Waveform Design for Target Information Maximization over a Complex Circle Manifold
Abstract
:1. Introduction
1.1. Motivations
- The aforesaid definition of design criteria associated with mutual information invariably necessitates an exact probability distribution at hand. Such knowledge is often ambiguous and only approximated through limited samples [17].
- The majority of the information-driven approaches primarily focus on optimizing the energy spectral density without taking into account the synthesis of the constant modulus waveform in the time domain, which is rendered arduous to implement in practical systems. Specifically, the constant modulus constraint (CMC) is the primary constraint on the probing waveform and serves as a fundamental guarantee to ensure optimal efficiency of the non-linear amplifier working in saturation mode. However, its derived feasible set has a non-convex nature, which is known to be NP-hard [18].
1.2. Major Contributions
- We address the problem of waveform design with a constant modulus constraint, aiming to maximize target information via the squared Pearson correlation coefficient (SPCC). Additionally, we simultaneously consider the integrated sidelobe level (ISL) to meet the requirements of autocorrelation and achieve high resolution. Simulations were performed to verify the feasibility and effectiveness of the proposed method.
- The constrained design problem is reformulated as an unconstrained problem based on the geometric characteristic of constant modulus constraint (CMC), and the complexity associated with resolving the optimization problem is diminished.
- A conditional equivalence is presented between two criteria when a wide-sense stationary-uncorrelated scattering (WSSUS) model is used to characterize the TIR. The first criterion involves minimizing the minimum mean-square error (MMSE) in estimating the TIR, while the second criterion involves minimizing the integrated sidelobe level of the waveform.
- Another conditional equivalence is illustrated for the case of zero-mean TIR, where maximizing the squared Pearson correlation coefficient (SPCC) is shown to be equivalent to maximizing the signal-to-noise ratio (SNR).
1.3. Notation and Organization
2. Signal Model
3. Constant Modulus Waveform Design for Maximizing Target Information with Low ISL
3.1. Design Criteria
3.1.1. Target Information
3.1.2. Correlation Properties
- The ISL is a widely used criterion for representing the autocorrelation quality of the waveform, enabling the comprehensive measurement of the sidelobe energy level. Compared to the PSL, the “almost equivalent” form of the ISL is convex and smooth, facilitating ease of solutions.
- The MMSE minimization in TIR estimation for a specific target requires minimizing the ISL of the transmitted waveform.
- A phase-coded sequence designed based on the ISL would behave similarly to white noise, and consequently, the modulus of its spectrum should be nearly constant. In other words, the devised sequence would best utilize the bandwidth.
3.2. Problem Formulation
3.3. Optimization over Complex Circle Manifold
3.3.1. Complex Circle Manifold
Riemannian Gradient
Retraction and Vector Transport
3.3.2. Riemannian Conjugate Gradient Method
Algorithm 1 Riemannian Conjugate Gradient over Complex Circle Manifold (CCMRCG) for Target Information Maximization |
Input: The cost function , initial sequence and a pre-defined threshold value . |
Output: An optimal designed sequence over the complex circle manifold . |
3.3.3. Convergence and Computation Complexity Analysis
Convergence
Computation Complexity
- Termination Conditions: The dominant computational cost for (25) derives from , which requires a numerical cost of . The term involves the cost of . Therefore, the total cost of is .
- Riemannian Gradient: The computation of the Riemannian gradient involves two aspects. First, the computational cost derives from computing (32) with . Second, The computational cost of the project operator is .
- Retraction Operator: The computational cost of the retraction operator is .
- Vector Transport Operator: The computational cost of the vector transport operator is .
4. Numerical Results
4.1. Configurations
4.2. Performance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haykin, S. Cognitive radar: A way of the future. IEEE Signal Process. Mag. 2006, 23, 30–40. [Google Scholar] [CrossRef]
- Cochran, D.; Suvorova, S.; Howard, S.; Moran, B. Waveform Libraries. IEEE Signal Process. Mag. 2009, 26, 12–21. [Google Scholar] [CrossRef]
- Blunt, S.D.; Mokole, E.L. Overview of radar waveform diversity. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 2–42. [Google Scholar] [CrossRef]
- Goodman, N.A. Bayesian Representations and Information Metrics for Cognitive Radar; NATO SET-216 Lecture Series on Cognition and Radar Sensing; NATO: Brussels, Belgium, 2015. [Google Scholar]
- Xu, Z.; Xie, Z.; Fan, C.; Huang, X. Probabilistically Robust Radar Waveform Design for Extended Target Detection. IEEE Trans. Signal Process. 2022, 70, 4212–4224. [Google Scholar] [CrossRef]
- Deng, X.; Qiu, C.; Cao, Z.; Morelande, M.; Moran, B. Waveform design for enhanced detection of extended target in signal-dependent interference. IET Radar Sonar Navig. 2012, 6, 30. [Google Scholar] [CrossRef]
- Ghadian, M.; Fatemi Mofrad, R.; Abbasi Arand, B. Fully adaptive waveform parameter design for cognitive tracking radars. IET Radar Sonar Navig. 2020, 14, 1616–1623. [Google Scholar] [CrossRef]
- Alshirah, S.Z.; Gishkori, S.; Mulgrew, B. Optimal Target Classification Using Frequency-Based Radar Waveform Design. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Warnke, M.; Brüggenwirth, S. Waveform Adaptation for Target Classification Using HRRP in a Cognitive Framework. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3695–3712. [Google Scholar] [CrossRef]
- Bell, M. Information theory and radar waveform design. IEEE Trans. Inf. Theory 1993, 39, 1578–1597. [Google Scholar] [CrossRef]
- Leshem, A.; Naparstek, O.; Nehorai, A. Information Theoretic Adaptive Radar Waveform Design for Multiple Extended Targets. IEEE J. Sel. Top. Signal Process. 2007, 1, 42–55. [Google Scholar] [CrossRef]
- Romero, R.A.; Bae, J.; Goodman, N.A. Theory and Application of SNR and Mutual Information Matched Illumination Waveforms. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 912–927. [Google Scholar] [CrossRef]
- Gu, Y.; Goodman, N.A. Information-Theoretic Waveform Design for Gaussian Mixture Radar Target Profiling. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1528–1536. [Google Scholar] [CrossRef]
- Huang, K.W.; Bică, M.; Mitra, U.; Koivunen, V. Radar waveform design in spectrum sharing environment: Coexistence and cognition. In Proceedings of the 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015; pp. 1698–1703. [Google Scholar] [CrossRef]
- Bica, M.; Huang, K.W.; Koivunen, V.; Mitra, U. Mutual information based radar waveform design for joint radar and cellular communication systems. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 3671–3675. [Google Scholar] [CrossRef]
- Palamà, R.; Griffiths, H.; Watson, F. Joint dynamic spectrum access and target-matched illumination for cognitive radar. IET Radar Sonar Navig. 2019, 13, 750–759. [Google Scholar] [CrossRef]
- Palomar, D.P.; Verdú, S. Representation of mutual information via input estimates. IEEE Trans. Inf. Theory 2007, 53, 453–470. [Google Scholar] [CrossRef]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2004. [Google Scholar]
- Steuer, R.; Kurths, J.; Daub, C.O.; Weise, J.; Selbig, J. The mutual information: Detecting and evaluating dependencies betweenvariables. Bioinformatics 2002, 18, S231–S240. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, J.; Liu, W.; Wang, S.; Li, C. High-Resolution Radar Waveform Design Based on Target Information Maximization. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3577–3587. [Google Scholar] [CrossRef]
- Li, Q.; Rothwell, E.; Chen, K.M.; Nyquist, D. Scattering center analysis of radar targets using fitting scheme and genetic algorithm. IEEE Trans. Antennas Propag. 1996, 44, 198–207. [Google Scholar] [CrossRef]
- Dai, F.; Liu, H.; Wang, P.; Xia, S. Adaptive waveform design for range-spread target tracking. Electron. Lett. 2010, 46, 793. [Google Scholar] [CrossRef]
- Karbasi, S.M.; Aubry, A.; De Maio, A.; Bastani, M.H. Robust Transmit Code and Receive Filter Design for Extended Targets in Clutter. IEEE Trans. Signal Process. 2015, 63, 1965–1976. [Google Scholar] [CrossRef]
- Tang, B.; Liu, J.; Wang, H.; Hu, Y. Constrained Radar Waveform Design for Range Profiling. IEEE Trans. Signal Process. 2021, 69, 1924–1937. [Google Scholar] [CrossRef]
- Giagkiozis, I.; Fleming, P. Methods for multi-objective optimization: An analysis. Inf. Sci. 2015, 293, 338–350. [Google Scholar] [CrossRef]
- Yu, J.; Benesty, J.; Huang, G.; Chen, J. Examples of optimal noise reduction filters derived from the squared Pearson correlation coefficient. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1552–1556. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; Volume 3. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y. On the Importance of the Pearson Correlation Coefficient in Noise Reduction. IEEE Trans. Audio Speech Lang. Process. 2008, 16, 757–765. [Google Scholar] [CrossRef]
- He, H.; Stoica, P.; Li, J. Designing Unimodular Sequence Sets With Good Correlations—Including an Application to MIMO Radar. IEEE Trans. Signal Process. 2009, 57, 4391–4405. [Google Scholar] [CrossRef]
- Song, J.; Babu, P.; Palomar, D.P. Optimization Methods for Designing Sequences with Low Autocorrelation Sidelobes. IEEE Trans. Signal Process. 2015, 63, 3998–4009. [Google Scholar] [CrossRef]
- Cui, G.; Yu, X.; Piezzo, M.; Kong, L. Constant modulus sequence set design with good correlation properties. Signal Process. 2017, 139, 75–85. [Google Scholar] [CrossRef]
- Stoica, P.; He, H.; Li, J. New Algorithms for Designing Unimodular Sequences with Good Correlation Properties. IEEE Trans. Signal Process. 2009, 57, 1415–1425. [Google Scholar] [CrossRef]
- Ohno, S.; Giannakis, G. Capacity maximizing MMSE-optimal pilots for wireless OFDM over frequency-selective block Rayleigh-fading channels. IEEE Trans. Inf. Theory 2004, 50, 2138–2145. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; Xie, R.; Mu, X. Adaptive waveform design for enhanced detection of extended target. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Alaee Kerahroodi, M.; Aubry, A.; De Maio, A.; Naghsh, M.M.; Modarres-Hashemi, M. A Coordinate-Descent Framework to Design Low PSL/ISL Sequences. IEEE Trans. Signal Process. 2017, 65, 5942–5956. [Google Scholar] [CrossRef]
- Maio, A.D.; Nicola, S.D.; Huang, Y.; Luo, Z.Q.; Zhang, S. Design of Phase Codes for Radar Performance Optimization with a Similarity Constraint. IEEE Trans. Signal Process. 2009, 57, 610–621. [Google Scholar] [CrossRef]
- Setlur, P.; Rangaswamy, M. Projected gradient waveform design for fully adaptive radar STAP. In Proceedings of the 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015; pp. 1704–1709. [Google Scholar] [CrossRef]
- Liang, J.; So, H.C.; Li, J.; Farina, A. Unimodular Sequence Design Based on Alternating Direction Method of Multipliers. IEEE Trans. Signal Process. 2016, 64, 5367–5381. [Google Scholar] [CrossRef]
- Yu, X.; Cui, G.; Yang, J.; Li, J.; Kong, L. Quadratic Optimization for Unimodular Sequence Design via an ADPM Framework. IEEE Trans. Signal Process. 2020, 68, 3619–3634. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Piezzo, M.; Farina, A. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1138–1152. [Google Scholar] [CrossRef]
- Zargari, S.; Farahmand, S.; Abolhassani, B.; Tellambura, C. Robust Active and Passive Beamformer Design for IRS-Aided Downlink MISO PS-SWIPT with a Nonlinear Energy Harvesting Model. IEEE Trans. Green Commun. Netw. 2021, 5, 2027–2041. [Google Scholar] [CrossRef]
- Huang, W.; Gallivan, K.A.; Absil, P.A. A Broyden class of quasi-Newton methods for Riemannian optimization. SIAM J. Optim. 2015, 25, 1660–1685. [Google Scholar] [CrossRef]
- Absil, P.A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton Univ. Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Alhujaili, K.; Monga, V.; Rangaswamy, M. Ambiguity Function Shaping via Quartic Descent on the Complex Circle Manifold. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Alhujaili, K.; Monga, V.; Rangaswamy, M. Transmit MIMO Radar Beampattern Design via Optimization on the Complex Circle Manifold. IEEE Trans. Signal Process. 2019, 67, 3561–3575. [Google Scholar] [CrossRef]
- Li, J.; Liao, G.; Huang, Y.; Zhang, Z.; Nehorai, A. Riemannian Geometric Optimization Methods for Joint Design of Transmit Sequence and Receive Filter on MIMO Radar. IEEE Trans. Signal Process. 2020, 68, 5602–5616. [Google Scholar] [CrossRef]
- Hu, J.; Liu, X.; Wen, Z.W.; Yuan, Y.X. A Brief Introduction to Manifold Optimization. J. Oper. Res. Soc. China 2020, 8, 199–248. [Google Scholar] [CrossRef]
- Chen, J.C. Low-PAPR Precoding Design for Massive Multiuser MIMO Systems via Riemannian Manifold Optimization. IEEE Commun. Lett. 2017, 21, 945–948. [Google Scholar] [CrossRef]
- Andrei, N. An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms 2006, 42, 63–73. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Huang, Y.; Piezzo, M.; Farina, A. A new radar waveform design algorithm with improved feasibility for spectral coexistence. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1029–1038. [Google Scholar] [CrossRef]
- Ai, W.; Huang, Y.; Zhang, S. New results on Hermitian matrix rank-one decomposition. Math. Program. 2011, 128, 253–283. [Google Scholar] [CrossRef]
Method | Computational Complexity |
---|---|
MTIC | |
SDR | |
ADPM | |
NCADMM | |
CAN | |
CCMRCG |
Method | ISL (dB) | PSL (dB) | |
---|---|---|---|
OPT | 61.45 | 21.05 | / |
MTIC | 40.99 | 12.12 | 0.0910 |
CAN | 30.23 | 7.11 | 0.0914 |
SDR | 53.64 | 17.21 | 0.6581 |
CCMRCG | 39.91 | 11.35 | 0.2500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Fu, Y.; Yang, W.; Bai, M.; Zhou, J.; Chen, M. Waveform Design for Target Information Maximization over a Complex Circle Manifold. Remote Sens. 2024, 16, 645. https://doi.org/10.3390/rs16040645
Yu R, Fu Y, Yang W, Bai M, Zhou J, Chen M. Waveform Design for Target Information Maximization over a Complex Circle Manifold. Remote Sensing. 2024; 16(4):645. https://doi.org/10.3390/rs16040645
Chicago/Turabian StyleYu, Ruofeng, Yaowen Fu, Wei Yang, Mengdi Bai, Jingyang Zhou, and Mingfei Chen. 2024. "Waveform Design for Target Information Maximization over a Complex Circle Manifold" Remote Sensing 16, no. 4: 645. https://doi.org/10.3390/rs16040645
APA StyleYu, R., Fu, Y., Yang, W., Bai, M., Zhou, J., & Chen, M. (2024). Waveform Design for Target Information Maximization over a Complex Circle Manifold. Remote Sensing, 16(4), 645. https://doi.org/10.3390/rs16040645