Methodology and Modeling of UAV Push-Broom Hyperspectral BRDF Observation Considering Illumination Correction
Abstract
:1. Introduction
- Designed a multi-rectangle nested acquisition method applicable to push-broom hyperspectral imaging, utilizing a UAV-carried hyperspectral imaging system and ground-based auxiliary equipment to improve the access and efficiency of multi-angle information acquisition, including illumination.
- Acquired multi-angle hyperspectral images in the 400–1000 nm range, including 150 bands and multiple gray-level targets, and simultaneously acquired outdoor illumination changes.
- Model improvement by theorizing, normalizing, and introducing illumination variations into three BRDF models. BRDF modeling of multi-gray level targets using the improved models improves the ability of the models to characterize reflectance in three-dimensional space.
2. System and Methods
2.1. BRDF Data Acquisition System
2.2. Reflectance Factor
2.3. The Improvement of Models
2.4. Evaluation Method
3. Experiment and Processing
3.1. BRDF Data Acquisition Scheme
3.2. Irradiance Monitoring and Reflectance Distribution
4. Results
4.1. Measured Reflectance Distribution
4.2. Model Fitting Results for Different Bands of the Same Target
4.3. Model Fitting Results for Different Targets in the Same Band
4.4. Model Fit Coefficients
4.5. Effect of Illumination and VZA Variations on Model Accuracy
4.6. Spectral Angle of the Target before and after Model Improvement
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Jiao, Z.T.; Dong, Y.D.; Li, J.Y.; Li, X.W. Albedo retrieved from BRDF archetype and surface directional reflectance. J. Remote Sens. 2015, 19, 355–367. [Google Scholar] [CrossRef]
- Zhu, W.; You, D.; Wen, J.; Tang, Y.; Gong, B.; Han, Y. Evaluation of Linear Kernel-Driven BRDF Models over Snow-Free Rugged Terrain. Remote Sens. 2023, 15, 786. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Kedzierski, M.; Fryskowska, A.; Jasinski, J. Quality Assessment of the Bidirectional Reflectance Distribution Function for NIR Imagery Sequences from UAV. Remote Sens. 2018, 10, 1348. [Google Scholar] [CrossRef]
- Han, Y.; Wen, J.; Xiao, Q.; Bao, Y.; Chen, X.; Liu, Q.; He, M. Review of the Land Surface BRDF Inversion Methods Based on Remotely Sensed Satellite Data. Natl. Remote Sens. Bull. 2023, 27, 2024–2040. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, Z.; Chen, L.; Dong, Y.; Zhang, X.; Lian, Y.; Qian, D.; Cui, T. Quantifying the Reflectance Anisotropy Effect on Albedo Retrieval from Remotely Sensed Observations Using Archetypal BRDFs. Remote Sens. 2018, 10, 1628. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Gastellu-Etchegorry, J.-P. Improving Crop Mapping by Using Bidirectional Reflectance Distribution Function (BRDF) Signatures with Google Earth Engine. Remote Sens. 2023, 15, 2761. [Google Scholar] [CrossRef]
- Yao, C.; Sun, Z.; Lu, S. Reducing BRDF Effects on the Estimation of Leaf Biochemical Parameters Using the Nonpolarized Reflectance Factor in the Hemispheric Space. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Han, W.; Lim, J.; Lee, S.-J.; Kim, C.-Y. Reducing BRDF Effects on the Estimation of Leaf Biochemical Parameters Using the Nonpolarized Reflectance Factor in the Hemispheric SpaceDistribution Function (BRDF)-Based Coarseness Prediction of Textured Metal Surface. IEEE Access 2022, 10, 32461–32469. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-Borne Hyperspectral Remote Sensing: From Observation and Processing to Applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
- Zhang, C.B.; Yang, S.T.; Zhao, C.S.; Lou, H.Z.; Zhang, Y.C.; Bai, J.; Wang, Z.W.; Guan, Y.B.; Zhang, Y. Topographic data accuracy verification of small consumer UAV. J. Remote Sens. 2018, 22, 185–195. [Google Scholar] [CrossRef]
- Tao, B.C.; Hu, X.Q.; Yang, L.K.; Zhang, L.; Chen, L.; Xu, N.; Wang, L.; Wu, R.Q.; Zhang, D.F.; Zhang, P. BRDF feature observation method and modeling of desert site based on UAV platform. Natl. Remote Sens. Bull. 2021, 25, 1964–1977. [Google Scholar] [CrossRef]
- Song, L.; Li, H.; Chen, T.; Chen, J.; Liu, S.; Fan, J.; Wang, Q. An Integrated Solution of UAV Push-Broom Hyperspectral System Based on Geometric Correction with MSI and Radiation Correction Considering Outdoor Illumination Variation. Remote Sens. 2022, 14, 6267. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Wei, Z.; Wang, C.; Huang, Q. Lightweight Integrated Solution for a UAV-Borne Hyperspectral Imaging System. Remote Sens. 2020, 12, 657. [Google Scholar] [CrossRef]
- Shi, Y.; Fu, B.; Wang, N.; Chen, Y.; Fang, J. Multispectral Image Quality Improvement Based on Global Iterative Fusion Constrained by Meteorological Factors. Cogn. Comput. 2023, 16, 1–21. [Google Scholar] [CrossRef]
- Chang, Y.X.; Jiao, Z.T.; Dong, Y.D.; Zhang, X.N.; He, D.D.; Yin, S.Y.; Cui, L.; Ding, A.X. Parameterization and correction of hotspot parameters of Ross-Li kernel driven models on POLDER dataset. J. Remote Sens. 2019, 23, 661–672. [Google Scholar] [CrossRef]
- Dong, Y.D.; Jiao, Z.T.; Zhang, H.; Li, J.Y.; Jiao, G.P.; Shi, H.Y. Efficient algorithm for improving the hotspot effect of the operational MODIS BRDF product. J. Remote Sens. 2014, 18, 804–825. [Google Scholar] [CrossRef]
- Guo, J.; Jiao, Z.T.; Ding, A.X.; Dong, Y.D.; Zhang, X.N.; Cui, L.; Yin, S.Y.; Chang, Y.X.; Xie, R. Evaluation of three BRDF models’ performance using spaceborne POLDER snow data. Natl. Remote Sens. Bull. 2022, 26, 2060–2072. [Google Scholar] [CrossRef]
- Li, J.; Jiao, Z.; Zhang, H.; Dong, Y. Variance of bidirectional reflectance and its application using operational MODIS BRDF model. J. Remote Sens. 2015, 19, 750–760. [Google Scholar] [CrossRef]
- Qiu, F.; Huo, J.W.; Zhang, Q.; Chen, X.H.; Zhang, Y.G. Observation and analysis of bidirectional and hotspot reflectance of conifer forest canopies with a multiangle hyperspectral UAV imaging platform. Natl. Remote Sens. Bull. 2021, 25, 1013–1024. [Google Scholar] [CrossRef]
- Wang, L.; Hu, X.Q.; Xu, N.; Chen, L.; Zhang, P.; Xu, H.L. Research on Construction of directional reflectance reference Model for Desert Stable Earth Targets. Natl. Remote Sens. Bull. 2023, 27, 2270–2282. [Google Scholar] [CrossRef]
- Mamaghania, B.G.; Salvaggioa, C. Comparative study of panel and panelless-based reflectance conversion techniques for agricultural remote sensing. arXiv 2019, arXiv:1910.03734. [Google Scholar]
- Burkart, A.; Cogliati, S.; Schickling, A.; Rascher, U. A Novel UAV-Based Ultra-Light Weight Spectrometer for Field Spectroscopy. IEEE Sens. J. 2014, 14, 62–67. [Google Scholar] [CrossRef]
- Schneider-Zapp, K.; Cubero-Castan, M.; Shi, D.; Strecha, C. A new method to determine multi-angular reflectance factor from lightweight multispectral cameras with sky sensor in a target-less workflow applicable to UAV. Remote Sens. Environ. 2019, 229, 60–68. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.; Skakun, S.; Roger, J.-C.; Masek, J.; Ju, J.; Villaescusa-Nadal, J.L.; Santamaria-Artigas, A. A Method for Landsat and Sentinel 2 (HLS) BRDF Normalization. Remote Sens. 2019, 11, 632. [Google Scholar] [CrossRef]
- Han, J.; Tao, Z.; Xie, Y.; Li, H.; Yi, H.; Guan, X. Validation of the TOA Products of the Baotou Sandy Site With Landsat8/OLI Considering BRDF Correction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Jia, W.; Pang, Y.; Tortini, R.; Schläpfer, D.; Li, Z.; Roujean, J.-L. A Kernel-Driven BRDF Approach to Correct Airborne Hyperspectral Imagery over Forested Areas with Rugged Topography. Remote Sens. 2020, 12, 432. [Google Scholar] [CrossRef]
- Tan, Y.; Li, X.; Yang, X.; Jin, Y. Research and Analysis on the Angles Normalization of the Domestic GF-1 Satellite Based on MODIS BRDF Products. In Proceedings of the 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), Zhoushan, China, 22–24 April 2022; pp. 565–573. [Google Scholar]
- Cheng, J.; Wen, J.; Xiao, Q.; Hao, D.; Lin, X.; Liu, Q. Exploring the Applicability of the Semi-Empirical BRDF Models at Different Scales Using Airborne Multi-Angular Observations. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Ye, L.; Xiao, P.; Zhang, X.; Feng, X.; Hu, R.; Ma, W.; Li, H.; Song, Y.; Ma, T. Evaluating Snow Bidirectional Reflectance of Models Using Multiangle Remote Sensing Data and Field Measurements. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Jiao, Z.; Ding, A.; Kokhanovsky, A.; Schaaf, C.; Bréon, F.-M.; Dong, Y.; Wang, Z.; Liu, Y.; Zhang, X.; Yin, S.; et al. Development of a snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework. Remote Sens. Environ. 2019, 221, 198–209. [Google Scholar] [CrossRef]
- Yan, K.; Li, H.; Song, W.; Tong, Y.; Hao, D.; Zeng, Y.; Mu, X.; Yan, G.; Fang, Y.; Myneni, R.B.; et al. Extending a Linear Kernel-Driven BRDF Model to Realistically Simulate Reflectance Anisotropy Over Rugged Terrain. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Chen, Z.; Li, H. Influence of Channel Center Wavelength Shift of the Hyperspectral Remote Sensor on Red Edge Spectra. Acta Opt. Sin. 2021, 41, 1428003. [Google Scholar]
Parameter | MicroHSI |
---|---|
Spatial Pixels | 1364 pixels |
Focal Length | 16 mm |
Full Fov | 28.6 degrees |
Wavelength | 400–1000 nm |
Band Number | 150 |
Pixel Size | 11.7 μm |
Frame Rate | >300 Hz |
(:°) | 0 | 5 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|
h (:m) | 50.00 | 49.81 | 49.24 | 48.30 | 46.98 | 45.32 |
s (:m) | 0 | 4.36 | 8.68 | 12.94 | 17.10 | 21.13 |
C | 5% | 10% | 20% | 40% | 50% | 70% | ||
---|---|---|---|---|---|---|---|---|
The former | 695 nm | ƒiso | 0.0808 | 0.1271 | 0.1542 | 0.4051 | 0.4123 | 0.4638 |
ƒvol | −0.1876 | −0.3206 | −0.6385 | −0.4941 | −1.0575 | −2.1857 | ||
ƒgeo | 0.0057 | 0.0138 | 0.0348 | 0.0243 | 0.0519 | 0.1101 | ||
The latter | ƒiso | 0.0549 | 0.0839 | 0.0929 | 0.2750 | 0.2684 | 0.2793 | |
ƒvol | −0.1413 | −0.2390 | −0.4998 | −0.2953 | −0.7768 | −1.7256 | ||
ƒgeo | 0.0095 | 0.0198 | 0.0426 | 0.0436 | 0.0716 | 0.1325 |
C | 5% | 10% | 20% | 40% | 50% | 70% | ||
---|---|---|---|---|---|---|---|---|
The former | 695 nm | 0.4974 | 0.6276 | 0.7796 | 0.9058 | 0.8945 | 0.8826 | |
The latter | 0.5362 | 0.7870 | 0.8682 | 0.9790 | 1 | 0.9991 |
C | 5% | 10% | 20% | 40% | 50% | 70% | ||
---|---|---|---|---|---|---|---|---|
The former | 695 nm | 0.1903 | 0.2389 | 0.3289 | 0.1394 | 0.2255 | 0.3102 | |
The latter | 0.2389 | 0.2945 | 0.3969 | 0.1864 | 0.2816 | 0.3770 |
5% | 10% | 20% | 40% | 50% | 70% | Average | ||
---|---|---|---|---|---|---|---|---|
495 nm | 8.87 | 8.22 | 10.02 | 4.69 | 6.21 | 8.28 | 7.72 | |
695 nm | 10.57 | 10.14 | 12.28 | 5.48 | 7.58 | 9.89 | 9.32 | |
795 nm | 7.13 | 8.06 | 10.42 | 5.24 | 7.09 | 9.62 | 7.93 | |
Average | 8.86 | 8.81 | 10.91 | 5.14 | 6.96 | 9.26 |
5% | 10% | 20% | 40% | 50% | 70% | Average | ||
---|---|---|---|---|---|---|---|---|
495 nm | 8.88 | 8.13 | 9.77 | 6.01 | 6.56 | 7.97 | 7.89 | |
695 nm | 10.46 | 9.61 | 11.47 | 6.21 | 7.25 | 8.82 | 8.97 | |
795 nm | 6.84 | 7.38 | 9.53 | 5.42 | 6.53 | 8.50 | 7.37 | |
Average | 8.73 | 8.37 | 10.26 | 5.88 | 6.78 | 8.43 |
5% | 10% | 20% | 40% | 50% | 70% | Average | ||
---|---|---|---|---|---|---|---|---|
495 nm | 8.19 | 7.21 | 8.74 | 4.39 | 5.09 | 6.91 | 6.76 | |
695 nm | 10.13 | 9.11 | 10.99 | 4.82 | 6.33 | 8.55 | 8.32 | |
795 nm | 7.34 | 7.72 | 9.86 | 4.92 | 6.59 | 9.21 | 7.61 | |
Average | 8.55 | 8.01 | 9.86 | 4.71 | 6.00 | 8.22 |
Kernel RMSE | 5% | 10% | 20% | 40% | 50% | 70% | Average | |
---|---|---|---|---|---|---|---|---|
The former | 495 nm | 0.014 | 0.024 | 0.045 | 0.033 | 0.055 | 0.106 | 0.046 |
695 nm | 0.017 | 0.023 | 0.053 | 0.041 | 0.069 | 0.130 | 0.056 | |
795 nm | 0.020 | 0.032 | 0.056 | 0.041 | 0.070 | 0.130 | 0.058 | |
Average | 0.017 | 0.026 | 0.051 | 0.038 | 0.065 | 0.122 | ||
The latter | 495 nm | 0.014 | 0.02 | 0.040 | 0.033 | 0.052 | 0.096 | 0.043 |
695 nm | 0.014 | 0.026 | 0.049 | 0.041 | 0.066 | 0.120 | 0.053 | |
795 nm | 0.017 | 0.026 | 0.046 | 0.035 | 0.059 | 0.109 | 0.048 | |
Average | 0.015 | 0.024 | 0.045 | 0.036 | 0.059 | 0.108 |
Hapke RMSE | 5% | 10% | 20% | 40% | 50% | 70% | Average | |
---|---|---|---|---|---|---|---|---|
The former | 495 nm | 0.014 | 0.02 | 0.041 | 0.035 | 0.050 | 0.095 | 0.043 |
695 nm | 0.017 | 0.026 | 0.049 | 0.040 | 0.060 | 0.111 | 0.051 | |
795 nm | 0.017 | 0.023 | 0.050 | 0.039 | 0.061 | 0.111 | 0.050 | |
Average | 0.016 | 0.023 | 0.047 | 0.038 | 0.057 | 0.106 | ||
The latter | 495 nm | 0.014 | 0.020 | 0.039 | 0.042 | 0.055 | 0.093 | 0.043 |
695 nm | 0.014 | 0.024 | 0.046 | 0.047 | 0.063 | 0.107 | 0.050 | |
795 nm | 0.014 | 0.024 | 0.042 | 0.039 | 0.057 | 0.098 | 0.045 | |
Average | 0.014 | 0.023 | 0.042 | 0.042 | 0.058 | 0.099 |
RPV RMSE | 5% | 10% | 20% | 40% | 50% | 70% | Average | |
---|---|---|---|---|---|---|---|---|
The former | 495 nm | 0.014 | 0.02 | 0.041 | 0.030 | 0.049 | 0.098 | 0.042 |
695 nm | 0.017 | 0.026 | 0.049 | 0.036 | 0.062 | 0.121 | 0.052 | |
795 nm | 0.020 | 0.030 | 0.052 | 0.036 | 0.063 | 0.123 | 0.054 | |
Average | 0.017 | 0.025 | 0.047 | 0.034 | 0.058 | 0.114 | ||
The latter | 495 nm | 0.010 | 0.020 | 0.035 | 0.030 | 0.042 | 0.079 | 0.036 |
695 nm | 0.014 | 0.02 | 0.044 | 0.036 | 0.055 | 0.102 | 0.045 | |
795 nm | 0.017 | 0.024 | 0.044 | 0.033 | 0.0031 | 0.105 | 0.037 | |
Average | 0.013 | 0.021 | 0.041 | 0.033 | 0.033 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, H.; Wang, S.; Song, L.; Chen, J. Methodology and Modeling of UAV Push-Broom Hyperspectral BRDF Observation Considering Illumination Correction. Remote Sens. 2024, 16, 543. https://doi.org/10.3390/rs16030543
Wang Z, Li H, Wang S, Song L, Chen J. Methodology and Modeling of UAV Push-Broom Hyperspectral BRDF Observation Considering Illumination Correction. Remote Sensing. 2024; 16(3):543. https://doi.org/10.3390/rs16030543
Chicago/Turabian StyleWang, Zhuo, Haiwei Li, Shuang Wang, Liyao Song, and Junyu Chen. 2024. "Methodology and Modeling of UAV Push-Broom Hyperspectral BRDF Observation Considering Illumination Correction" Remote Sensing 16, no. 3: 543. https://doi.org/10.3390/rs16030543
APA StyleWang, Z., Li, H., Wang, S., Song, L., & Chen, J. (2024). Methodology and Modeling of UAV Push-Broom Hyperspectral BRDF Observation Considering Illumination Correction. Remote Sensing, 16(3), 543. https://doi.org/10.3390/rs16030543