A Frequency–Azimuth Spectrum Estimation Method for Uniform Linear Array Based on Deconvolution
Abstract
:1. Introduction
2. Methods
2.1. Two-Dimensional R–L Deconvolution Algorithm
2.2. Signal Estimation Model
2.2.1. Array Description of a Frequency–Azimuth Two-Dimensional Signal
2.2.2. Measurement of the Frequency–Azimuth Spectrum
2.2.3. FRAZ Spectrum Estimation Based on Deconvolution
2.2.4. Deconvolution Gain Analysis
3. Results
3.1. Numerical Simulation
3.1.1. Single Target Processing without Noise
3.1.2. Multitarget Estimation with Different SNRs
3.1.3. Impact of Iterations on the Deconvolution Gain
3.1.4. Discernability of Adjacent Objects
3.2. Sea Trial Data Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazarinov, A.S.; Malyshev, V.N. The Experimental Research of DOA Estimation Based on Difference Co-array Method. In Proceedings of the 2023 IEEE 24th International Conference of Young Professionals in Electron Devices and Materials, Novosibirsk, Russia, 29 June–3 July 2023. [Google Scholar]
- Liu, M.; Qu, S.; Zhao, X. Minimum Variance Distortionless Response—Hanbury Brown and Twiss Sound Source Localization. Appl. Sci. 2023, 13, 6013. [Google Scholar] [CrossRef]
- Wei, S.; Tao, C.G.; Li, L.; Wang, F.; Jiang, D.F. Frequency and DOA joint estimation method based on two-layer compressed sensing. J. Shanghai Norm. Univ. (Nat. Sci.) 2018, 47, 179–185. [Google Scholar]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Wang, Y.; Leus, G. Space-time compressive sampling array. In Proceedings of the 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop, Jerusalem, Israel, 4–7 October 2010. [Google Scholar]
- Kim, S.; Lee, K.K. Low-Complexity Joint Extrapolation-MUSIC-Based 2-D Parameter Estimator for Vital FMCW Radar. IEEE Sens. J. 2019, 19, 2205–2216. [Google Scholar] [CrossRef]
- Henninger, M.; Mandelli, S.; Arnold, M.; Brink, S.T. A Computationally Efficient 2D MUSIC Approach for 5G and 6G Sensing Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference, Austin, TX, USA, 10–13 April 2022. [Google Scholar]
- Xu, Y.G.; Liu, Z.W. Introduction to Array Signal Processing; Beijing Institute of Technology Press: Beijing, China, 2020; pp. 135–139. [Google Scholar]
- Noureddine, L.; Harabi, F.; Gharsallah, A. Space-time estimation algorithms for wideband signals. In Proceedings of the 2015 IEEE 15th Mediterranean Microwave Symposium, Lecce, Italy, 30 November–2 December 2015. [Google Scholar]
- Yin, T. Research on Multi-parameter Estimation in Array Signal. Master’s Thesis, XiDian University, Xi’an, China, 2018. [Google Scholar]
- Lemma, A.N.; van der Veen, A.-J.; Deprettere, E.F. Analysis of joint angle-frequency estimation using ESPRIT. IEEE Trans. Signal Process. 2003, 51, 1264–1283. [Google Scholar] [CrossRef]
- Wen, D.; Yi, H.; Zhang, W.; Xu, H. 2D-Unitary ESPRIT Based Multi-Target Joint Range and Velocity Estimation Algorithm for FMCW Radar. Appl. Sci. 2023, 13, 10448. [Google Scholar] [CrossRef]
- Amanat, A.; Mahmoudi, A.; Hatam, M. Two-dimensional noisy autoregressive estimation with application to joint frequency and direction of arrival estimation. Multidimens. Syst. Signal Process. 2018, 29, 671–685. [Google Scholar] [CrossRef]
- Xu, Y.G.; Liu, Z.W. A New Method for Simultaneous Estimation of Frequency and DOA of Emitters. Acta Electron. Sin. 2001, 09, 1179–1182. [Google Scholar]
- Stein, S.; Yair, O.; Cohen, D.; Eldar, Y.C. Joint Spectrum Sensing and Direction of Arrival Recovery from Sub-Nyquist Samples. In Proceedings of the 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications, Stockholm, Sweden, 28 June–1 July 2015. [Google Scholar]
- Kumar, A.A.; Razul, S.G.; See, C.-M.S. Carrier Frequency and Direction of Arrival Estimation with Nested Sub-nyquist Sensor Array Receiver. In Proceedings of the 2015 23rd European Signal Processing Conference, Nice, France, 31 August–4 September 2015. [Google Scholar]
- Kumar, A.A.; Chandra, M.G.; Balamuralidhar, P. Joint frequency and 2-D DOA recovery with sub-Nyquist difference space-time array. In Proceedings of the 2017 25th European Signal Processing Conference, Kos, Greece, 28 August–2 September 2017. [Google Scholar]
- Zhang, Z.; Wei, P.; Zhang, H.; Deng, L. Joint spectrum sensing and DOA estimation with sub-Nyquist sampling. Signal Process. 2021, 189, 108260. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Chen, F.; Zheng, Z.; Ji, F.; Yu, H. Joint angular-frequency distribution estimation via spatial-temporal sparse sampling and low-rank matrix recovery. Signal Process. 2023, 206, 108918. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Wei, P.; Gao, L.; Zhang, H.; Jiang, H.; Du, K. Joint DOA and Frequency Estimation with Spatial and Temporal Sparse Sampling Based on 2-D Covariance Matrix Expansion. IEEE Sens. J. 2023, 3, 22880–22894. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ma, S.L.; Zou, N.; Liang, G. Detection of Unknown Line-spectrum Underwater Target Using Space-time Processing. J. Electron. Inf. Technol. 2019, 41, 1683–1689. [Google Scholar]
- Shi, Y.J.; Piao, H.C.; Guo, J.Y.; Zhang, L. Signal space transform and multidimensional information joint processing for moving target. Acta Acust. 2023, 48, 920–936. [Google Scholar]
- Ye, W. Feature Extraction Method of Target Radiated Noise Based on Space-Time-Frequency Joint Processing. Master’s Thesis, Southeast University, Nanjing, China, 2019. [Google Scholar]
- Liu, S.T.; Huang, J.G. Discrete-Time Signal Processing; Xi’an Jiaotong University Press: Xi’an, China, 2001; pp. 562–566. [Google Scholar]
- Vishnu, P.; Ramalingam, C.S. A method with lower-than-MLE threshold SNR for frequency estimation of multiple sinusoids. Signal Process. 2021, 186, 108128. [Google Scholar] [CrossRef]
- Fan, L.; Qi, G.Q.; Liu, J.Y. Frequency estimator of sinusoid by interpolated DFT method based on maximum sidelobe decay windows. Signal Process. 2021, 186, 108125. [Google Scholar] [CrossRef]
- Yang, T.C. On conventional beamforming and deconvolution. In Proceedings of the OCEANS-2016, Shanghai, China, 10–13 April 2016. [Google Scholar]
- Yang, T.C. Deconvolved conventional beamforming for a horizontal line array. IEEE J. Ocean. Eng. 2017, 43, 160–172. [Google Scholar] [CrossRef]
- Yang, T.C. Deconvolution of decomposed conventional beamforming. J. Acoust. Soc. Am. 2020, 148, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Sun, D.J.; Mei, J.; Teng, T. Spatiotemporal two-dimensional deconvolution beam imaging technology. Appl. Acoust. 2021, 183, 108310. [Google Scholar] [CrossRef]
- Guo, W.; Piao, S.C.; Yang, T.C.; Guo, J.; Iqbal, K. High-resolution power spectral estimation method using deconvolution. IEEE J. Ocean. Eng. 2019, 45, 489–499. [Google Scholar] [CrossRef]
- Su, X.R.; Miao, Q.Y.; Sun, X.L.; Ren, H.; Ye, L.; Song, K. An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming. Sensors 2022, 22, 2327. [Google Scholar] [CrossRef] [PubMed]
Target | 1 | 2 | 3 | 4 |
---|---|---|---|---|
DG/dB | 26.38 | 23.61 | 24.28 | 26.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, D.; Cai, Z.; Guo, W.; Yao, Z.; Cao, H. A Frequency–Azimuth Spectrum Estimation Method for Uniform Linear Array Based on Deconvolution. Remote Sens. 2024, 16, 518. https://doi.org/10.3390/rs16030518
Lu D, Cai Z, Guo W, Yao Z, Cao H. A Frequency–Azimuth Spectrum Estimation Method for Uniform Linear Array Based on Deconvolution. Remote Sensing. 2024; 16(3):518. https://doi.org/10.3390/rs16030518
Chicago/Turabian StyleLu, Daiqiang, Zhiming Cai, Wei Guo, Zhixiang Yao, and Huanzhi Cao. 2024. "A Frequency–Azimuth Spectrum Estimation Method for Uniform Linear Array Based on Deconvolution" Remote Sensing 16, no. 3: 518. https://doi.org/10.3390/rs16030518
APA StyleLu, D., Cai, Z., Guo, W., Yao, Z., & Cao, H. (2024). A Frequency–Azimuth Spectrum Estimation Method for Uniform Linear Array Based on Deconvolution. Remote Sensing, 16(3), 518. https://doi.org/10.3390/rs16030518