Time Lag and Cumulative Effects of Extreme Climate on Coastal Vegetation in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Introduction
2.3. Methods
2.3.1. Extraction of Extreme Climate Indices
2.3.2. Gradual Analysis
2.3.3. Abrupt Analysis
2.3.4. Time Lag-Accumulation Effects of Vegetation Responses to Climatic Factors
- (i)
- When i = 0 and k = 0, there is no time effect.
- (ii)
- When i = 0 and k is between 1 and 3, only time accumulation effects are considered.
- (iii)
- If i is between 1 and 3, and k = 0, only time lag effects are considered.
- (iv)
- When both i and k are between 1 and 3, both time lag and time accumulation effects are simultaneously considered, encompassing their combined effects. Therefore, the fourth scenario encompasses all possible time effects.
3. Result
3.1. Gradual and Abrupt Vegetation Changes along the Coastal Areas of China
3.2. Temporal and Spatial Trends of Extreme Climate Indices
3.3. Time Lag-Accumulation Effects of Extreme Climate on Vegetation
4. Discussion
4.1. Response of Climate Change in Chinese Coastal Areas to Global Changes
4.2. Comparison of Gradual Analysis and Abrupt Analysis
4.3. Temporal Effects of Extreme Climate on Coastal Chinese Vegetation
4.4. Limitations and Uncertainty
5. Conclusions
- (1)
- With an increase in the frequency of high-temperature events and extreme precipitation events, the northern coastal areas of China have experienced a gradual increase in day–night temperature differences, while the southern regions exhibit the opposite trend. Precipitation has primarily increased in the form of short-duration heavy rainfall, concentrated mainly in the Yangtze River Delta and the Guangdong-Guangxi region, with limited precipitation increase in the northern areas.
- (2)
- Gradual analysis and abrupt analysis reveal that the coastal regions of China have undergone overall improvement and partial degradation over the past two decades, with the southern regions showing more significant improvements in vegetation compared to the northern areas. Areas with more severe vegetation degradation are concentrated in regions facing rapid urbanization pressures, particularly in the Yangtze River estuary.
- (3)
- Vegetation’s response to temperature and precipitation indices exhibits a time lag-accumulation effect, with different indices producing varying feedback on vegetation growth at different time scales. Overall, cumulative effects of climate variables have a stronger explanatory power for vegetation growth in the coastal regions of China compared to lag effects. Specifically, vegetation responds more rapidly to temperature changes, typically within one month, while the response to precipitation becomes evident after a time accumulation of approximately 2–3 months. These results can enhance our understanding of the climate–vegetation relationship and are valuable for vegetation management and climate adaptation in the region.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Consent for Publication
References
- Nesbitt, L.; Hotte, N.; Barron, S.; Cowan, J.; Sheppard, S.R.J. The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban For. Urban Green. 2017, 25, 103–111. [Google Scholar] [CrossRef]
- Franklin, J.; Serra-Diaz, J.M.; Syphard, A.D.; Regan, H.M. Global change and terrestrial plant community dynamics. Proc. Natl. Acad. Sci. USA 2016, 113, 3725–3734. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Wang, K.; Li, X.; Bastos, A.; Canadell, J.G.; Ciais, P.; Friedlingstein, P.; Sitch, S. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 2020, 26, 300–318. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.M.; Held, I.M.; Thompson, D.W.; Trenberth, K.E.; Walsh, J.E. Global warming and winter weather. Science 2014, 343, 729–730. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yuan, W.; Wu, D.; Zhang, Y.; Shen, R.; Xia, X.; Ciais, P.; Liu, J. Impacts of record-breaking compound heatwave and drought events in 2022 China on vegetation growth. Agric. For. Meteorol. 2024, 344, 109799. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mishra, A.K. How Unusual Is the 2022 European Compound Drought and Heatwave Event? Geophys. Res. Lett. 2023, 50, e2023GL105453. [Google Scholar] [CrossRef]
- Islam, A.; Islam, H.M.T.; Shahid, S.; Khatun, M.K.; Ali, M.M.; Rahman, M.S.; Ibrahim, S.M.; Almoajel, A.M. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change. J. Environ. Manag. 2021, 289, 112505. [Google Scholar] [CrossRef]
- Zhou, Y.; Batelaan, O.; Guan, H.; Liu, T.; Duan, L.; Wang, Y.; Li, X. Assessing long-term trends in vegetation cover change in the Xilin River Basin: Potential for monitoring grassland degradation and restoration. J. Environ. Manag. 2024, 349, 119579. [Google Scholar] [CrossRef]
- Smith, W.K.; Biederman, J.A.; Scott, R.L.; Moore, D.J.P.; He, M.; Kimball, J.S.; Yan, D.; Hudson, A.; Barnes, M.L.; MacBean, N.; et al. Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics across Dryland Ecosystems of Southwestern North America. Geophys. Res. Lett. 2018, 45, 748–757. [Google Scholar] [CrossRef]
- Walther, S.; Voigt, M.; Thum, T.; Gonsamo, A.; Zhang, Y.; Köhler, P.; Jung, M.; Varlagin, A.; Guanter, L. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob. Chang. Biol. 2016, 22, 2979–2996. [Google Scholar] [CrossRef]
- Wu, C.; Peng, D.; Soudani, K.; Siebicke, L.; Gough, C.M.; Arain, M.A.; Bohrer, G.; Lafleur, P.M.; Peichl, M.; Gonsamo, A.; et al. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agric. For. Meteorol. 2017, 233, 171–182. [Google Scholar] [CrossRef]
- Fang, J.; Lutz, J.A.; Wang, L.; Shugart, H.H.; Yan, X. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. Glob. Chang. Biol. 2020, 26, 6974–6988. [Google Scholar] [CrossRef] [PubMed]
- Köehler, P.; Frankenberg, C.; Magney, T.S.; Guanter, L.; Joiner, J.; Landgraf, J. Global retrievals of solar induced chlorophyll fluorescence with TROPOMI: First results and inter-sensor comparison to OCO-2. Geophys. Res. Lett. 2018, 45, 10456–10463. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, J.; He, B.; Altaf Arain, M.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.; et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations. Glob. Chang. Biol. 2018, 24, 3990–4008. [Google Scholar] [CrossRef] [PubMed]
- Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Köhler, P.; Pollock, R.; Taylor, T.E. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, R.; Dickinson, R.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. J. Geophys. Res. Biogeosci. 2015, 120, 2427–2440. [Google Scholar] [CrossRef]
- Wang, S.; Huang, C.; Zhang, L.; Lin, Y.; Cen, Y.; Wu, T. Monitoring and Assessing the 2012 Drought in the Great Plains: Analyzing Satellite-Retrieved Solar-Induced Chlorophyll Fluorescence, Drought Indices, and Gross Primary Production. Remote Sens. 2016, 8, 61. [Google Scholar] [CrossRef]
- He, P.; Sun, Z.; Xu, D.; Liu, H.; Yao, R.; Ma, J. Combining gradual and abrupt analysis to detect variation of vegetation greenness on the loess areas of China. Front. Earth Sci. 2022, 16, 368–380. [Google Scholar] [CrossRef]
- He, P.; Sun, Z.; Han, Z.; Dong, Y.; Liu, H.; Meng, X.; Ma, J. Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 42516–42532. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol. 2015, 36, 1033–1050. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.; Feng, X.; Fu, B.; Wang, S.; Ji, F.; Pan, S. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Fang, W. Time-lagged response of vegetation dynamics to climatic and teleconnection factors. Catena 2020, 189, 104474. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.; Ning, H.; Luo, Q. Changes in climate extremes and their impact on wheat yield in Tianshan Mountains region, northwest China. Environ. Earth Sci. 2016, 75, 1228. [Google Scholar] [CrossRef]
- Xu, C.; McDowell, N.G.; Fisher, R.A.; Wei, L.; Sevanto, S.; Christoffersen, B.O.; Weng, E.; Middleton, R.S. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 2019, 9, 948–953. [Google Scholar] [CrossRef]
- Tan, Z.; Tao, H.; Jiang, J.; Zhang, Q. Influences of Climate Extremes on NDVI (Normalized Difference Vegetation Index) in the Poyang Lake Basin, China. Wetlands 2015, 35, 1033–1042. [Google Scholar] [CrossRef]
- Ying, H.; Zhang, H.; Zhao, J.; Shan, Y.; Zhang, Z.; Guo, X.; Rihan, W.; Deng, G. Effects of spring and summer extreme climate events on the autumn phenology of different vegetation types of Inner Mongolia, China, from 1982 to 2015. Ecol. Indic. 2020, 111, 105974. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, R.; Yin, S.; Bao, Y.; Ayal, D.Y. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecol. Indic. 2018, 89, 101–109. [Google Scholar] [CrossRef]
- Luo, M.; Sa, C.; Meng, F.; Duan, Y.; Liu, T.; Bao, Y. Assessing extreme climatic changes on a monthly scale and their implications for vegetation in Central Asia. J. Clean. Prod. 2020, 271, 122396. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, X. Impact of extreme climates on vegetation from multiple scales and perspectives in the Agro-pastural Transitional Zone of Northern China in the past three decades. J. Clean. Prod. 2022, 372, 133459. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, Q.; Sun, Y.; Zhang, J.; Yang, L.; Yang, E.; Li, H.; Du, Q. Three-dimensional dynamic characteristics of vegetation and its response to climatic factors in the Qilian Mountains. Catena 2022, 208, 105694. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Pei, F.; Li, X.; Du, G. Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming. Agric. For. Meteorol. 2018, 252, 130–143. [Google Scholar] [CrossRef]
- Chen, T.; de Jeu, R.A.M.; Liu, Y.Y.; van der Werf, G.R.; Dolman, A.J. Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sens. Environ. 2014, 140, 330–338. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Anderson, L.O.; Malhi, Y.; Aragão, L.E.; Ladle, R.; Arai, E.; Barbier, N.; Phillips, O. Remote sensing detection of droughts in Amazonian forest canopies. New Phytol. 2010, 187, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Bunting, E.L.; Munson, S.M.; Villarreal, M.L. Climate legacy and lag effects on dryland plant communities in the southwestern U.S. Ecol. Indic. 2017, 74, 216–229. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Liu, X.; Yang, J.; Lin, K.; Du, G. NDVI indicated inter-seasonal non-uniform time-lag responses of terrestrial vegetation growth to daily maximum and minimum temperature. Glob. Planet. Chang. 2019, 177, 27–38. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Z.; Peng, S. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102179. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, A.; Liu, C.; Zhao, Y.; Zhao, A.; Wang, D. Analysis of the time-lag effects of climate factors on grassland productivity in Inner Mongolia. Glob. Ecol. Conserv. 2021, 30, e01751. [Google Scholar] [CrossRef]
- Wei, W.; Liu, T.; Zhou, L.; Wang, J.; Yan, P.; Xie, B.; Zhou, J. Drought-Related Spatiotemporal Cumulative and Time-Lag Effects on Terrestrial Vegetation across China. Remote Sens. 2023, 15, 4362. [Google Scholar] [CrossRef]
- Zhe, M.; Zhang, X. Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecol. Indic. 2021, 124, 107431. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, J.; Guan, J.; Han, W.; Liu, Y. Grassland cover dynamics and their relationship with climatic factors in China from 1982 to 2021. Sci. Total Environ. 2023, 905, 167067. [Google Scholar] [CrossRef]
- Rammig, A.; Wiedermann, M.; Donges, J.F.; Babst, F.; von Bloh, W.; Frank, D.; Thonicke, K.; Mahecha, M.D. Coincidences of climate extremes and anomalous vegetation responses: Comparing tree ring patterns to simulated productivity. Biogeosciences 2015, 12, 373–385. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Hou, Y.; Xue, X. Ecosystem service multifunctionality assessment and coupling coordination analysis with land use and land cover change in China’s coastal zones. Sci. Total Environ. 2021, 797, 149033. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, M.; Gao, C.; Zhang, Y.; She, Q.; Long, L.; Tu, Y.; Yang, Y. Greening and browning of the coastal areas in mainland China: Spatial heterogeneity, seasonal variation and its influential factors. Ecol. Indic. 2020, 110, 105888. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.; Wang, Y. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014. Atmos. Res. 2017, 197, 94–104. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, H.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y.; Wang, A. Vegetation responses to extreme climatic indices in coastal China from 1986 to 2015. Sci. Total Environ. 2020, 744, 140784. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary Production Derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; Kimball, J.S.; Reichle, R.H.; Scott, R.L.; Litvak, M.E.; Bohrer, G.; Frankenberg, C. Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought. Remote Sens. Environ. 2020, 251, 112062. [Google Scholar] [CrossRef]
- Yao, T.; Liu, S.; Hu, S.; Mo, X. Response of vegetation ecosystems to flash drought with solar-induced chlorophyll fluorescence over the Hai River Basin, China during 2001–2019. J. Environ. Manag. 2022, 313, 114947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ye, A. Would the obtainable gross primary productivity (GPP) products stand up? A critical assessment of 45 global GPP products. Sci. Total Environ. 2021, 783, 146965. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Liu, J.; Liu, D.; He, P.; Li, Z.; Shi, M.; Xu, J. Spatiotemporal variability characteristics of extreme climate events in Xinjiang during 1960–2019. Environ. Sci. Pollut. Res. Int. 2023, 30, 57316–57330. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Feng, J.; Tang, F.; He, H.S.; Liang, Y.; Wu, M.M.; Xu, W.; Liu, B.; Shi, F.; Chen, F. Predicting the responses of boreal forests to climate-fire-vegetation interactions in Northeast China. Environ. Model. Softw. 2022, 153, 105410. [Google Scholar] [CrossRef]
- Gong, H.; Cheng, Q.; Jin, H.; Ren, Y. Effects of temporal, spatial, and elevational variation in bioclimatic indices on the NDVI of different vegetation types in Southwest China. Ecol. Indic. 2023, 154, 110499. [Google Scholar] [CrossRef]
- Varón-Ramírez, V.M.; Araujo-Carrillo, G.A.; Guevara Santamaría, M.A. Colombian soil texture: Building a spatial ensemble model. Earth Syst. Sci. Data 2022, 14, 4719–4741. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Juhl, T.; Xiao, Z. A nonparametric test for changing trends. J. Econom. 2005, 127, 179–199. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in Global Vegetation Activity Trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef]
- Ning, T.; Liu, W.; Lin, W.; Song, X. NDVI Variation and Its Responses to Climate Change on the Northern Loess Plateau of China from 1998 to 2012. Adv. Meteorol. 2015, 2015, 725427. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2014—Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report: Volume 2: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014; Volume 2. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Guo, E.; Zhang, J.; Wang, Y.; Quan, L.; Zhang, R.; Zhang, F.; Zhou, M. Spatiotemporal variations of extreme climate events in Northeast China during 1960–2014. Ecol. Indic. 2019, 96, 669–683. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Bao, H.; Zhang, H. Climatology and changes in hourly precipitation extremes over China during 1970–2018. Sci. Total Environ. 2022, 839, 156297. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.-A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Cao, L.; Xu, X. Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960–2012. Quat. Int. 2014, 333, 26–39. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef]
- Wang, L.; De Boeck, H.J.; Chen, L.; Song, C.; Chen, Z.; McNulty, S.; Zhang, Z. Urban warming increases the temperature sensitivity of spring vegetation phenology at 292 cities across China. Sci. Total Environ. 2022, 834, 155154. [Google Scholar] [CrossRef]
- Rahman, I.U.; Hart, R.E.; Afzal, A.; Iqbal, Z.; Bussmann, R.W.; Ijaz, F.; Khan, M.A.; Ali, H.; Rahman, S.U.; Hashem, A.; et al. Vegetation-environment interactions: Plant species distribution and community assembly in mixed coniferous forests of Northwestern Himalayas. Sci. Rep. 2023, 13, 17228. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Sun, Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol. 2008, 28, 1139–1161. [Google Scholar] [CrossRef]
- Tammets, T.; Jaagus, J. Climatology of precipitation extremes in Estonia using the method of moving precipitation totals. Theor. Appl. Climatol. 2013, 111, 623–639. [Google Scholar] [CrossRef]
- Sura, P. A general perspective of extreme events in weather and climate. Atmos. Res. 2011, 101, 1–21. [Google Scholar] [CrossRef]
- Gholamnia, M.; Khandan, R.; Bonafoni, S.; Sadeghi, A. Spatiotemporal Analysis of MODIS NDVI in the Semi-Arid Region of Kurdistan (Iran). Remote Sens. 2019, 11, 1723. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Niu, Q.; Xiao, X.; Zhang, Y.; Qin, Y.; Dang, X.; Wang, J.; Zou, Z.; Doughty, R.B.; Brandt, M.; Tong, X.; et al. Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degrad. Dev. 2019, 30, 1620–1631. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.T.; Feng, Y.; Zou, Y.J.; Guo, B. Variation characteristics of normalized difference vegetation index in Northwestern Sichuan Plateau and its response to extreme climate during 2001–2020. Ying Yong Sheng Tai Xue Bao 2022, 33, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Peng, F.; Zou, B. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area. Front. Earth Sci. 2019, 13, 614–627. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, Q.; Feng, L.; Zhang, A.; Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Hikosaka, K.; Way, D.A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res. 2014, 119, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Querejeta, J.I.; Ren, W.; Prieto, I. Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. New Phytol. 2021, 230, 1378–1393. [Google Scholar] [CrossRef] [PubMed]
- Paudel, K.P.; Andersen, P. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Clim. Chang. 2013, 117, 149–162. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Camarero, J.J.; Azorin-Molina, C. Diverse responses of forest growth to drought time-scales in the Northern Hemisphere. Glob. Ecol. Biogeogr. 2014, 23, 1019–1030. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S. Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China. Glob. Chang. Biol. 2014, 20, 2596–2606. [Google Scholar] [CrossRef]
- Wei, X.; He, W.; Zhou, Y.; Ju, W.; Xiao, J.; Li, X.; Liu, Y.; Xu, S.; Bi, W.; Zhang, X.; et al. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecol. Indic. 2022, 136, 108646. [Google Scholar] [CrossRef]
- Jiang, W.; Niu, Z.; Wang, L.; Yao, R.; Gui, X.; Xiang, F.; Ji, Y. Impacts of Drought and Climatic Factors on Vegetation Dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sens. 2022, 14, 930. [Google Scholar] [CrossRef]
- Liu, L.; Peng, J.; Li, G.; Guan, J.; Han, W.; Ju, X.; Zheng, J. Effects of drought and climate factors on vegetation dynamics in Central Asia from 1982 to 2020. J. Environ. Manag. 2023, 328, 116997. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Q.; Liu, R.; Zhao, Y.; Zhang, D. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and -accumulation effects. Sci. Total Environ. 2023, 860, 160527. [Google Scholar] [CrossRef]
ID | Name | Definition | Unit |
---|---|---|---|
TEM | TEM | Average temperature: Monthly average value of daily average temperature | °C |
TEMmax | Tmax | Monthly average value of daily maximum temperature | °C |
TEMmin | Tmin | Monthly average value of daily minimum temperature | °C |
DTR | Temperature duration | Monthly mean value of the difference between daily maximum and minimum temperature | °C |
TN10p | Cold nights | Number of days when TN < 10th percentile | Days |
TX10p | Cold days | Number of days when TX < 10th percentile | Days |
TN90p | Warm nights | Number of days when TN < 90th percentile | Days |
TX90p | Warm days | Number of days when TX < 90th percentile | Days |
TNn | Min Tmin | Monthly minimum value of daily minimum temperature °C | °C |
TNx | Max Tmin | Monthly maximum value of daily minimum temperature °C | °C |
TXn | Min Tmax | Monthly minimum value of daily maximum temperature °C | °C |
TXx | Max Tmax | Monthly maximum value of daily maximum temperature °C | °C |
PREF | PRE | Precipitation: Monthly total amount of precipitation | mm |
LR | Light rainfall | Monthly total amount of daily precipitation in the range of 0–10 mm | mm |
MR | Moderate rainfall | Monthly total amount of daily precipitation in the range of 10–25 mm | mm |
HR | Heavy rainfall | Monthly total amount of daily precipitation in the range of 25–50 mm | mm |
TR | Torrential rainfall | Monthly total amount of daily precipitation over 50 mm | mm |
RX1day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | mm |
RX5day | Max 5-day precipitation amount | Monthly maximum consecutive 5-day precipitation | mm |
SDII | Daily precipitation intensity | The ratio of the total amount of precipitation ≥ 1 mm to the number of precipitation days | mm/day |
Climatic Indices | Mean Values and Standard Deviations | Proportions of Areas for Different Lag-Accumulation Times | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lag | Accumulation | TLA0-0 | TLA0-1 | TLA0-2 | TLA0-3 | TLA1-0 | TLA1-1 | TLA1-2 | TLA2-0 | TLA2-1 | TLA3-0 | |
TEM | 0.0027 ± 0.0893 | 0.4277 ± 0.5526 | 61.25 | 35.79 | 2.84 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 |
TEMmax | 0.0022 ± 0.0811 | 0.5251 ± 0.6311 | 55.93 | 37.15 | 6.64 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 |
TEMmin | 0.0027 ± 0.0904 | 0.4661 ± 0.5376 | 56.52 | 41.51 | 1.84 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 |
DTR | 1.5455 ± 1.2681 | 0.8659 ± 0.8834 | 9.16 | 16.53 | 4.38 | 6.00 | 0.01 | 0.57 | 9.90 | 0.12 | 20.50 | 32.83 |
TN10p | 0.4651 ± 0.7598 | 1.9218 ± 0.8738 | 4.07 | 16.80 | 18.35 | 30.42 | 0.09 | 2.95 | 13.60 | 0.71 | 11.89 | 1.12 |
TX10p | 1.1385 ± 0.9464 | 1.3303 ± 0.8617 | 8.30 | 10.88 | 4.89 | 12.56 | 0.22 | 4.91 | 14.85 | 3.15 | 36.33 | 3.90 |
TN90p | 0.3665 ± 0.7516 | 1.6149 ± 0.9875 | 11.59 | 28.62 | 13.55 | 25.42 | 0.05 | 1.48 | 5.83 | 0.26 | 11.83 | 1.36 |
TX90p | 0.4420 ± 0.8489 | 1.7983 ± 0.9402 | 5.96 | 19.03 | 23.21 | 28.01 | 0.04 | 2.98 | 5.50 | 0.06 | 11.35 | 3.88 |
TNn | 0.0057 ± 0.1007 | 0.4519 ± 0.5202 | 56.76 | 41.78 | 1.03 | 0.03 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 |
TNx | 0.0034 ± 0.1006 | 0.6268 ± 0.5674 | 43.13 | 52.70 | 3.95 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 |
TXn | 0.0018 ± 0.0732 | 0.3891 ± 0.5278 | 64.08 | 33.93 | 1.90 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 |
TXx | 0.0047 ± 0.0906 | 1.3023 ± 0.6863 | 10.17 | 58.14 | 26.13 | 5.23 | 0.00 | 0.07 | 0.21 | 0.00 | 0.00 | 0.06 |
PREF | 0.0128 ± 0.1298 | 1.6167 ± 0.8086 | 5.67 | 48.71 | 27.17 | 17.35 | 0.01 | 0.00 | 0.99 | 0.00 | 0.03 | 0.06 |
LR | 0.0498 ± 0.2238 | 2.3987 ± 0.6819 | 4.18 | 9.21 | 33.20 | 48.72 | 0.00 | 0.00 | 4.61 | 0.01 | 0.03 | 0.03 |
MR | 0.1166 ± 0.5052 | 2.0966 ± 0.7961 | 3.17 | 17.73 | 39.62 | 33.48 | 0.03 | 0.21 | 2.47 | 0.01 | 1.21 | 2.06 |
HR | 0.5641 ± 1.0148 | 1.7889 ± 0.9679 | 4.49 | 12.95 | 30.56 | 26.66 | 0.40 | 0.51 | 3.58 | 0.07 | 12.16 | 8.62 |
TR | 0.0131 ± 0.1294 | 1.6071 ± 0.8057 | 5.87 | 48.76 | 27.39 | 16.84 | 0.00 | 0.00 | 1.05 | 0.00 | 0.04 | 0.05 |
RX1day | 0.0038 ± 0.0998 | 1.4442 ± 0.7478 | 7.55 | 54.63 | 27.33 | 10.34 | 0.01 | 0.00 | 0.01 | 0.00 | 0.04 | 0.08 |
RX5day | 0.0047 ± 0.1117 | 1.3921 ± 0.7992 | 11.43 | 52.27 | 25.39 | 10.71 | 0.00 | 0.00 | 0.04 | 0.00 | 0.04 | 0.11 |
SDII | 0.0024 ± 0.0790 | 1.4296 ± 0.7094 | 6.63 | 56.30 | 28.31 | 8.66 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, T.; Liu, J.; He, P.; Shi, M.; Chi, Y.; Liu, C.; Hou, Y.; Wei, F.; Liu, D. Time Lag and Cumulative Effects of Extreme Climate on Coastal Vegetation in China. Remote Sens. 2024, 16, 528. https://doi.org/10.3390/rs16030528
Dong T, Liu J, He P, Shi M, Chi Y, Liu C, Hou Y, Wei F, Liu D. Time Lag and Cumulative Effects of Extreme Climate on Coastal Vegetation in China. Remote Sensing. 2024; 16(3):528. https://doi.org/10.3390/rs16030528
Chicago/Turabian StyleDong, Tong, Jing Liu, Panxing He, Mingjie Shi, Yuan Chi, Chao Liu, Yuting Hou, Feili Wei, and Dahai Liu. 2024. "Time Lag and Cumulative Effects of Extreme Climate on Coastal Vegetation in China" Remote Sensing 16, no. 3: 528. https://doi.org/10.3390/rs16030528
APA StyleDong, T., Liu, J., He, P., Shi, M., Chi, Y., Liu, C., Hou, Y., Wei, F., & Liu, D. (2024). Time Lag and Cumulative Effects of Extreme Climate on Coastal Vegetation in China. Remote Sensing, 16(3), 528. https://doi.org/10.3390/rs16030528