Identification of O3 Sensitivity to Secondary HCHO and NO2 Measured by MAX-DOAS in Four Cities in China
Abstract
:1. Introduction
2. Method and Methodology
2.1. Instrument Setup
2.2. Spectral Analysis
2.3. Vertical Profile Retrieval
2.4. Regression Model for Source Separation in Ambient HCHO
2.5. Methodology for O3 Sensitivity Analysis
2.6. Ancillary Data
3. Results
3.1. Verification of MAX-DOAS Results
3.2. Vertical Structural Differences in NO2 and HCHO among the Four Cities
3.3. Detailed Overview of NO2 and HCHO in Four Cities
4. Discussion
4.1. Primary and Secondary Sources of HCHO in Four Cities
4.2. O3-NOx-VOCs Sensitivities in Vertical Space in Four Cities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Li, G.; Fang, C.; Sun, S. The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM2.5) concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S.-J. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Knowlton, K.; Rosenthal, J.E.; Hogrefe, C.; Lynn, B.; Gaffin, S.; Goldberg, R.; Rosenzweig, C.; Civerolo, K.; Ku, J.-Y.; Kinney, P.L. Assessing ozone-related health impacts under a changing climate. Environ. Health Perspect. 2004, 112, 1557–1563. [Google Scholar] [CrossRef]
- Li, Y.; Yin, S.; Yu, S.; Bai, L.; Wang, X.; Lu, X.; Ma, S. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China. J. Environ. Sci. 2021, 99, 354–368. [Google Scholar] [CrossRef]
- Kgabi, N.A.; Sehloho, R.M. Seasonal variations of tropospheric ozone concentrations. Glob. J. Sci. Front. Res. 2012, 12, 21–29. [Google Scholar]
- Zhang, Z.; Yao, M.; Wu, W.; Zhao, X.; Zhang, J. Spatiotemporal assessment of health burden and economic losses attributable to short-term exposure to ground-level ozone during 2015–2018 in China. BMC Public Health 2021, 21, 1069. [Google Scholar] [CrossRef]
- Ren, B.; Xie, P.; Xu, J.; Li, A.; Qin, M.; Hu, R.; Zhang, T.; Fan, G.; Tian, X.; Zhu, W.; et al. Vertical characteristics of NO2 and HCHO, and the ozone formation regimes in Hefei, China. Sci. Total Environ. 2022, 823, 153425. [Google Scholar] [CrossRef] [PubMed]
- Steiner, A.L.; Cohen, R.C.; Harley, R.A.; Tonse, S.; Millet, D.B.; Schade, G.W.; Goldstein, A.H. VOC reactivity in central California: Comparing an air quality model to ground-based measurements. Atmos. Chem. Phys. 2008, 8, 351–368. [Google Scholar] [CrossRef]
- Mohajan, H. Acid rain is a local environment pollution but global concern. Open Sci. J. Anal. Chem. 2018, 3, 47–55. [Google Scholar]
- Altshuller, A.P. Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours. Atmos. Environ. Part A General. Top. 1993, 27, 21–32. [Google Scholar] [CrossRef]
- Levy, H. Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science 1971, 173, 141–143. [Google Scholar] [CrossRef]
- Parrish, D.D.; Ryerson, T.B.; Mellqvist, J.; Johansson, J.; Fried, A.; Richter, D.; Walega, J.G.; Washenfelder, R.A.; de Gouw, J.A.; Peischl, J.; et al. Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmos. Chem. Phys. 2012, 12, 3273–3288. [Google Scholar] [CrossRef]
- Rappenglück, B.; Dasgupta, P.K.; Leuchner, M.; Li, Q.; Luke, W. Formaldehyde and its relation to CO, PAN, and SO2 in the Houston-Galveston airshed. Atmos. Chem. Phys. 2010, 10, 2413–2424. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of ozone reactivity scales for volatile organic compounds. Air Waste 1994, 44, 881–899. [Google Scholar] [CrossRef]
- De Smedt, I.; Müller, J.F.; Stavrakou, T.; van der A, R.; Eskes, H.; Van Roozendael, M. Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmos. Chem. Phys. 2008, 8, 4947–4963. [Google Scholar] [CrossRef]
- Ma, Y.; Diao, Y.; Zhang, B.; Wang, W.; Ren, X.; Yang, D.; Wang, M.; Shi, X.; Zheng, J. Detection of formaldehyde emissions from an industrial zone in the Yangtze River Delta region of China using a proton transfer reaction ion-drift chemical ionization mass spectrometer. Atmos. Meas. Tech. 2016, 9, 6101–6116. [Google Scholar] [CrossRef]
- Friedfeld, S.; Fraser, M.; Ensor, K.; Tribble, S.; Rehle, D.; Leleux, D.; Tittel, F. Statistical analysis of primary and secondary atmospheric formaldehyde. Atmos. Environ. 2002, 36, 4767–4775. [Google Scholar] [CrossRef]
- Wood, E.C.; Canagaratna, M.R.; Herndon, S.C.; Onasch, T.B.; Kolb, C.E.; Worsnop, D.R.; Kroll, J.H.; Knighton, W.B.; Seila, R.; Zavala, M.; et al. Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston. Atmos. Chem. Phys. 2010, 10, 8947–8968. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M.; Lu, S.; Chang, C.-C.; Dasgupta, P.K. Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic games. Atmos. Environ. 2010, 44, 2632–2639. [Google Scholar] [CrossRef]
- Lui, K.H.; Ho, S.S.H.; Louie, P.K.K.; Chan, C.S.; Lee, S.C.; Hu, D.; Chan, P.W.; Lee, J.C.W.; Ho, K.F. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air. Atmos. Environ. 2017, 152, 51–60. [Google Scholar] [CrossRef]
- Garcia, A.R.; Volkamer, R.; Molina, L.T.; Molina, M.J.; Samuelson, J.; Mellqvist, J.; Galle, B.; Herndon, S.C.; Kolb, C.E. Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers. Atmos. Chem. Phys. 2006, 6, 4545–4557. [Google Scholar] [CrossRef]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.; Li, J.; Wu, H.; Wu, Q.; Chen, H.; Zhu, L.; Wang, W.; et al. A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC. Earth Syst. Sci. Data 2021, 13, 529–570. [Google Scholar] [CrossRef]
- Hönninger, G.; Von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef]
- Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, K.F.; Gast, L.; Wittrock, F.; Brunner, D.; Zhou, Y.; Van Roozendael, M. Eight-component retrievals from ground-based MAX-DOAS observations. Atmos. Meas. Tech. 2011, 4, 1027–1044. [Google Scholar] [CrossRef]
- Liu, C.; Xing, C.; Hu, Q.; Li, Q.; Liu, H.; Hong, Q.; Tan, W.; Ji, X.; Lin, H.; Lu, C.; et al. Ground-based hyperspectral stereoscopic remote sensing network: A promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering 2022, 19, 71–83. [Google Scholar] [CrossRef]
- Lampel, J.; Pöhler, D.; Horbanski, M.; Platt, U. Performance of Airyx SkySpec MAX-DOAS systems during different field campaigns. Geophys. Res. Abstr. 2019, 21, 12267. [Google Scholar]
- Stutz, J.; Platt, U. Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. Appl. Opt. 1996, 35, 6041–6053. [Google Scholar] [CrossRef] [PubMed]
- Danckaert, T.; Fayt, C.; Van Roozendael, M. QDOAS Software User Manual. 2012. Available online: https://uv-vis.aeronomie.be/software/QDOAS/ (accessed on 1 January 2024).
- Chance, K.; Kurucz, R.L. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1289–1295. [Google Scholar] [CrossRef]
- Keller-Rudek, H.; Moortgat, G.K.; Sander, R.; Sörensen, R. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest. Earth Syst. Sci. Data. 2013, 5, 365–373. [Google Scholar] [CrossRef]
- Rozanov, V.V.; Buchwitz, M.; Eichmann, K.U.; de Beek, R.; Burrows, J.P. SCIATRAN—A new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: The pseudo-spherical version. Adv. Space Res. 2002, 29, 1831–1835. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Mérienne, M.F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 absorption cross-section from 42,000 cm−1 to 10,000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High spectral resolution ozone absorption cross-sections—Part 2: Temperature dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef]
- Volkamer, R.; Spietz, P.; Burrows, J.; Platt, U. High-resolution absorption cross-section of glyoxal in the UV–vis and IR spectral ranges. J. Photochem. Photobiol. A Chem. 2005, 172, 35–46. [Google Scholar] [CrossRef]
- Fleischmann, O.C.; Hartmann, M.; Burrows, J.P.; Orphal, J. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. J. Photochem. Photobiol. A Chem. 2004, 168, 117–132. [Google Scholar] [CrossRef]
- Meller, R.; Moortgat, G.K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys. Res. Atmos. 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Chance, K.V.; Spurr, R.J.D. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Appl. Opt. 1997, 36, 5224–5230. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Wiegner, M.; van Geffen, J.; De Smedt, I.; Alberti, C.; Cheng, Z.; Ye, S.; Wenig, M. MAX-DOAS measurements of tropospheric NO2 and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations. Atmos. Meas. Tech. 2020, 13, 4499–4520. [Google Scholar] [CrossRef]
- Chan, K.L.; Wiegner, M.; Wenig, M.; Pöhler, D. Observations of tropospheric aerosols and NO2 in Hong Kong over 5 years using ground based MAX-DOAS. Sci. Total Environ. 2018, 619–620, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000. [Google Scholar]
- Wagner, T.; Dix, B.; Friedeburg, C.v.; Frieß, U.; Sanghavi, S.; Sinreich, R.; Platt, U. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content. J. Geophys. Res. Atmos. 2004, 109, D22205. [Google Scholar] [CrossRef]
- Seyler, A.; Wittrock, F.; Kattner, L.; Mathieu-Üffing, B.; Peters, E.; Richter, A.; Schmolke, S.; Burrows, J.P. Monitoring shipping emissions in the German Bight using MAX-DOAS measurements. Atmos. Chem. Phys. 2017, 17, 10997–11023. [Google Scholar] [CrossRef]
- Lin, H.; Xing, C.; Hong, Q.; Liu, C.; Ji, X.; Liu, T.; Lin, J.; Lu, C.; Tan, W.; Li, Q.; et al. Diagnosis of Ozone Formation Sensitivities in Different Height Layers via MAX-DOAS Observations in Guangzhou. J. Geophys. Res. Atmos. 2022, 127, e2022JD036803. [Google Scholar] [CrossRef]
- Hong, Q.; Liu, C.; Chan, K.L.; Hu, Q.; Xie, Z.; Liu, H.; Si, F.; Liu, J. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River. Atmos. Chem. Phys. 2018, 18, 5931–5951. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, H.; Liu, C.; Zhang, L.; Cheng, Y.; Palm, M.; Notholt, J.; Lu, X.; Vigouroux, C.; Zheng, B.; et al. Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: Insights from Fourier transform infrared observation and GEOS-Chem model simulation. Atmos. Chem. Phys. 2021, 21, 6365–6387. [Google Scholar] [CrossRef]
- Su, W.J.; Liu, C.; Hu, Q.H.; Zhao, S.H.; Sun, Y.W.; Wang, W.; Zhu, Y.Z.; Liu, J.G.; Kim, J. Primary and secondary sources of ambient formaldehyde in the Yangtze River Delta based on Ozone Mapping and Profiler Suite (OMPS) observations. Atmos. Chem. Phys. 2019, 19, 6717–6736. [Google Scholar] [CrossRef]
- Souri, A.H.; Nowlan, C.R.; Wolfe, G.M.; Lamsal, L.N.; Chan Miller, C.E.; Abad, G.G.; Janz, S.J.; Fried, A.; Blake, D.R.; Weinheimer, A.J.; et al. Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high resolution airborne remote sensing observations in a high ozone episode during the KORUS-AQ campaign. Atmos. Environ. 2020, 224, 117341. [Google Scholar] [CrossRef]
- Chen, X.; Zhan, J.; Su, W. Analyses of velocity field and energy transmission in the interaction between adjacent twin floating bodies and waves. Prog. Comput. Fluid Dyn. Int. J. 2017, 17, 221–231. [Google Scholar] [CrossRef]
- Vallecillos, L.; Marcé, R.M.; Borrull, F. Applicability of a gas chromatograph-photoionization detection analyzer for the continuous monitoring of 1,3-butadiene in urban and industrial atmospheres. Atmos. Pollut. Res. 2024, 15, 101949. [Google Scholar] [CrossRef]
- Tang, Z.; Guo, J.; Zhou, J.; Yu, H.; Wang, Y.; Lian, X.; Ye, J.; He, X.; Han, R.; Li, J.; et al. The impact of short-term exposures to ambient NO2, O3, and their combined oxidative potential on daily mortality. Environ. Res. 2024, 241, 117634. [Google Scholar] [CrossRef]
- Kumar, V.; Beirle, S.; Dörner, S.; Mishra, A.K.; Donner, S.; Wang, Y.; Sinha, V.; Wagner, T. Long-term MAX-DOAS measurements of NO2, HCHO, and aerosols and evaluation of corresponding satellite data products over Mohali in the Indo-Gangetic Plain. Atmos. Chem. Phys. 2020, 20, 14183–14235. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, T.; Luo, Y.; Miao, C.; Su, P.; Liu, F.; Zhang, G.; Qin, S.; Song, Y.; Bu, N.; et al. Identification of ozone sensitivity for NO2 and secondary HCHO based on MAX-DOAS measurements in northeast China. Environ. Int. 2022, 160, 107048. [Google Scholar] [CrossRef]
- Tirpitz, J.L.; Frieß, U.; Spurr, R.; Platt, U. Enhancing MAX-DOAS atmospheric state retrievals by multispectral polarimetry—Studies using synthetic data. Atmos. Meas. Tech. 2022, 15, 2077–2098. [Google Scholar] [CrossRef]
- Tian, X.; Chen, M.; Xie, P.; Xu, J.; Li, A.; Ren, B.; Zhang, T.; Fan, G.; Wang, Z.; Zheng, J.; et al. Evaluation of MAX-DOAS Profile Retrievals under Different Vertical Resolutions of Aerosol and NO2 Profiles and Elevation Angles. Remote Sens. 2023, 15, 5431. [Google Scholar] [CrossRef]
- Bösch, T.; Rozanov, V.; Richter, A.; Peters, E.; Rozanov, A.; Wittrock, F.; Merlaud, A.; Lampel, J.; Schmitt, S.; de Haij, M.; et al. BOREAS—A new MAX-DOAS profile retrieval algorithm for aerosols and trace gases. Atmos. Meas. Tech. 2018, 11, 6833–6859. [Google Scholar] [CrossRef]
- Wang, Y.; Dörner, S.; Donner, S.; Böhnke, S.; De Smedt, I.; Dickerson, R.R.; Dong, Z.; He, H.; Li, Z.; Li, Z.; et al. Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport. Atmos. Chem. Phys. 2019, 19, 5417–5449. [Google Scholar] [CrossRef]
- Hong, Q.; Liu, C.; Hu, Q.; Xing, C.; Tan, W.; Liu, H.; Huang, Y.; Zhu, Y.; Zhang, J.; Geng, T.; et al. Evolution of the vertical structure of air pollutants during winter heavy pollution episodes: The role of regional transport and potential sources. Atmos. Res. 2019, 228, 206–222. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, J.; Liu, S.; Liu, H.; Li, Z.; Zhang, W.; Zhai, P. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmos. Chem. Phys. 2017, 17, 3097–3110. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, X.; Li, Z.; Tang, G.; Miao, S. Boundary layer structure characteristics under objective classification of persistent pollution weather types in the Beijing area. Atmos. Chem. Phys. 2021, 21, 8863–8882. [Google Scholar] [CrossRef]
- Xu, T.; Song, Y.; Liu, M.; Cai, X.; Zhang, H.; Guo, J.; Zhu, T. Temperature inversions in severe polluted days derived from radiosonde data in North China from 2011 to 2016. Sci. Total Environ. 2019, 647, 1011–1020. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 2003, 37, 197–219. [Google Scholar] [CrossRef]
- Luecken, D.J.; Hutzell, W.T.; Strum, M.L.; Pouliot, G.A. Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling. Atmos. Environ. 2012, 47, 477–490. [Google Scholar] [CrossRef]
- Wu, Y.; Huo, J.; Yang, G.; Wang, Y.; Wang, L.; Wu, S.; Yao, L.; Fu, Q.; Wang, L. Measurement report: Production and loss of atmospheric formaldehyde at a suburban site of Shanghai in summertime. Atmos. Chem. Phys. 2023, 23, 2997–3014. [Google Scholar] [CrossRef]
- Ma, T.; Furutani, H.; Duan, F.; Kimoto, T.; Jiang, J.; Zhang, Q.; Xu, X.; Wang, Y.; Gao, J.; Geng, G.; et al. Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain. Atmos. Chem. Phys. 2020, 20, 5887–5897. [Google Scholar] [CrossRef]
- Moch, J.M.; Dovrou, E.; Mickley, L.J.; Keutsch, F.N.; Cheng, Y.; Jacob, D.J.; Jiang, J.; Li, M.; Munger, J.W.; Qiao, X.; et al. Contribution of hydroxymethane sulfonate to ambient particulate matter: A potential explanation for high particulate sulfur during severe winter haze in Beijing. Geophys. Res. Lett. 2018, 45, 11969–11979. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, F.; Feng, S.; Zheng, Y.; Cai, Z.; Lyu, X. Impact of weather and emission changes on NO2 concentrations in China during 2014–2019. Environ. Pollut. 2021, 269, 116163. [Google Scholar] [CrossRef]
- Li, X.; Brauers, T.; Hofzumahaus, A.; Lu, K.; Li, Y.P.; Shao, M.; Wagner, T.; Wahner, A. MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China. Atmos. Chem. Phys. 2013, 13, 2133–2151. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Tan, Z.; Wang, W.; Yang, Y.; Zhu, Y.; Yang, S.; Song, M.; Chen, S.; Wang, H.; et al. Assessing the Ratios of Formaldehyde and Glyoxal to NO2 as Indicators of O3–NOx–VOC Sensitivity. Environ. Sci. Technol. 2021, 55, 10935–10945. [Google Scholar] [CrossRef] [PubMed]
- Lu, C. Replication Data for: Identification of O3 sensitivity to secondary HCHO and NO2 measured by MAX-DOAS in Four Cities in China. Harv. Dataverse 2024. [Google Scholar] [CrossRef]
Parameter | NO2 | HCHO |
---|---|---|
Wavelength range | 338.0–370.0 nm | 322.5–358.0 nm |
NO2 (220 K) [32] | √ | √ |
NO2 (298 K) [32] | √ | √ |
O3 (223 K) [33] | √ | √ |
O3 (243 K) [33] | √ | √ |
O4 (293 K) [34] | √ | √ |
BrO (223 K) [35] | √ | √ |
HCHO (298 K) [36] | √ | √ |
Ring spectrum [37] | By QDOAS | By QDOAS |
Polynomial degree | 5th order | 5th order |
Intensity offset | Constant | Constant |
Nearest CNEMC Site Name | Longitude | Latitude | Distance from MAX-DOAS Instrument | |
---|---|---|---|---|
Xianghe | Development Zone | 116.7729°E | 39.5747°N | 3.0592 km |
Lanzhou | Railway Design Institute | 103.8310°E | 36.0464°N | 2.5557 km |
Shenyang | Taiyuan Street | 123.3997°E | 41.7972°N | 1.6491 km |
Guangzhou | Tiyu West Street | 113.3208°E | 23.132 °N | 4.6733 km |
City | Season | Threshold | VOCs | NOx-VOCs | NOx |
---|---|---|---|---|---|
Xianghe | Spring | [0.2, 0.5] | 71.76% | 22.90% | 5.34% |
Summer | [0.8, 1.8] | 44.83% | 36.38% | 18.78% | |
Autumn | [0.5, 0.9] | 50.53% | 22.11% | 27.34% | |
Winter | [0.07, 0.1] | 71.03% | 12.15% | 16.82% | |
Lanzhou | Spring | [0.045, 0.080] | 69.39% | 25.07% | 5.54% |
Summer | [0.09, 0.12] | 54.82% | 18.94% | 26.25% | |
Autumn | [0.007, 0.008] | 11.96% | 7.18% | 80.86% | |
Winter | [0.014, 0.021] | 73.36% | 21.83% | 4.80% | |
Shenyang | Spring | [0.042, 0.065] | 38.30% | 30.70% | 31.00% |
Summer | [0.15, 0.23] | 37.04% | 22.75% | 40.21% | |
Autumn | [0.04, 0.14] | 51.76% | 44.72% | 3.52% | |
Winter | [0.016, 0.023] | 24.04% | 17.31% | 58.66% | |
Guangzhou | Spring | [0.19, 0.31] | 82.22% | 12.22% | 5.56% |
Summer | [0.34, 0.47] | 35.48% | 19.35% | 45.16% | |
Autumn | [0.3, 0.6] | 53.79% | 31.05% | 15.16% | |
Winter | [0.19, 0.35] | 33.48% | 33.03% | 33.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Li, Q.; Xing, C.; Hu, Q.; Tan, W.; Lin, J.; Zhang, Z.; Tang, Z.; Cheng, J.; Chen, A.; et al. Identification of O3 Sensitivity to Secondary HCHO and NO2 Measured by MAX-DOAS in Four Cities in China. Remote Sens. 2024, 16, 662. https://doi.org/10.3390/rs16040662
Lu C, Li Q, Xing C, Hu Q, Tan W, Lin J, Zhang Z, Tang Z, Cheng J, Chen A, et al. Identification of O3 Sensitivity to Secondary HCHO and NO2 Measured by MAX-DOAS in Four Cities in China. Remote Sensing. 2024; 16(4):662. https://doi.org/10.3390/rs16040662
Chicago/Turabian StyleLu, Chuan, Qihua Li, Chengzhi Xing, Qihou Hu, Wei Tan, Jinan Lin, Zhiguo Zhang, Zhijian Tang, Jian Cheng, Annan Chen, and et al. 2024. "Identification of O3 Sensitivity to Secondary HCHO and NO2 Measured by MAX-DOAS in Four Cities in China" Remote Sensing 16, no. 4: 662. https://doi.org/10.3390/rs16040662
APA StyleLu, C., Li, Q., Xing, C., Hu, Q., Tan, W., Lin, J., Zhang, Z., Tang, Z., Cheng, J., Chen, A., & Liu, C. (2024). Identification of O3 Sensitivity to Secondary HCHO and NO2 Measured by MAX-DOAS in Four Cities in China. Remote Sensing, 16(4), 662. https://doi.org/10.3390/rs16040662