 9.6 ± 0.03 | 10.6 ± 0.04 | 6.3 ± 0.04 | 13.9 ± 0.04 | 6.4 ± 0.03 | 4.1 ± 0.01 | 4.8 ± 0.01 | 4.4 ± 0.01 |
11 | 3.6 ± 0.06 | 5.6 ± 0.05 | 6.8 ± 0.04 | 7.7 ± 0.04 | 7.3 ± 0.05 | 6.8 ± 0.04 | 5.3 ± 0.01 | 4.9 ± 0.01 | 5.8 ± 0.01 |
12 | 4.5 ± 0.05 | 5.2 ± 0.04 | 7.3 ± 0.05 | 8.9 ± 0.05 | 6.2 ± 0.04 | 6.5 ± 0.03 | 3.5 ± 0.01 | 5.4 ± 0.01 | 4.4 ± 0.01 |
13 | 7.9 ± 0.04 | 5.3 ± 0.03 | 7.5 ± 0.05 | 7.5 ± 0.05 | 10.4 ± 0.04 | 7.5 ± 0.03 | 4.5 ± 0.01 | 5.4 ± 0.01 | 4.8 ± 0.01 |
Mean | 3.87 | 3.83 | 3.23 |
Dist [km] | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
---|---|---|---|---|---|---|---|---|---|---|---|
TG | |||||||||||
1 | 1.1 | 1.7 | 1.4 | 1.1 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | |
2 | 1.4 | 0.9 | 0.8 | 0.5 | 0.4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
3 | 2.9 | 3.3 | 3.1 | 3.2 | 3.4 | 3.4 | 3.5 | 3.5 | 3.5 | 3.4 | |
4 | 1.7 | 1.7 | 1.8 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | |
5 | 0.6 | 0.6 | 0.5 | 0.5 | 0.7 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | |
6 | 0.4 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.8 | 0.7 | 0.7 | |
7 | 1.0 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.3 | 0.5 | |
8 | 2.8 | 2.9 | 2.7 | 2.6 | 2.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | |
9 | 0.2 | 0.1 | 0.2 | 0.4 | 0.5 | 0.5 | 0.6 | 0.5 | 0.5 | 0.5 | |
10 | 1.1 | 1.1 | 1.0 | 0.6 | 0.3 | 0.2 | 0.3 | 0.6 | 0.7 | 0.7 | |
11 | 0.5 | 1.1 | 0.7 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | |
12 | 1.8 | 2.1 | 2.1 | 2.1 | 2.0 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | |
13 | 0.6 | 0.5 | 0.8 | 0.8 | 0.9 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | |
RMSE | 1.49 | 1.63 | 1.53 | 1.47 | 1.48 | 1.46 | 1.48 | 1.48 | 1.48 | 1.47 | |
MEAN | 0.28 | 0.16 | 0.11 | 0.03 | −0.06 | −0.12 | −0.13 | −0.09 | −0.08 | −0.06 |
ID | Station | TG | SA1 | SA2 |
---|---|---|---|---|
1 | Dirhami | 3.12 ± 0.33 | 4.33 ± 0.23 | 5.02 ± 0.28 |
2 | Ristna | 4.09 ± 0.19 | 6.26 ± 0.19 | 5.05 ± 0.22 |
3 | Ventspils | 1.89 ± 0.18 | 7.79 ± 0.20 | 8.09 ± 0.24 |
4 | Ustka | 1.22 ± 0.19 | 7.25 ± 0.20 | 4.49 ± 0.25 |
5 | Kolobrzeg | 1.57 ± 0.19 | 5.63 ± 0.22 | 4.90 ± 0.45 |
6 | Swinoujscie | 2.91 ± 0.19 | 9.25 ± 0.26 | 4.39 ± 0.26 |
7 | Sassnitz | 1.54 ± 0.17 | 6.39 ± 0.19 | 3.12 ± 0.22 |
8 | Rodvig | 3.54 ± 0.19 | 5.20 ± 0.21 | 4.84 ± 0.24 |
9 | Simrishamn | 2.75 ± 0.17 | 5.47 ± 0.20 | 5.39 ± 0.25 |
10 | Kungsholmsfort | 3.91 ± 0.15 | 6.76 ± 0.18 | 10.83 ± 0.36 |
11 | Marviken | 4.17 ± 0.15 | 5.39 ± 0.27 | 5.51 ± 0.28 |
12 | Hanko | 4.55 ± 0.17 | 3.89 ± 0.23 | 3.61 ± 0.29 |
13 | Pori | 4.46 ± 0.18 | 2.84 ± 0.25 | 4.70 ± 0.19 |
ID | TG (●) 1995–2019 | SA (●) 1995–2019 | Global SLA (●) 1995–2019 | Nemo (●) 1995–2019 | SEAL (●) 1995–2019 | TG (▲) 1995–2022 | SA (▲) 1995–2022 |
---|---|---|---|---|---|---|---|
1 | 1.07 ± 0.31 | 3.25 ± 0.11 | 4.33 ± 0.0 | 2.05 ± 0.0 | 3.82 ± 0.03 | 3.6 ± 0.02 | 2.8 ± 0.01 |
2 | 2.79 ± 0.14 | 3.94 ± 0.09 | 3.98 ± 0.0 | NaN | 4.05 ± 0.03 | 4.6 ± 0.01 | 4.8 ± 0.01 |
3 | −0.3 ± 0.17 | 4.01 ± 0.10 | 3.85 ± 0.0 | NaN | 4.38 ± 0.03 | 2.1 ± 0.01 | 5.4 ± 0.01 |
4 | 2.06 ± 0.18 | 3.57 ± 0.11 | 3.23 ± 0.0 | 1.40 ± 0.0 | 3.33 ± 0.02 | 2.4 ± 0.01 | 4.1 ± 0.01 |
5 | 1.11 ± 0.18 | 2.92 ± 0.13 | 3.28 ± 0.0 | 1.33 ± 0.0 | NaN | 2.1 ± 0.01 | 3.1 ± 0.01 |
6 | 1.67 ± 0.18 | 2.77 ± 0.13 | 2.95 ± 0.0 | NaN | NaN | 2.7 ± 0.01 | 3.4 ± 0.01 |
7 | 2.50 ± 0.12 | 2.37 ± 0.09 | 3.40 ± 0.0 | 1.40 ± 0.0 | 2.84 ± 0.02 | 3.2 ± 0.01 | 2.7 ± 0.01 |
8 | 4.68 ± 0.05 | 1.90 ± 0.11 | 2.95 ± 0.0 | NaN | 2.69 ± 0.02 | 5.1 ± 0.01 | 2.5 ± 0.01 |
9 | 1.88 ± 0.06 | 3.43 ± 0.09 | 3.38 ± 0.0 | NaN | 3.34 ± 0.02 | 3.5 ± 0.01 | 4.1 ± 0.01 |
10 | 1.55 ± 0.01 | 3.75 ± 0.10 | 3.33 ± 0.0 | NaN | 3.55 ± 0.02 | 4.8 ± 0.01 | 4.1 ± 0.01 |
11 | 2.80 ± 0.03 | 4.82 ± 0.16 | 3.13 ± 0.0 | 1.85 ± 0.0 | 3.09 ± 0.03 | 4.9 ± 0.01 | 5.3 ± 0.01 |
12 | 3.78 ± 0.13 | 4.00 ± 0.13 | 3.19 ± 0.0 | 1.99 ± 0.0 | 4.11 ± 0.02 | 5.4 ± 0.01 | 3.5 ± 0.01 |
13 | 3.74 ± 0.13 | 4.05 ± 0.10 | 4.82 ± 0.0 | 2.30 ± 0.0 | 5.09 ± 0.03 | 5.4 ± 0.01 | 4.5 ± 0.01 |
RMSE between TG (blue circle and triangle) and SA (red circle and triangle) pairs | 1.78 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafavi, M.; Ellmann, A.; Delpeche-Ellmann, N. Long-Term and Decadal Sea-Level Trends of the Baltic Sea Using Along-Track Satellite Altimetry. Remote Sens. 2024, 16, 760. https://doi.org/10.3390/rs16050760
Mostafavi M, Ellmann A, Delpeche-Ellmann N. Long-Term and Decadal Sea-Level Trends of the Baltic Sea Using Along-Track Satellite Altimetry. Remote Sensing. 2024; 16(5):760. https://doi.org/10.3390/rs16050760
Chicago/Turabian StyleMostafavi, Majid, Artu Ellmann, and Nicole Delpeche-Ellmann. 2024. "Long-Term and Decadal Sea-Level Trends of the Baltic Sea Using Along-Track Satellite Altimetry" Remote Sensing 16, no. 5: 760. https://doi.org/10.3390/rs16050760
APA StyleMostafavi, M., Ellmann, A., & Delpeche-Ellmann, N. (2024). Long-Term and Decadal Sea-Level Trends of the Baltic Sea Using Along-Track Satellite Altimetry. Remote Sensing, 16(5), 760. https://doi.org/10.3390/rs16050760