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Abstract: The Bidirectional Reflectance Distribution Function (BRDF) is a critical spatial distribution
parameter in the quantitative research of remote sensing and has a wide range of applications in
radiometric correction, elemental inversion, and surface feature estimation. As a new means of
BRDF modeling, UAV push-broom hyperspectral imaging is limited by the push-broom imaging
method, and the multi-angle information is often difficult to obtain. In addition, the random vari-
ation of solar illumination during UAV low-altitude flight makes the irradiance between different
push-broom hyperspectral rows and different airstrips inconsistent, which significantly affects the
radiometric consistency of BRDF modeling and results in the difficulty of accurately portraying the
three-dimensional spatial reflectance distribution in the UAV model. These problems largely impede
the application of outdoor BRDF. Based on this, this paper proposes a fast multi-angle information
acquisition scheme with a high-accuracy BRDF modeling method considering illumination variations,
which mainly involves a lightweight system for BRDF acquisition and three improved BRDF models
considering illumination corrections. We adopt multi-rectangular nested flight paths for multi-gray
level targets, use multi-mode equipment to acquire spatial illumination changes and multi-angle
reflectivity information in real-time, and introduce the illumination correction factor K through data
coupling to improve the kernel, Hapke, and RPV models, and, overall, the accuracy of the improved
model is increased by 20.83%, 11.11%, and 31.48%, respectively. The results show that our proposed
method can acquire multi-angle information quickly and accurately using push-broom hyperspectral
imaging, and the improved model eliminates the negative effect of illumination on BRDF modeling.
This work is vital for expanding the multi-angle information acquisition pathway and high-efficiency
and high-precision outdoor BRDF modeling.

Keywords: UAV; push-broom hyperspectral; BRDF model improvement; data coupling; illumination
correction factor

1. Introduction

The Bidirectional Reflectance Distribution Function (BRDF) is defined as the ratio of
the irradiance in a given outgoing direction to the irradiance in a given incoming direction
on that surface element, and this function can be used to characterize the surface reflectance
anisotropy [1,2]. Currently, it is mainly applied to radiometric correction of satellite-borne
instruments [1], radiometric correction of low-altitude images [3], light utilization, albedo
inversion [4,5], crop mapping [6], crop element estimation [7], and estimation of metal
surface roughness [8]. The modeling accuracy of the BRDF has directly impacted the
application of quantitative remote sensing. In addition, random variations in illumination

Remote Sens. 2024, 16, 543. https://doi.org/10.3390/rs16030543 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16030543
https://doi.org/10.3390/rs16030543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0914-8170
https://doi.org/10.3390/rs16030543
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16030543?type=check_update&version=1


Remote Sens. 2024, 16, 543 2 of 21

can directly affect the radiometric consistency of the raw multi-angle reflectance data,
and BRDF modeling relies heavily on data quality. Therefore, the effective acquisition of
multi-angle reflectance information and the random illumination variation significantly
affect the BRDF modeling accuracy.

UAV multi-angle remote sensing of the ground has the advantages of flexibility and
convenience, flexible imaging time, strong data acquisition ability in complex areas, and
high spatial resolution [9] and has gradually become an essential means of BRDF data
acquisition. Centimeter-level UAV equipment provides [10] platform support for surface
aerial surveys; Tao et al. [11] used a UAV-carried spectrometer to take multiple shots of
the Dunhuang radiation correction field, and the relative deviation of reflectance of the
characteristic bands was within 5% and simulated the calculation of changes in the amount
of solar radiation. However, there is still a slight error compared to the actual value. Latini
et al. [12] demonstrated the consistency of the vegetation spectral dimensions by using
a UAV to collect vegetation data at 90 m altitude and modeling the comparison of the
BRDF with Sentinel satellite data. Still, the number of acquired images was small, and the
illumination effect was not considered.

UAV-based hyperspectral imagers can be categorized into frame-amplitude and push-
broom imaging modes. Framed imaging can utilize UAV hovering to collect multi-angle
information at a fixed point on the target area to ensure the stability of the spatial struc-
ture and texture of the photographed target image. Still, acquiring images that consider
spectral accuracy, spatial resolution, and spectral resolution simultaneously is challenging.
Hovering imaging is not possible when using push-broom imaging, and the UAV must be
controlled to push-broom along a straight line at a uniform speed to acquire multi-angle
information [12]. Push-broom imagers have high signal-to-noise ratios (SNRs) and high
spectral resolutions. Yet, they are seldom used to carry out the acquisition of multi-angle
information and the modeling of the BRDF [13]. Considering that both spectral and spatial
resolutions need to be considered for BRDF modeling, push-broom hyperspectral imagers
can undoubtedly provide greater convenience for existing BRDF model building. However,
the characteristics of push-broom imaging are more sensitive to the flight altitude of the
UAV platform carried, so optimizing the multi-angle information acquisition method and
tapping the potential of the push-broom hyperspectral imager in multi-angle information
acquisition and BRDF modeling are of broad significance to ensure the accuracy of BRDF
modeling and extend the data acquisition path.

Eliminating the effect of random variations in illumination on BRDF modeling is criti-
cal. When acquiring images of a target area using a UAV-borne hyperspectral imager, the
flight altitude is generally located under clouds, and it takes time cycles to capture multi-
angle information. The illumination changes over time during the cycle, which results in
the acquired reflectance information being captured with inconsistent illumination [14].
Directly using such data with illumination bias for BRDF modeling, both the model parame-
ters and reflectance inversion will produce large deviations, and the changes in illumination
are generally random, making the random effects on BRDF modeling difficult to eliminate.
Most existing research assumes the consistency of illumination radiation within a certain
period and does not consider the impact of random changes in illumination [1,10,15–20].
However, if all hyperspectral images are corrected with the same atmospheric parameters,
there is still a significant error in the model parameters [12]. Currently, there are two main
methods to eliminate illumination; one is to eliminate it by synchronized monitoring of
equipment [21–23], but there is no uniform method for this elimination process. The other
is elimination by simulation [11] or model iteration [24], but when the random illumination
variation lacks regularity, the data from the simulation loses its meaning. Model iteration
requires ample data support in long time series, which is hugely inefficient. It is urgent
to solve the problem of inconsistent irradiance due to illumination variations and thus
improve the accuracy of BRDF modeling.

Models that characterize the BRDF can be classified as semi-empirical models, physical
models, and statistical models. The general modeling approach uses the model prototype
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to invert the model parameters with the observation data and then perform the BRDF
distribution in the target area [15–17,25,26]. For example, the prototype Kernel model can
be used to invert the isotropic scattering, body scattering, and geometrical optics kernel
coefficients in the model to obtain the reflectance distribution in 3D space with a small
amount of observational data [27–29]. However, particular surface types often limit the
applicability of the original model. Then, the improvement of the model is significant, such
as the body scattering kernel that fully considers the hotspot effect [15], the snow kernel
that characterizes the anisotropic reflectivity of snow [30], the terrain kernel for rugged
terrain [31], etc., which have effectively extended the application of the kernel model.
The Hapke model, as a physical model, maximizes the considerations of single scattering,
multiple scattering, and hotspot effects for the application of this model mainly focuses on
the quantification and calculation of each parameter, and its characterization ability also
tends to depend on the accuracy of each parameter. The RPV model is a semi-empirical
diametrically oriented reflectance model containing three parameters. The three parameters
are the incident/observed reflectance in the zenith direction, the asymmetry factor, and
the correction factor. The model is between the traditional semi-empirical and physical
models, which retains a better fit and highlights the physical factors affecting the spatial
albedo [28,29,31]. Therefore, the improvement based on the original BRDF model should
explore the model’s potential while considering the applicability of different models to the
improvement, reducing the difficulty of the improvement method and the complexity of
the model.

The main contributions of this paper are as follows:

1. Designed a multi-rectangle nested acquisition method applicable to push-broom
hyperspectral imaging, utilizing a UAV-carried hyperspectral imaging system and
ground-based auxiliary equipment to improve the access and efficiency of multi-angle
information acquisition, including illumination.

2. Acquired multi-angle hyperspectral images in the 400–1000 nm range, including
150 bands and multiple gray-level targets, and simultaneously acquired outdoor
illumination changes.

3. Model improvement by theorizing, normalizing, and introducing illumination varia-
tions into three BRDF models. BRDF modeling of multi-gray level targets using the
improved models improves the ability of the models to characterize reflectance in
three-dimensional space.

2. System and Methods
2.1. BRDF Data Acquisition System

BRDF modeling requires multi-angle reflectance information of the target region at
different bands, including reflectance at the solar zenith angle (SZA), solar azimuth angle
(SAA), observed zenith angle (VZA), and observed azimuth angle (VAA) [11]. The air and
ground equipment cooperate to collect information systems from different angles as shown
in Figure 1. Firstly, the coordinates of the imaging center are established, and the planned
flight route of the UAV is written into the flight control software, relying on the coordinate
positioning to realize multi-angle information acquisition under different VZAs and VAAs.
A VZA contains 12 groups of data within 0–360◦ at 30◦ intervals, and the SZA and SAA
are obtained by calculating the imaging time and latitude/longitude coordinates of the
imaging center.

This research utilizes a UAV platform, a stabilized gimbal, a hyperspectral imager,
targets and standard plate, and a downward atmospheric irradiance measurement device to
form a multi-angle BRDF acquisition system. For the flight equipment, the UAV uses a DJI
M600 multi-rotor UAV (Shenzhen, China), and the hyperspectral imager (Corning, NY, USA)
uses a Corning push-broom hyperspectral imager with the parameters in Table 1. The
spectrometer is mounted on a DJI Ronin MX stabilized gimbal, suspended underneath the
UAV, and the gimbal can be adjusted from 0◦ to 90◦ of the pitch angle as in Figure 2. The
imaging principle of push-broom hyperspectral is shown in Figure 3.
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Table 1. Spectrometer parameters.

Parameter MicroHSI

Spatial Pixels 1364 pixels
Focal Length 16 mm

Full Fov 28.6 degrees
Wavelength 400–1000 nm

Band Number 150
Pixel Size 11.7 µm

Frame Rate >300 Hz
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For the ground equipment, the laying of a multi-gray level for the ground equipment,
a multi-gray scale target, and a standard reflectivity plate are laid, and an atmospheric
downward irradiance measurement device is set up as in Figure 4a, which consists of a
spectrometer and a cosine corrector. The spectrometer uses the Ocean Optics USB2000+
(Dunedin, FL, USA), and the cosine corrector collects irradiance at a stereo angle of 180◦.
Multi-angle collection is achieved through UAV flight route planning, a hyperspectral
imager is used to obtain multi-spectral reflectance information at different angles, multi-
gray scale targets and a standard plate are used to provide reference and modeling data,
and an irradiance measurement device is synchronized to monitor irradiance changes. The
reflectance curves of the multi-gray level target and standard plate are shown in Figure 4b.
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2.2. Reflectance Factor

The BRDF is a physical quantity that reflects the properties of the earth’s surface itself,
independent of the measurement method. The strictly defined BRDF is unobservable, and
the BRDF measurement is generally referred to as the measurement of the BRF or hemi-
spherical directional reflectance factor (HDRF), which reflects the bidirectional reflectance
properties of the earth’s surface. Numerically, there is a multiplicative relationship between
the BRDF and BRF, as in Equation (1). In this paper, the measurement of the BRF is the
main focus, and a hyperspectral imager is used to obtain data on the directional reflection
of the target. A reference plate receives the outgoing illumination from the ideal diffuse
reflective surface and calculates the target region’s reflectivity factor as in Equation (2).

BRDF =
1
π
· BRF, (1)

ρt(θi, θv, ϕ, λ) =
DNt(θi, θv, ϕ, λ)

DNp(θi, θv, ϕ, λ)
α(θi, θv, ϕ, λ), (2)

where θi is the solar zenith angle, θv is the observation zenith angle, ϕ is the relative azimuth
angle between the solar azimuth and the observation azimuth, λ is the corresponding
wavelength, ρt(θi, θv, ϕ, λ) is the reflectivity factor of the target area, DNt(θi, θv, ϕ, λ) is the
DN value curve of the target area, DNp(θi, θv, ϕ, λ) is the DN value curve of the standard
plate, and α(θi, θv, ϕ, λ) is the reflectivity factor of the standard plate.

2.3. The Improvement of Models

By matching the hyperspectral push-broom imaging time and the atmospheric down-
ward irradiance time, the downward irradiance corresponding to the shooting of each
hyperspectral image frame can be obtained, and with the irradiance at a certain moment as



Remote Sens. 2024, 16, 543 6 of 21

a benchmark, the irradiance at all moments of the irradiance is normalized to obtain the
illumination correction factor as in Equation (3):

khsi(t, λ) =
Lhsi(t, λ)

Lt(t, λ)
, (3)

where t is a moment in time, λ is the corresponding wavelength, khsi(t, λ) is the illumi-
nation correction factor, Lhsi(t, λ) is the irradiance corresponding to the capture of each
hyperspectral image frame, and Lt(t, λ) is the irradiance at a moment in time during the
UAV data collection. The DN value curve is corrected using the illumination correction
factor as in Equation (4):

DN′t(θi, θv, ϕ, λ) = khsi(t, λ) · DNt(θi, θv, ϕ, λ), (4)

where DN′t(θi, θv, ϕ, λ) is the corrected DN value curve.
The corrected DN value curve DN′t(θi, θv, ϕ, λ) is obtained by substituting it into

Equation (2):

ρ′t(θi, θv, ϕ, λ) =
khsi(t, λ) · DNt(θi, θv, ϕ, λ)

DNp(θi, θv, ϕ, λ)
α(θi, θv, ϕ, λ) = khsi(t, λ) · ρt(θi, θv, ϕ, λ), (5)

where ρ′t(θi, θv, ϕ, λ) is the corrected reflectivity factor of the target area.
The Hapke model is formulated as

r(µ0, u, g) =
ω

4
µ0

µ0 + u
[(1 + B(g))p(g) + M(µ0, u)], (6)

where r(µ0, u, g) is the bidirectional reflectivity, µ0 is the cosine of the incidence angle, u
is the cosine of the exit angle, g is the phase angle between the incidence angle and the
exit angle, ω is the single-scattering albedo, B(g) is the backscattering function, p(g) is the
phase function, and M(µ0, u) is the multiple-scattering function.

The RPV model is formulated as

R(θi, θv, ϕi, ϕv, Θ) = ρ0
cosk−1 θi cosk−1 θv

(cos θi + cos θv)
k−1 P(Θ, g)h(ρ0, G), (7)

where θi, θv is the solar zenith angle and the observed zenith angle. ϕi, ϕv is the solar
azimuth and observed azimuth, Θ is the asymmetry factor with a value in the range of
−1 to 1, determining the relative amount of forward and backward scattering. k is the
correction factor, ρ0 is the incident and observed albedo in the zenith direction, P(Θ, g) is
the scattering phase function, and h(ρ0, G) is the hotspot effect term.

Kernel drive modeling formulas are

R(θi, θv, φ, λ) = fiso(λ) + fvol(λ)Kvol(θi, θv, φ) + fgeo(λ)Kgeo(θi, θv, φ), (8)

where θi, θv is the solar zenith angle and the observed zenith angle, φ is the relative az-
imuthal angle between the solar azimuth and the observed azimuth, λ is the corresponding
band, R(θi, θv, φ, λ) is the bidirectional reflectivity, Kvol(θi, θv, φ), Kgeo(θi, θv, φ) is the vol-
ume scattering kernel and the geometric optics kernel, and fiso(λ), fvol(λ), fgeo(λ) is the
coefficients of the isotropic scattering, volume scattering, and geometric optics kernel.

As in Equation (5), illumination correction factors are introduced into the three BRDF
models as in Equations (9)–(11):

rK(µ0, u, g) = khsi(t, λ) · ω

4
µ0

µ0 + u
[(1 + B(g))p(g) + M(µ0, u)], (9)
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RK(θi, θv, ϕi, ϕv, Θ) = khsi(t, λ) · ρ0
cosk−1 θi cosk−1 θv

(cos θi + cos θv)
k−1 P(Θ, g)h(ρ0, G), (10)

RK(θi, θv, φ, λ) = khsi(t, λ) · [ fiso(λ) + fvol(λ)Kvol(θi, θv, φ) + fgeo(λ)Kgeo(θi, θv, φ)], (11)

where rK(µ0, u, g), RK(θi, θv, ϕi, ϕv, Θ), RK(θi, θv, φ, λ) are the bidirectional reflectance of
the three models after correction. khsi(t, λ) is the illumination correction factor.

2.4. Evaluation Method

The fitting ability of the three models and the model after introducing the illumination
correction factor to the real data is evaluated comprehensively. Two aspects need to be
considered: the fitting error within the model before and after improvement compared to
the measured values and the comparison of the fitting error before and after improvement
among the models. For the fitting error within each model, the Mean Square Error (MSE)
and Root Mean Square Error (RMSE), as in Equations (12) and (13), are used to describe
the fitting status. Scatter plots in polar coordinates between models were used to reflect the
fitting differences between models.

MSE =
1
N

N

∑
i=1

(
Ri − R̂i

)2, (12)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Ri − R̂i

)2, (13)

where N is the total number of spatial angle combinations, Ri is the fitted value of the
original or improved model, and R̂i is the measured true value.

To verify the change of the target in the spectral dimension after illumination correction,
the spectral angle of the same target before and after illumination correction is calculated
as Equation (14):

θλ = arccos(

M
∑

i=1
R̂i∗RKi√

M
∑

i=1
(R̂i)

2 ∗
√

M
∑

i=1
(RKi)

2

), (14)

where M is the number of sample points on the spectral curve, RKi is the model fit value,
and R̂i is the measured true value.

To calculate the model fit values, the least squares error method is used to inversely
perform the model parameters by substituting the collected reflectance information under
different combinations of angles into the model. The BRDF distribution of the target under
any combination of angles is performed positively after obtaining the model parameters.

3. Experiment and Processing
3.1. BRDF Data Acquisition Scheme

The experiment was selected to be carried out under good weather conditions such as
clear and less cloudy, sufficient illumination, and low wind speed. The UAV performed
multi-flight and multi-angle acquisition and selected good-quality data for BRDF modeling.

Based on the imaging characteristics of push-broom hyperspectral imaging, the multi-
angle information acquisition scheme required for BRDF modeling was designed, and the
multi-angle refined BRDF data of the target area were obtained. The experimental site was
chosen as the roof of a high-tech industrial park (34.09◦N, 108.52◦E); six different reflectance
targets were laid in the target area, and a standard reflectance whiteboard was used to
provide the reflectance data required for radiometric correction and BRDF modeling. This
experiment collected 5◦ observation zenith angle data at intervals from 0◦ to 25◦. The
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gimbal angle was adjusted to control the observation zenith angle of the UAV to ensure that
the lens was always oriented to the target area. The 0◦ observation zenith angle data were
first obtained by flying at the initial altitude of 50 m (red line track of the imaging area in
Figure 5). The routine was adjust the route, fly to the starting position of the 5◦ observation
zenith angle, start from the observation zenith angle of 5◦ at each observation zenith angle
per the three rectangles nested route three times, fly a rectangle, and then fly the next
rectangle, after each rectangle to fly to the start of the next rectangle route position (such as
Figure 5, in turn flying the green, blue, and orange trajectory; the black solid dot represents
the starting point of each rectangular trajectory). The three rectangles have equal side
lengths, and the angle between adjacent rectangles is 30◦. Each side length of each rectangle
represents a set of observation azimuth data, and 12 sets of observation azimuth data can be
obtained in intervals of 0–360◦ under one observation zenith angle. The flight trajectories
under different zenith angles are the same. Only the altitude and traverse distance must
be adjusted under each observation zenith angle (5◦ to 10◦ observation zenith angle in
Figure 5). The length of the rectangle and the traverse distance are shown in Table 2. The
calculation of the observation zenith angle, altitude, and traverse distance are shown in
Equations (15) and (16). According to the data acquisition of this kind of flight trajectory,
the original hovering imaging can be changed to motion imaging, and the characteristics of
uniform velocity linear imaging of the swept-scan spectrometer can be considered. The
change of the original hovering imaging to motion imaging can assess the characteristics
of the push-broom spectrometer and acquire the BRDF modeling information with more
decadent spectral bands and more accurate spatial angles. At the same time, it can also
be used to construct several rectangular nested flight schemes with different pinch angles
according to the demand to collect more refined data.

h = H ∗ cos θv, (15)

s = H ∗ sin θv, (16)

where H is the initial altitude at 0◦ observation zenith angle, θv is the observation zenith
angle, h is the altitude corresponding to different observation zenith angles, and s is the
traverse distance corresponding to different observation zenith angles.
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Table 2. VZA with aerial height and traverse distance.

θv (:◦) 0 5 10 15 20 25

h (:m) 50.00 49.81 49.24 48.30 46.98 45.32
s (:m) 0 4.36 8.68 12.94 17.10 21.13

The UAV acquires a complete hyperspectral image under one VZA in 3 to 5 min and
reaches all preset VZAs in less than 20 min. We automated the chemical data collection as
much as possible and conducted multiple experiments to ensure the high quality of BRDF
modeling at the data level. During UAV hyperspectral data acquisition, the downward
atmospheric irradiance measurement device captures changes in solar irradiance in dif-
ferent bands in real time. To match the image data acquired by the UAV hyperspectral, it
is necessary to ensure that the irradiance acquisition is carried out throughout the experi-
mental process, the sampling frequency must be greater than the shooting frequency of
the hyperspectral image, and the spectral range includes the hyperspectral image spectral
band. The acquired solar illumination variation data were processed by noise reduction
and normalization to obtain the illumination correction factor. At the same time, the irra-
diance measurement device is spectrally equivalent to the hyperspectral image to ensure
consistency in the spectral dimension [32]. For each spectral channel i of the irradiance
measurement device, firstly, based on its original center wavelength λc(i) and full width
at half peak (FWHM) hb(i), drift λc(i) by the amount of ∆λ, hb(i) is unchanged, and we
simulate it using the Gaussian function to obtain the spectral response function f (i, ∆λ) of
the channel i corresponding to different ∆λ, with the expression

f (i, ∆λ) = exp

−
{

λ− [λc(i) + ∆λ]

hb(i)/2
√

ln 2

}2
, (17)

Then, we convolve with the hyperspectral image irradiance L(λ) to obtain the equiva-
lent irradiance Leq(i, ∆λ) of the channel i corresponding to different ∆λ; the expression is

Leq(i, ∆λ) =

∫ λi_end
λi_start f (i, ∆λ) · L(λ)dλ∫ λi_end

λi_start f (i, ∆λ)dλ
, (18)

Finally, the illumination over time curve and the hyperspectral image shooting time are
obtained from the irradiance measurement device and the UAV hyperspectral imaging system,
and the normalized illumination correction factor is matched to the hyperspectral image on the
order of seconds to realize the illumination correction of the hyperspectral image.

3.2. Irradiance Monitoring and Reflectance Distribution

The atmospheric downward irradiance measurement device was set up near the target
area. The solar irradiance was acquired before the UAV took off to collect data, with
a spectral range of 340–1028 nm, a sampling interval of 1 s, and a total of 2220 sets of
irradiance data from 9:00 to 9:37. This period consists of the UAV taking off, adjusting
its attitude, collecting information from multiple angles, and landing. Figure 6 shows the
irradiance change (e.g., Figure 6a) with time for a typical monochromatic wavelength band
between 450 nm and 950 nm and the mean and standard deviation (e.g., Figure 6b) of
irradiance of each band’s mean and standard deviation of irradiance in that period. The
range of solar irradiance fluctuations is relatively flat on a clear day. In the 450 nm to
650 nm range, solar irradiance varied from about 9% to 47% between the beginning and
end of the collection and less than 5% at wavelengths greater than 750 nm.
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Figure 6. Solar irradiance and deviation. (a) Solar irradiance changes; (b) mean and standard deviation.

To reflect the effect of random illumination variation on BRDF modeling, we inter-
cepted the same image elements within the same position from the acquired hyperspectral
images at different times. We acquired the changes in their DN value curves as shown in
Figure 7. It can be seen that there are obvious changes in the DN value curves acquired at
the same position before and after 10 min on the 50% target mark, with the largest changes
in the DN values between 500 and 800 nm. This variation affects the BRDF quantization
research to a great extent, with random and unpredictable effects on the fitting of BRDF
models. Therefore, it is crucial to eliminate the random variation of illumination.
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The hyperspectral imager used in the experiment has a spectral range of 400–1000 nm
and contains 150 bands. The acquired hyperspectral images were arranged according to
the spatial angle at the acquisition time. The corresponding hyperspectral images under
each angular combination were sampled and averaged at multiple points to obtain the
reflectance data under the 150 bands. The target area was radiatively corrected by utilizing
the acquired target and the standard plate reflectance, and the targets were corrected with
each other. The target area was radiometrically fixed using the collected target and standard
plate reflectance, and the targets were corrected with each other to obtain the standard
reflectance curve under the corresponding spatial angle combination in the target area.
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4. Results
4.1. Measured Reflectance Distribution

Multiple-angle information was measured for each target in the test. This section
selected 40% of the targets to demonstrate the measured reflectance at 495 nm and 695 nm
monochromatic bands (e.g., Figure 8). In Figure 8, the polar diameter indicates the reflectiv-
ity magnitude, and the polar angle shows the observation azimuth angle VAA, with the
0◦ direction being the geographic due north direction and the VAA interval of 30◦. The
different shaped blocks in red, orange, yellow, and green colors represent the reflectance
of the VZA at 5◦ intervals within 0–20◦. The relative errors of the measured data for
the 40% target are 6.25% and 6.26% at 495 nm and 695 nm, respectively. The directional
distribution of the BRF properties of the same target tends to be consistent in different
wavelength bands.
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4.2. Model Fitting Results for Different Bands of the Same Target

In the test, 150 typical bands between 400 nm and 1000 nm were fitted. For demonstra-
tion purposes, 40% of the target fitting results at 495 nm and 695 nm were selected in this
chapter to compare the fitting results of the three models before and after the improvement.

The fitting results at 495 nm are shown in Figure 9, and those at 695 nm are shown
in Figure 10. Figure 9 shows that the three models have a “clustering” effect on the
original data, and the BRF shapes fitted by each model are more precise and symmetrically
distributed. The difference between the maximum and minimum values narrows, but the
three fitting results are slightly higher than the accurate reflectance data. After introducing
the illumination correction factor, the BRF distribution of the target is more uniform,
which vastly improves the slightly higher fitted values and reduces the error between
the fundamental values and the target. From the deviation of the model before and after
the improvement, the change of the Kernel model is mainly concentrated in the center of
the target, and the shape of the BRF distribution before and after illumination correction
changes a lot but still maintains a symmetric distribution.

The “RPV” model is the same as the “Hapke” model; the illumination correction
does not affect the shape distribution of the BRF, and the range of changes in the “RPV”
model has a “region-like” distribution. The fitting results show that the BRF of the target
is spatially distributed regionally, and the hotspot effect of the Hapke model and the
RPV model is noticeable. After introducing the illumination correction factor, all three
models numerically reduced the fitting error significantly compared with the original
model, making the fitting results close to the real value of the target.
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Figure 10 shows the fitting results of 695 nm data under the 40% target; compared
with the 495 nm fitting results, the shape of the BRF is more similar, and the directional
distribution is more consistent; the difference mainly focuses on the size of the numerical
aspects; the fitting value of 495 nm is more significant, and the fitting value of 695 nm is
smaller, which is mainly dependent on the actual collection of the reflectance data. The
original model focuses on the reflectance data under the corresponding wavelength only,
while the improved model introduces the wavelength term, which can distinguish the BRF
distribution between different wavelengths to a more significant extent and link the BRF
between different wavelengths. The original model only focuses on the reflectance data at
the corresponding wavelengths and is not sensitive to the magnitude of the wavelengths.
In contrast, the improved model introduces a wavelength term, which can differentiate the
BRF distributions between different wavelengths to a greater extent and can also link the
BRFs between different wavelengths.
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4.3. Model Fitting Results for Different Targets in the Same Band

For the BRF distribution of targets in typical bands, 20%, 40%, and 50% reflectance
targets were selected at 495 nm. The fitting ability and distribution of the results before
and after the improvement of the three models were considered. The effect of the obser-
vation zenith angle on the accuracy of the models was investigated. The results for fixed
observation zenith angles of 5◦, 10◦, and 15◦ are shown in Figure 11, where the polar angle
indicates the observation azimuth and the polar diameter indicates the reflectance value
at the observation azimuth and fixed observation zenith angle. For the same target, the
reflectivity factors collected under different observation zenith angles match, indicating
that the observation azimuth angle has less influence on the reflectivity of the same target.
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In Figure 11, the measured data on 20% of the targets are significant in the observed
azimuth angle of 0–90◦, small in 180–270◦, and “complementary” in the symmetric position
in the range of 0–360◦, and similar distribution patterns exist in the measured data on 40%,
50%, and the rest of the targets. The three models were fitted to the raw data, and all three
models had reasonable constraints on the reflectance factor in the spatial range and could
limit the discrete raw data to the neighborhood of the standard data, as shown in Figure 11
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(the former). Before the illumination correction factor, the results of the three models were
slightly more prominent. Still, the relative deviation between the models is minor, the
target spatial reflectance distribution characteristics are apparent, and the three models are
numerically more consistent. After the introduction of the illumination correction factor to
improve the model, as shown in Figure 11 (The latter), the constraints of the three models
on the data still exist; at the 5◦ observation zenith angle, the kernel model for different
reflectance targets is slight, but the degree of smallness will be reduced with the increase of
target reflectance. At the 10◦ zenith angle, the Kernel model fits are significant, but again,
the effect is reduced with increasing target emissivity, and the Hapke and RPV models are
closer, with the exact location of the hotspot effect. At the 15◦ zenith angle, the raw data
distribution shows that the data quality is higher at this time, and the fitting results of the
three models are more consistent in distribution and closer in value.

4.4. Model Fit Coefficients

The Kernel model was fitted to six targets with different reflectivity, and the model’s
essential coefficients C(Coefficient) for typical monochromatic bands are shown in Table 3.
The anisotropic kernel coefficient, ƒiso, increases with the target reflectivity in all three
typical monochromatic bands before the introduction of the illumination change. The body
scattering kernel coefficient ƒvol decreases with increasing target reflectivity and increases
in absolute value. The geometrical optics kernel ƒgeo improves with increasing target
reflectivity. After considering illumination, ƒiso, ƒvol, and ƒgeo of typical monochromatic
bands all decrease compared to the previous ones but still tend to change with the increase
of target reflectivity.

Table 3. Kernel coefficient.

λ C 5% 10% 20% 40% 50% 70%

The
former

695 nm

ƒiso 0.0808 0.1271 0.1542 0.4051 0.4123 0.4638
ƒvol −0.1876 −0.3206 −0.6385 −0.4941 −1.0575 −2.1857
ƒgeo 0.0057 0.0138 0.0348 0.0243 0.0519 0.1101

The
latter

ƒiso 0.0549 0.0839 0.0929 0.2750 0.2684 0.2793
ƒvol −0.1413 −0.2390 −0.4998 −0.2953 −0.7768 −1.7256
ƒgeo 0.0095 0.0198 0.0426 0.0436 0.0716 0.1325

The Hapke model is more sensitive to the single-scattering albedo and the hotspot
effect, and the single-scattering albedo shows different trends at different wavelengths,
as shown in Table 4, with values between 0 and 1. The single-scattering albedo increases
gradually from low reflectivity to high reflectivity targets. For the same target, in the typical
monochromatic wavelength band, the single scattering albedo changes little and tends to a
stable value; in the high reflectivity target, it is more prominent and gradually grows to a
saturation value.

Table 4. Hapke coefficient.

λ C 5% 10% 20% 40% 50% 70%

The
former 695 nm ω

0.4974 0.6276 0.7796 0.9058 0.8945 0.8826

The
latter 0.5362 0.7870 0.8682 0.9790 1 0.9991

The RPV model was fitted to the data, and its parameters reflect the relative amount
of forward and backward scattering. In Table 5, the forward scattering is larger than the
backward scattering for different targets in typical monochromatic bands, and the relative
amount increases after introducing the light correction factor.
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Table 5. RPV coefficient.

λ C 5% 10% 20% 40% 50% 70%

The
former 695 nm Θ

0.1903 0.2389 0.3289 0.1394 0.2255 0.3102

The
latter 0.2389 0.2945 0.3969 0.1864 0.2816 0.3770

4.5. Effect of Illumination and VZA Variations on Model Accuracy

Figure 12 shows the effect of illumination volatility on model accuracy. Selecting six
typical bands of irradiance change values during the test period, it can be seen that the
volatility of illumination has an increasing trend between 450 nm and 550 nm, reaches
the maximum value at 550 nm, has a decreasing trend after 550 nm, and is stable after
950 nm, but the volatility value of illumination is still considerable before 750 nm. The three
models increase the MSE with the increase of illumination volatility. The model error is the
largest between 550 nm and 750 nm, and the illumination volatility is also the strongest
in the range of the band; 950 nm, and the nearby illumination bands have the most minor
change. The model’s accuracy is kept stable but still has a significant error. This is because,
for solar illumination, most of the radiant energy is concentrated in the visible part. The
actual illumination fluctuations and random changes are mainly focused in this part. The
illumination fluctuations in the rest of the band range are insignificant compared to the
visible part. At the same time, 950 nm is already located at the end of the hyperspectral
camera response; the acquired data is relatively rough, so the model is maintained at a
lower and more stable accuracy.
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Figure 12. Impact of illumination variations on model accuracy.

Figure 13 shows the effect of changing the observed zenith angle from 5◦ to 25◦ on the
model’s accuracy before and after the model improvement. The trend of the model before
and after the model improvement is the same; the model error continues to decrease in the
range of 5◦ to 15◦, and the model accuracy is highest at the observed zenith angle of 15◦.
The model error gradually increases in the range of 15◦ to 25◦.
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4.6. Spectral Angle of the Target before and after Model Improvement

Tables 6–8 calculate the spectral angles of the model-fitted values and the measured val-
ues under typical monochromatic bands after the three model improvements, respectively.
Six gray-level targets at 495 nm, 695 nm, and 795 nm maintain smaller spectral angles.

Table 6. K-Kernel spectral angle.

λ 5% 10% 20% 40% 50% 70% Average

θλ

495 nm 8.87 8.22 10.02 4.69 6.21 8.28 7.72
695 nm 10.57 10.14 12.28 5.48 7.58 9.89 9.32
795 nm 7.13 8.06 10.42 5.24 7.09 9.62 7.93
Average 8.86 8.81 10.91 5.14 6.96 9.26

Table 7. K-Hapke spectral angle.

λ 5% 10% 20% 40% 50% 70% Average

θλ

495 nm 8.88 8.13 9.77 6.01 6.56 7.97 7.89
695 nm 10.46 9.61 11.47 6.21 7.25 8.82 8.97
795 nm 6.84 7.38 9.53 5.42 6.53 8.50 7.37
Average 8.73 8.37 10.26 5.88 6.78 8.43

Table 8. K-RPV spectral angle.

λ 5% 10% 20% 40% 50% 70% Average

θλ

495 nm 8.19 7.21 8.74 4.39 5.09 6.91 6.76
695 nm 10.13 9.11 10.99 4.82 6.33 8.55 8.32
795 nm 7.34 7.72 9.86 4.92 6.59 9.21 7.61
Average 8.55 8.01 9.86 4.71 6.00 8.22

5. Discussion

We used a UAV push-broom hyperspectral imaging system to obtain multi-angle
information on six gray-scale targets in the target area and synchronously acquired the
illumination changes during the experiment. The reflectance distribution characteristics
of the raw data, i.e., the problems of uneven data distribution and low quality, are first
analyzed, and solutions are given. Three different types of BRDF original and improved
models were used for fitting, and the fitting ability of the three models, the sensitivity,
and the focus of the model parameters to multi-angle data were analyzed. The reflectance
deviations before and after illumination correction are also compared.

In Figure 8, the measured reflectance data of the 40% target under the monochromatic
typical bands of 495 nm and 695 nm can be seen as a more obvious symmetrical distribution,
with better uniformity and numerically significant values. Still, the distribution of BRF
shapes of the 40% target under the two bands tends to be consistent, which is in line with
the spatial distribution characteristics of the target. The acquired data strongly support
the model fitting, which verifies the use of push-broom hyperspectral imaging for BRDF
modeling at the data level.

Figures 9 and 10 show that the data fitted to 40% of the target at 495 and 695 nm. The
three original models can constrain the distribution of target BRFs smoothly and uniformly,
but the model-fitted data have the problem of large fitted values. After introducing the
illumination correction factor (the latter), the improved model retains the characteristics of
the previous uniformity distribution but reduces the BRF value to be closer to the target’s
real value. The reason for this is that the measured data, due to illumination variations
and noise, affects the fitting effect of the model and makes it difficult to highlight the BRF
characteristics of the target. Under different wavelength bands, the BRF shapes of 40% of
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targets fitted by the improved model converge under 495 nm and 695 nm, and the changes
are mainly manifested in the slight differences in the numerical values. From the fitting
effect of each model, the fitting value of the Kernel model is on the large side, and the
shape of BRF before and after illumination improvement is more different. The Hapke
model can fully describe the distribution of surface properties of the target, so it can reflect
the influence of scattering on the distribution of BRF and highlight the hotspot effect. The
RPV model can consider the hotspot effect and backward and forward scattering, and
the results have the details of the Hapke model and the uniformity of the Kernel model.
The improvement effects of the three BRDF models demonstrate the applicability of the
proposed illumination correction factors to different models.

In Figure 11, the distribution of the measured reflectivity factors of the 20%, 40%, and
50% targets at 5◦, 10◦, and 15◦ observation zenith angles are not uniform, and there are
differences with the real data of the targets. The reasons for this are analyzed as systematic
errors caused by the radiometric calibration and UAV system acquisition process and the
influence of illumination changes on the measured data. When enough data are collected,
the systematic error can be reduced or eliminated by multiple iterations of the model, and
illumination variations can be eliminated by improving the model. In terms of BRF values,
after introducing the illumination correction factor to improve the model, the fitting error
of the model is substantially reduced, and the numerical deviation of the target BRF is
diminished. The results of the three grayscale targets and three VZAs demonstrate that
the proposed improved model is robust to different reflectance and observation angles
and can increase its ability to resist multiple influencing factors while retaining the fitting
characteristics of the original model.

The BRF fitting results and representative parameters for the six targets before and
after the model improvement are shown in Tables 3–5, which show that the illumination
correction factor is real and effective for the model improvement, and it reduces the
uncertainty effects of random illumination changes on the model parameters. The original
model itself can improve the inversion accuracy of the parameters contained in the model.

In Figures 12 and 13, the effect of illumination and VZA changes on the model accuracy
can be seen as a trend of increasing or decreasing illumination volatility, with a subsequent
increase or decrease in model error. After illumination correction, the model shows higher
accuracy under different VZA; the best VZA is 15◦. For the optimal observation angle,
we believe that it is related to the surface characteristics of the target as well as the posi-
tion of the target in the imaging space; specifically, features made of different materials,
when imaged at different positions in space, will show better reflections at certain angles.
Tables 6–8 reflect the stability of the improved model in the spectral dimension for the same
target, which can eliminate the effect of illumination on the target’s BRF characteristics
while preserving the target’s spectral characteristics.

The illumination correction factor proposed in this paper can eliminate the illumination
variations to the maximum extent. We calculated the RMSE of the three models before
and after the improvement, as shown in Tables 9–11. From the results, the three improved
models significantly improved the accuracy of different targets and bands. In the actual
BRDF modeling, the illumination is unchanged, or the irradiance change in a particular
band is smooth; the improved model can be degraded to the original BRDF model, and
the illumination changes are significant and more random; the enhanced model is able
to eliminate this effect, and the larger the fluctuation and the more random the changes
are, the more the improved model advantages are manifested. The model has obvious
superiority in various illumination environments and all bands. This is significant for
exploring the model’s potential and promoting its application.
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Table 9. BRF fitting errors of the Kernel model for multiple targets and bands before and after
illumination correction.

Kernel RMSE λ 5% 10% 20% 40% 50% 70% Average

The
former

495 nm 0.014 0.024 0.045 0.033 0.055 0.106 0.046
695 nm 0.017 0.023 0.053 0.041 0.069 0.130 0.056
795 nm 0.020 0.032 0.056 0.041 0.070 0.130 0.058
Average 0.017 0.026 0.051 0.038 0.065 0.122

The
latter

495 nm 0.014 0.02 0.040 0.033 0.052 0.096 0.043
695 nm 0.014 0.026 0.049 0.041 0.066 0.120 0.053
795 nm 0.017 0.026 0.046 0.035 0.059 0.109 0.048
Average 0.015 0.024 0.045 0.036 0.059 0.108

Table 10. BRF fitting errors of the Hapke model for multiple targets and bands before and after
illumination correction.

Hapke RMSE λ 5% 10% 20% 40% 50% 70% Average

The
former

495 nm 0.014 0.02 0.041 0.035 0.050 0.095 0.043
695 nm 0.017 0.026 0.049 0.040 0.060 0.111 0.051
795 nm 0.017 0.023 0.050 0.039 0.061 0.111 0.050
Average 0.016 0.023 0.047 0.038 0.057 0.106

The
latter

495 nm 0.014 0.020 0.039 0.042 0.055 0.093 0.043
695 nm 0.014 0.024 0.046 0.047 0.063 0.107 0.050
795 nm 0.014 0.024 0.042 0.039 0.057 0.098 0.045
Average 0.014 0.023 0.042 0.042 0.058 0.099

Table 11. BRF fitting errors of the RPV model for multiple targets and bands before and after
illumination correction.

RPV RMSE λ 5% 10% 20% 40% 50% 70% Average

The
former

495 nm 0.014 0.02 0.041 0.030 0.049 0.098 0.042
695 nm 0.017 0.026 0.049 0.036 0.062 0.121 0.052
795 nm 0.020 0.030 0.052 0.036 0.063 0.123 0.054
Average 0.017 0.025 0.047 0.034 0.058 0.114

The
latter

495 nm 0.010 0.020 0.035 0.030 0.042 0.079 0.036
695 nm 0.014 0.02 0.044 0.036 0.055 0.102 0.045
795 nm 0.017 0.024 0.044 0.033 0.0031 0.105 0.037
Average 0.013 0.021 0.041 0.033 0.033 0.095

6. Conclusions

To solve the problem of UAV-carried push-broom hyperspectral BRDF being challeng-
ing to acquire and model, the random variation of outdoor illumination affects the accuracy
of BRDF modeling. In this paper, we propose a rapid multi-angle information acquisition
scheme and BRDF modeling method considering outdoor illumination variations, which
solves the problem of difficulty in acquiring and modeling UAV-carried push-broom hy-
perspectral BRDFs and incorporates illumination variations into the BRDF model, which
solves the problem of illumination affecting the actual modeling accuracy of the BRDF
model. This lightweight system can quickly acquire multi-angle reflectance information
under different wavelength bands required for BRDF modeling in the target area. It can
obtain solar illumination changes in real-time. We propose a light correction factor by
combining the effect of illumination changes on the BRDF model and using this factor to
improve the three traditional BRDF models. The improved model can eliminate the effect of
illumination changes on the accuracy of BRDF modeling. Multi-target BRDF modeling was
completed using this set of schemes and methods. The errors before and after model im-
provement were verified on targets with different gray levels. The potential of push-broom
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hyperspectral imagers at the data level of BRDF modeling was explored to demonstrate
the feasibility and applicability of the modeling. Our next goal is to continue to improve
the multi-angle information acquisition system, further optimize the matching scheme of
the data acquired by the multi-mode equipment, gain multi-angle information based on
single-pixel accuracy, fully consider the spatial factors affecting the model accuracy, and
continue to explore the model’s upgradability and generalizability, to achieve fast BRDF
modeling with high accuracy and high spectra and in a wide range.
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