Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling Measurements and Meteorological Data
2.3. Satellite Images and Processing
2.4. Vegetation Indices, Band, and Band Combination
2.5. Prediction Using Statistical and Machine Learning Models
2.5.1. SARIMAX
- p represents the order for the autoregressive part (AR);
- q represents the order for the moving average part (MA);
- I represent the differencing order;
- P represents the seasonal AR order;
- Q represents the seasonal MA order;
- D represents the seasonal differencing;
- s = 12,24 represents the seasonal coefficients.
2.5.2. DGLM
- is the random variable at time t;
- is a function of the parameters to adjust the shape of the random variable distribution;
- represent a normalizing function that ensures the probability distribution integrates (or sums) to 1;
- is the natural parameter of the distribution satisfying the following:
- and is a scale parameter with the following:
- represents the mean of the response variable;
- a design matrix or set of features associated with observations;
- is an underlying state vector having a time evolution similar to that of the DLM. All the mathematical derivations for this model are described by [69].
2.5.3. LSTM
- ○
- Scenario 1 (measurement data): in the first case, we include the actual variables measured during the monitoring campaigns for the four seasons of the year and in the two seasons of the lake (Chl-a, SD, Temp, NT, Pt, and NTU).
- ○
- Scenario 2 (meteorological variables): in addition to the actual variables, we include meteorological variables as conditioning variables that can influence the autochthonous processes of the lake (precipitation, air temperature, relative humidity, and wind speed).
- ○
- Scenario 3 (satellite data): In this case, we include a sub-case of spectral bands from Landsat satellite processing and another sub-case including vegetation spectral indices.
2.6. Statistics Validation
3. Results
3.1. Behavior of Chl-a, SD, and T Values at Depth
3.2. Important Features
3.3. Chl-a Estimation Scenarios
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.A.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain Lakes: Eyes on Global Environmental Change. Glob. Planet. Change 2019, 178, 77–95. [Google Scholar] [CrossRef]
- Tong, H.-L.; Shi, P.-J. Using Ecosystem Service Supply and Ecosystem Sensitivity to Identify Landscape Ecology Security Patterns in the Lanzhou-Xining Urban Agglomeration, China. J. Mt. Sci. 2020, 17, 2758–2773. [Google Scholar] [CrossRef]
- Grebby, S.; Sowter, A.; Gee, D.; Athab, A.; De la Barreda-Bautista, B.; Girindran, R.; Marsh, S. Remote Monitoring of Ground Motion Hazards in High Mountain Terrain Using Insar: A Case Study of the Lake Sarez Area, Tajikistan. Appl. Sci. 2021, 11, 8738. [Google Scholar] [CrossRef]
- Regmi, G.R.; Huettmann, F. Hindu Kush-Himalaya Watersheds Downhill: Landscape Ecology and Conservation Perspectives; Springer International Publishing: Cham, Switzerland, 2020; ISBN 9783030362751. [Google Scholar]
- Wolf, I.D.; Croft, D.B.; Green, R.J. Nature Conservation and Nature-Based Tourism: A Paradox? Environments 2019, 6, 104. [Google Scholar] [CrossRef]
- Danilov-Danilyan, V.I.; Klyuev, N.N.; Kotlyakov, V.M. Russia in the Global Natural and Ecological Space. Reg. Res. Russ. 2023, 13, 34–57. [Google Scholar] [CrossRef]
- Paltsev, A.; Creed, I.F. Are Northern Lakes in Relatively Intact Temperate Forests Showing Signs of Increasing Phytoplankton Biomass? Ecosystems 2021, 25, 727–755. [Google Scholar] [CrossRef]
- Pritsch, H.; Schirpke, U.; Jersabek, C.D.; Kurmayer, R. Plankton Community Composition in Mountain Lakes and Consequences for Ecosystem Services. Ecol. Indic. 2023, 154, 110532. [Google Scholar] [CrossRef]
- De los Ríos-Escalante, P.R.; Woelfl, S. A Review of Zooplankton Research in Chile. Limnologica 2023, 100, 126079. [Google Scholar] [CrossRef]
- Tovar-Sánchez, A.; Román, A.; Roque-Atienza, D.; Navarro, G. Applications of Unmanned Aerial Vehicles in Antarctic Environmental Research. Sci. Rep. 2021, 11, 21717. [Google Scholar] [CrossRef] [PubMed]
- Kallenbach, E.M.F.; Friberg, N.; Lusher, A.; Jacobsen, D.; Hurley, R.R. Anthropogenically Impacted Lake Catchments in Denmark Reveal Low Microplastic Pollution. Environ. Sci. Pollut. Res. 2022, 29, 47726–47739. [Google Scholar] [CrossRef] [PubMed]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Abarca-del-Rio, R.; Cárdenas, R.; Parra, O.; Martínez-Retureta, R.; Urrutia, R. Spectral Analysis Using LANDSAT Images to Monitor the Chlorophyll-a Concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Usta, D.B.; Duran-Llacer, I.; Alvarez, L.B.; Yépez, S.; Bourrel, L.; Frappart, F.; Urrutia, R. Estimation of Water Quality Parameters through a Combination of Deep Learning and Remote Sensing Techniques in a Lake in Southern Chile. Remote Sens. 2023, 15, 4157. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; Bravo Alvarez, L.; Lami, A.; Urrutia, R. Recovery of Water Quality and Detection of Algal Blooms in Lake Villarrica through Landsat Satellite Images and Monitoring Data. Remote Sens. 2023, 15, 1929. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Bustos Usta, D.; Bravo Alvarez, L.; Duran-Llacer, I.; Lami, A.; Martínez-Retureta, R.; Urrutia, R. Machine Learning Algorithms for the Estimation of Water Quality Parameters in Lake Llanquihue in Southern Chile. Water 2023, 15, 1994. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.T.; Lee, W.H. Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality. Water 2020, 12, 510. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; González-Rodríguez, L.; Duran-Llacer, I.; Cardenas, R.; Urrutia, R. Spatio-Temporal Analysis of Chlorophyll in Six Araucanian Lakes of Central-South Chile from Landsat Imagery. Ecol. Inform. 2021, 65, 101431. [Google Scholar] [CrossRef]
- Skakun, S.; Kalecinski, N.I.; Brown, M.G.L.; Johnson, D.M.; Vermote, E.F.; Roger, J.C.; Franch, B. Assessing Within-Field Corn and Soybean Yield Variability from Worldview-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery. Remote Sens. 2021, 13, 872. [Google Scholar] [CrossRef]
- Vrdoljak, L.; Kilić Pamuković, J. Assessment of Atmospheric Correction Processors and Spectral Bands for Satellite-Derived Bathymetry Using Sentinel-2 Data in the Middle Adriatic. Hydrology 2022, 9, 215. [Google Scholar] [CrossRef]
- Legleiter, C.J.; King, T.V.; Carpenter, K.D.; Hall, N.C.; Mumford, A.C.; Slonecker, T.; Graham, J.L.; Stengel, V.G.; Simon, N.; Rosen, B.H. Spectral Mixture Analysis for Surveillance of Harmful Algal Blooms (SMASH): A Field-, Laboratory-, and Satellite-Based Approach to Identifying Cyanobacteria Genera from Remotely Sensed Data. Remote Sens. Environ. 2022, 279, 113089. [Google Scholar] [CrossRef]
- de Lima, T.M.A.; Giardino, C.; Bresciani, M.; Barbosa, C.C.F.; Fabbretto, A.; Pellegrino, A.; Begliomini, F.N. Assessment of Estimated Phycocyanin and Chlorophyll-a Concentration from PRISMA and OLCI in Brazilian Inland Waters: A Comparison between Semi-Analytical and Machine Learning Algorithms. Remote Sens. 2023, 15, 1299. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, B.; Wang, G.; Zhang, X.; Zhang, Q. Deep Learning-Based Water Quality Retrieval in an Impounded Lake Using Landsat 8 Imagery: An Application in Dongping Lake. Remote Sens. 2022, 14, 4505. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. A New Approach to Monitor Water Quality in the Menor Sea (Spain) Using Satellite Data and Machine Learning Methods. Environ. Pollut. 2021, 286, 117489. [Google Scholar] [CrossRef] [PubMed]
- Chusnah, W.N.; Chu, H.J.; Tatas; Jaelani, L.M. Machine-Learning-Estimation of High-Spatiotemporal-Resolution Chlorophyll-a Concentration Using Multi-Satellite Imagery. Sustain. Environ. Res. 2023, 33, 11. [Google Scholar] [CrossRef]
- Medina-López, E.; Navarro, G.; Santos-Echeandía, J.; Bernárdez, P.; Caballero, I. Machine Learning for Detection of Macroalgal Blooms in the Mar Menor Coastal Lagoon Using Sentinel-2. Remote Sens. 2023, 15, 1208. [Google Scholar] [CrossRef]
- Berger, K.; Rivera Caicedo, J.P.; Martino, L.; Wocher, M.; Hank, T.; Verrelst, J. A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data. Remote Sens. 2021, 13, 287. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.; Kansal, A.; Alshaltone, O.; Barneih, F.; Shanableh, A.; Al-Shabi, M.; Al Shammaa, A. Deep Learning Detection of Types of Water-Bodies Using Optical Variables and Ensembling. Intell. Syst. Appl. 2023, 18, 200222. [Google Scholar] [CrossRef]
- Sadaiappan, B.; Balakrishnan, P.; Vishal, C.R.; Vijayan, N.T.; Subramanian, M.; Gauns, M.U. Applications of Machine Learning in Chemical and Biological Oceanography. ACS Omega 2023, 8, 15831–15853. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.T.; Sagan, V.; Sidike, P.; Hasenmueller, E.A.; Sloan, J.J.; Knouft, J.H. Machine Learning-Based Ensemble Prediction of Water-Quality Variables Using Feature-Level and Decision-Level Fusion with Proximal Remote Sensing. Photogramm. Eng. Remote Sens. 2019, 85, 269–280. [Google Scholar] [CrossRef]
- Herng, Y.; Wai, K.; Shen, B.; Chun, A.; Loy, M.; Shahbaz, M.; Kaur, H.; Singh, G.; Yusuf, R.; Fadzil, A.; et al. Science of the Total Environment An Overview of Biomass Thermochemical Conversion Technologies in Malaysia. Sci. Total Environ. 2019, 680, 105–123. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Su, H.; Lu, X.; Chen, Z.; Zhang, H.; Lu, W.; Wu, W. Estimating Coastal Chlorophyll-a Concentration from Time-Series Olci Data Based on Machine Learning. Remote Sens. 2021, 13, 576. [Google Scholar] [CrossRef]
- Li, H.; Qin, C.; He, W.; Sun, F.; Du, P. Improved Predictive Performance of Cyanobacterial Blooms Using a Hybrid Statistical and Deep-Learning Method. Environ. Res. Lett. 2021, 16, 124045. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Ha, N.T.; Nguyen-Ngoc, L.; Pham, T.L. Comparing the Performance of Machine Learning Algorithms for Remote and in Situ Estimations of Chlorophyll-a Content: A Case Study in the Tri an Reservoir, Vietnam. Water Environ. Res. 2021, 93, 2941–2957. [Google Scholar] [CrossRef]
- Kolluru, S.; Tiwari, S.P. Modeling Ocean Surface Chlorophyll-a Concentration from Ocean Color Remote Sensing Reflectance in Global Waters Using Machine Learning. Sci. Total Environ. 2022, 844, 157191. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M. A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Caballero, I.; Fernández, R.; Escalante, O.M.; Mamán, L.; Navarro, G. New Capabilities of Sentinel-2A/B Satellites Combined with in Situ Data for Monitoring Small Harmful Algal Blooms in Complex Coastal Waters. Sci. Rep. 2020, 10, 8743. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, H.; Liu, C.; Zhang, S.; Ding, A.; Xie, E.; Li, J.; Wang, S. Prediction of Harmful Algal Blooms in Large Water Bodies Using the Combined EFDC and LSTM Models. J. Environ. Manag. 2021, 295, 113060. [Google Scholar] [CrossRef]
- De Los Ríos-Escalante, P.; Woelfl, S. Use of Null Models to Explain Crustacean Zooplankton Assemblages in North Patagonian Lakes with Presence or Absence of Mixotrophic Ciliates (38°S, Chile). Crustaceana 2017, 90, 311–319. [Google Scholar] [CrossRef]
- Van Daele, M.; Moernaut, J.; Doom, L.; Boes, E.; Fontijn, K.; Heirman, K.; Vandoorne, W.; Hebbeln, D.; Pino, M.; Urrutia, R.; et al. A Comparison of the Sedimentary Records of the 1960 and 2010 Great Chilean Earthquakes in 17 Lakes: Implications for Quantitative Lacustrine Palaeoseismology. Sedimentology 2015, 62, 1466–1496. [Google Scholar] [CrossRef]
- Woelfl, S. The Distribution of Large Mixotrophic Ciliates (Stentor) in Deep North Patagonian Lakes (Chile): First Results. Limnologica 2007, 37, 28–36. [Google Scholar] [CrossRef]
- Kelly, S. Megawatts Mask Impacts: Small Hydropower and Knowledge Politics in the Puelwillimapu, Southern Chile. Energy Res. Soc. Sci. 2019, 54, 224–235. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; González-Rodríguez, L.; Duran-Llacer, I.; García, W.; Cardenas, R.; Urrutia, R. Assessment of the Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in a Chilean Lake. Remote Sens. 2022, 14, 4568. [Google Scholar] [CrossRef]
- Chatenoux, B.; Richard, J.P.; Small, D.; Roeoesli, C.; Wingate, V.; Poussin, C.; Rodila, D.; Peduzzi, P.; Steinmeier, C.; Ginzler, C.; et al. The Swiss Data Cube, Analysis Ready Data Archive Using Earth Observations of Switzerland. Sci. Data 2021, 8, 295. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Sensitivity Analysis of the Dark Spectrum Fitting Atmospheric Correction for Metre- and Decametre-Scale Satellite Imagery Using Autonomous Hyperspectral Radiometry. Opt Express 2020, 28, 29948. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Turbid Wakes Associated with Offshore Wind Turbines Observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of High Quality SWIR Bands for Ocean Colour Processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic Applications of Msi Imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cardenas, R.; Urrutia, R. Retrieving Water Turbidity in Araucanian Lakes (South-Central Chile) Based on Multispectral Landsat Imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Werther, M.; Odermatt, D.; Simis, S.G.H.; Gurlin, D.; Lehmann, M.K.; Kutser, T.; Gupana, R.; Varley, A.; Hunter, P.D.; Tyler, A.N.; et al. A Bayesian Approach for Remote Sensing of Chlorophyll-a and Associated Retrieval Uncertainty in Oligotrophic and Mesotrophic Lakes. Remote Sens. Environ. 2022, 283, 113295. [Google Scholar] [CrossRef]
- Xu, D.; Pu, Y.; Zhu, M.; Luan, Z.; Shi, K. Automatic Detection of Algal Blooms Using Sentinel-2 MSI and Landsat OLI Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8497–8511. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N.; Blaustein, J. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Setiawan, F.; Matsushita, B.; Hamzah, R.; Jiang, D.; Fukushima, T. Long-Term Change of the Secchi Disk Depth in Lake Maninjau, Indonesia Shown by Landsat TM and ETM+ Data. Remote Sens. 2019, 11, 2875. [Google Scholar] [CrossRef]
- Absalon, D.; Matysik, M.; Woźnica, A.; Janczewska, N. Detection of Changes in the Hydrobiological Parameters of the Oder River during the Ecological Disaster in July 2022 Based on Multi-Parameter Probe Tests and Remote Sensing Methods. Ecol. Indic. 2023, 148, 110103. [Google Scholar] [CrossRef]
- Kowe, P.; Ncube, E.; Magidi, J.; Ndambuki, J.M.; Rwasoka, D.T.; Gumindoga, W.; Maviza, A.; de jesus Paulo Mavaringana, M.; Kakanda, E.T. Spatial-Temporal Variability Analysis of Water Quality Using Remote Sensing Data: A Case Study of Lake Manyame. Sci. Afr. 2023, 21, e01877. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309–310. [Google Scholar]
- Yin, Z.; Li, J.; Zhang, B.; Liu, Y.; Yan, K.; Gao, M.; Xie, Y.; Zhang, F.; Wang, S. Increase in Chlorophyll-a Concentration in Lake Taihu from 1984 to 2021 Based on Landsat Observations. Sci. Total Environ. 2023, 873, 162168. [Google Scholar] [CrossRef]
- Alawadi, F. Detection of Surface Algal Blooms Using the Newly Developed Algorithm Surface Algal Bloom Index (SABI). Remote Sens. Ocean. Sea Ice Large Water Reg. 2010, 7825, 782506. [Google Scholar] [CrossRef]
- Hu, C. A Novel Ocean Color Index to Detect Floating Algae in the Global Oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Ma, J.; Jin, S.; Li, J.; He, Y.; Shang, W. Spatio-Temporal Variations and Driving Forces of Harmful Algal Blooms in Chaohu Lake: A Multi-Source Remote Sensing Approach. Remote Sens. 2021, 13, 427. [Google Scholar] [CrossRef]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E. Estimating Chlorophyll-a of Inland Water Bodies in Greece Based on Landsat Data. Remote Sens. 2020, 12, 2087. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
- Korstanje, J. Advanced Forecasting with Python; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Mahmudimanesh, M.; Mirzaee, M.; Dehghan, A.; Bahrampour, A. Forecasts of Cardiac and Respiratory Mortality in Tehran, Iran, Using ARIMAX and CNN-LSTM Models. Environ. Sci. Pollut. Res. 2022, 29, 28469–28479. [Google Scholar] [CrossRef]
- West, M.; Harrison, P.J.; Migon, H.S. Dynamic Generalized Linear Models and Bayesian Forecasting. J. Am. Stat. Assoc. 1985, 80, 73–83. [Google Scholar] [CrossRef]
- Hochreiter, S.; Urgen Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: Lstm Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Das, K.; Jiang, J.; Rao, J.N.K. Mean Squared Error of Empirical Predictor. Ann. Statist. 2004, 32, 818–840. [Google Scholar] [CrossRef]
- Maier, A.K.; Syben, C.; Stimpel, B.; Würfl, T.; Hoffmann, M.; Schebesch, F.; Fu, W.; Mill, L.; Kling, L.; Christiansen, S. Learning with Known Operators Reduces Maximum Error Bounds. Nat. Mach. Intell. 2019, 1, 373–380. [Google Scholar] [CrossRef]
- Luetkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Luíza da Costa, N.; Dias de Lima, M.; Barbosa, R. Evaluation of Feature Selection Methods Based on Artificial Neural Network Weights. Expert Syst. Appl. 2021, 168, 114312. [Google Scholar] [CrossRef]
N | Image Id | Path/Row | Year | In Situ Date | Image Date | Days Difference |
---|---|---|---|---|---|---|
1 | LE07_L1TP_233088_20020305_20211023_02_T1 | 233/88 | 2002 | 06-03-2002 | 05-03-2002 | 1 |
2 | LE07_L1TP_233088_20030324_20200915_02_T1 | 233/88 | 2003 | 18-03-2003 | 24-03-2003 | 6 |
3 | LT05_L1TP_233088_20031127_20201008_02_T1 | 233/88 | 2003 | 17-11-2003 | 27-11-2003 | 10 |
4 | LT05_L1TP_232088_20040311_20200903_02_T1 | 232/88 | 2004 | 01-03-2004 | 11-03-2004 | 10 |
5 | LT05_L1TP_232088_20040818_20200903_02_T1 | 232/88 | 2004 | 20-08-2004 | 18-08-2004 | 2 |
6 | LT05_L1TP_232088_20041122_20200902_02_T1 | 232/88 | 2004 | 17-11-2004 | 22-11-2004 | 5 |
7 | LT05_L1TP_232088_20060213_20200901_02_T1 | 232/88 | 2006 | 09-02-2006 | 13-02-2006 | 4 |
8 | LT05_L1TP_233088_20060527_20200901_02_T1 | 233/88 | 2006 | 24-05-2006 | 27-05-2006 | 3 |
9 | LT05_L1TP_233088_20060730_20200831_02_T1 | 233/88 | 2006 | 12-08-2006 | 30-07-2006 | 12 |
10 | LT05_L1TP_233088_20061103_20200831_02_T1 | 233/88 | 2006 | 26-10-2006 | 03-11-2006 | 7 |
11 | LT05_L1TP_233088_20070818_20200830_02_T1 | 233/88 | 2007 | 19-08-2007 | 18-08-2007 | 1 |
12 | LT05_L1TP_232088_20080219_20200829_02_T1 | 232/88 | 2008 | 23-02-2008 | 19-02-2008 | 4 |
13 | LT05_L1TP_232088_20090221_20200828_02_T1 | 232/88 | 2009 | 17-02-2009 | 21-02-2009 | 4 |
14 | LT05_L1TP_233088_20091111_20200825_02_T1 | 233/88 | 2009 | 17-11-2009 | 11-11-2009 | 6 |
15 | LC08_L1TP_233088_20131208_20200912_02_T1 | 233/88 | 2013 | 03/05-12-2013 | 08-12-2013 | 3, 5 |
16 | LC08_L1TP_233088_20140226_20200911_02_T1 | 233/88 | 2014 | 19-02-2014 | 26-02-2014 | 7 |
17 | LC08_L1TP_233088_20150213_20200909_02_T1 | 233/88 | 2015 | 10/11-02-2015 | 13-02-2015 | 2, 3 |
18 | LC08_L1TP_233088_20200126_20200823_02_T1 | 233/88 | 2020 | 26-01-2020 | 26-01-2020 | 0 |
19 | LC08_L1TP_232088_20201118_20210315_02_T1 | 232/88 | 2020 | 22-11-2020 | 18-11-2020 | 4 |
Indices | Formula | Reference |
---|---|---|
Spectral bands | 4 bands (B, R, G,NIR) | [18] |
Floating Algal Index (Fai) | FAI = Rnir − R′nir R′nir = Rred + (Rswir − Rred) × (λnir − λred)/(λswir − λred) | [40] |
Green Normalized Difference Vegetation Index (Gndvi) | (NIR − G)/(NIR + G) | [13] |
Normalized Difference Vegetation Index (Ndvi) | (NIR − R)/(NIR + R) | [13] |
Surface Algal Bloom Index (Sabi) | (NIR − R)/(B + G) | [15] |
Green Chlorophyll Index (Gci) | GCI = (NIR/G) − 1 | [13] |
Station/Depth | 0 M (Train/Test) | 15 M (Train/Test) | 30 M (Train/Test) |
---|---|---|---|
CENTRO | 38/16 | 38/16 | 38/16 |
LOS LOLLES | 28/12 | 28/12 | 28/12 |
Model/Station | Station | Depth | MSE (μg/L) ² | RMSE (μg/L) | MaxError (μg/L) | MAE (μg/L) | R2 |
---|---|---|---|---|---|---|---|
SARIMAX | CENTRO | 0 m | 0.90 | 0.95 | 2.59 | 0.94 | 0.35 |
15 m | 0.73 | 0.85 | 2.38 | 0.98 | 0.34 | ||
30 m | 0.66 | 0.81 | 2.37 | 0.92 | 0.32 | ||
LOS LLOLLES | 0 m | 0.30 | 0.55 | 1.11 | 0.41 | 0.30 | |
15 m | 0.39 | 0.62 | 1.73 | 0.38 | 0.43 | ||
30 m | 0.41 | 0.64 | 1.79 | 0.36 | 0.35 | ||
DGLM | CENTRO | 0 m | 0.72 | 0.85 | 2.68 | 0.59 | 0.57 |
15 m | 0.47 | 0.69 | 1.74 | 0.54 | 0.61 | ||
30 m | 0.46 | 0.68 | 1.55 | 0.55 | 0.58 | ||
LOS LLOLLES | 0 m | 0.24 | 0.49 | 0.94 | 0.42 | 0.50 | |
15 m | 0.33 | 0.57 | 1.42 | 0.37 | 0.47 | ||
30 m | 0.43 | 0.66 | 1.67 | 0.45 | 0.38 | ||
LSTM | CENTRO | 0 m | 0.82 | 0.91 | 1.87 | 0.66 | 0.52 |
15 m | 0.69 | 0.83 | 1.41 | 0.66 | 0.43 | ||
30 m | 0.60 | 0.77 | 1.46 | 0.63 | 0.58 | ||
LOS LLOLLES | 0 m | 0.19 | 0.43 | 0.82 | 0.35 | 0.37 | |
15 m | 0.21 | 0.46 | 1.28 | 0.29 | 0.61 | ||
30 m | 0.23 | 0.48 | 1.30 | 0.32 | 0.65 |
Model/Station | Station | Depth | MSE (μg/L) ² | RMSE (μg/L) | MaxError (μg/L) | MAE (μg/L) | R2 |
---|---|---|---|---|---|---|---|
SARIMAX | CENTRO | 0 m | 0.65 | 0.81 | 3.96 | 0.93 | 0.32 |
15 m | 0.62 | 0.79 | 3.54 | 0.96 | 0.31 | ||
30 m | 0.52 | 0.72 | 3.57 | 0.88 | 0.29 | ||
LOS LLOLLES | 0 m | 0.22 | 0.47 | 1.13 | 0.35 | 0.54 | |
15 m | 0.34 | 0.59 | 1.51 | 0.43 | 0.65 | ||
30 m | 0.35 | 0.59 | 1.57 | 0.42 | 0.52 | ||
DGLM | CENTRO | 0 m | 0.28 | 0.53 | 0.82 | 0.47 | 0.84 |
15 m | 0.03 | 0.16 | 0.43 | 0.13 | 0.98 | ||
30 m | 0.08 | 0.28 | 0.64 | 0.23 | 0.93 | ||
LOS LLOLLES | 0 m | 0.24 | 0.49 | 0.94 | 0.42 | 0.50 | |
15 m | 0.32 | 0.56 | 1.28 | 0.41 | 0.43 | ||
30 m | 0.42 | 0.65 | 1.62 | 0.43 | 0.46 | ||
LSTM | CENTRO | 0 m | 0.57 | 0.76 | 2.06 | 0.55 | 0.67 |
15 m | 0.47 | 0.68 | 1.77 | 0.53 | 0.62 | ||
30 m | 0.39 | 0.62 | 1.82 | 0.43 | 0.65 | ||
LOS LLOLLES | 0 m | 0.09 | 0.29 | 0.65 | 0.22 | 0.55 | |
15 m | 0.04 | 0.19 | 0.42 | 0.16 | 0.93 | ||
30 m | 0.03 | 0.19 | 0.43 | 0.14 | 0.94 |
Model/Station | Station | Depth | MSE (μg/L) ² | RMSE (μg/L) | MaxError (μg/L) | MAE (μg/L) | R2 |
---|---|---|---|---|---|---|---|
SARIMAX | CENTRO | 0 m | 0.60 | 0.77 | 3.20 | 0.93 | 0.33 |
15 m | 0.47 | 0.69 | 2.81 | 0.96 | 0.30 | ||
30 m | 0.39 | 0.63 | 2.88 | 0.94 | 0.29 | ||
LOS LLOLLES | 0 m | 0.19 | 0.44 | 0.86 | 0.36 | 0.38 | |
15 m | 0.22 | 0.47 | 1.34 | 0.29 | 0.58 | ||
30 m | 0.43 | 0.49 | 1.33 | 0.33 | 0.54 | ||
DGLM | CENTRO | 0 m | 0.87 | 0.93 | 1.96 | 0.75 | 0.48 |
15 m | 0.61 | 0.78 | 1.76 | 0.55 | 0.49 | ||
30 m | 0.52 | 0.73 | 01.75 | 0.53 | 0.48 | ||
LOS LLOLLES | 0 m | 0.30 | 0.55 | 0.95 | 0.46 | 0.32 | |
15 m | 0.35 | 0.59 | 1.40 | 0.39 | 0.46 | ||
30 m | 0.43 | 0.66 | 1.61 | 0.42 | 0.45 | ||
LSTM | CENTRO | 0 m | 0.81 | 0.90 | 1.94 | 0.73 | 0.52 |
15 m | 0.73 | 0.85 | 1.84 | 0.68 | 0.39 | ||
30 m | 0.63 | 0.80 | 1.75 | 0.63 | 0.38 | ||
LOS LLOLLES | 0 m | 0.15 | 0.38 | 1.04 | 0.24 | 0.42 | |
15 m | 0.29 | 0.54 | 1.41 | 0.41 | 0.44 | ||
30 m | 0.28 | 0.53 | 1.33 | 0.39 | 0.56 |
Model/Station | Station | Depth | MSE (μg/L) ² | RMSE (μg/L) | MaxError (μg/L) | MAE (μg/L) | R2 |
---|---|---|---|---|---|---|---|
SARIMAX | CENTRO | 0 m | 0.69 | 0.82 | 2.67 | 0.91 | 0.30 |
15 m | 0.67 | 0.82 | 2.43 | 0.98 | 0.32 | ||
30 m | 0.59 | 0.71 | 2.42 | 0.98 | 0.36 | ||
LOS LLOLLES | 0 m | 0.19 | 0.43 | 0.79 | 0.35 | 0.35 | |
15 m | 0.29 | 0.54 | 1.21 | 0.41 | 0.47 | ||
30 m | 0.32 | 0.57 | 1.29 | 0.42 | 0.39 | ||
DGLM | CENTRO | 0 m | 0.42 | 0.65 | 1.19 | 0.57 | 0.75 |
15 m | 0.22 | 0.47 | 0.85 | 0.41 | 0.82 | ||
30 m | 0.17 | 0.42 | 0.77 | 0.34 | 0.83 | ||
LOS LLOLLES | 0 m | 0.26 | 0.51 | 1.07 | 0.42 | 0.38 | |
15 m | 0.35 | 0.59 | 1.40 | 0.39 | 0.46 | ||
30 m | 0.48 | 0.69 | 1.88 | 0.44 | 0.48 | ||
LSTM | CENTRO | 0 m | 0.74 | 0.86 | 2.01 | 0.59 | 0.57 |
15 m | 0.68 | 0.82 | 1.88 | 0.66 | 0.44 | ||
30 m | 0.59 | 0.76 | 1.85 | 0.59 | 0.46 | ||
LOS LLOLLES | 0 m | 0.15 | 0.38 | 1.04 | 0.24 | 0.42 | |
15 m | 0.22 | 0.47 | 1.08 | 0.36 | 0.59 | ||
30 m | 0.24 | 0.49 | 1.13 | 0.36 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-López, L.; Alvarez, D.; Bustos Usta, D.; Duran-Llacer, I.; Bravo Alvarez, L.; Fagel, N.; Bourrel, L.; Frappart, F.; Urrutia, R. Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake. Remote Sens. 2024, 16, 647. https://doi.org/10.3390/rs16040647
Rodríguez-López L, Alvarez D, Bustos Usta D, Duran-Llacer I, Bravo Alvarez L, Fagel N, Bourrel L, Frappart F, Urrutia R. Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake. Remote Sensing. 2024; 16(4):647. https://doi.org/10.3390/rs16040647
Chicago/Turabian StyleRodríguez-López, Lien, Denisse Alvarez, David Bustos Usta, Iongel Duran-Llacer, Lisandra Bravo Alvarez, Nathalie Fagel, Luc Bourrel, Frederic Frappart, and Roberto Urrutia. 2024. "Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake" Remote Sensing 16, no. 4: 647. https://doi.org/10.3390/rs16040647
APA StyleRodríguez-López, L., Alvarez, D., Bustos Usta, D., Duran-Llacer, I., Bravo Alvarez, L., Fagel, N., Bourrel, L., Frappart, F., & Urrutia, R. (2024). Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake. Remote Sensing, 16(4), 647. https://doi.org/10.3390/rs16040647