Evaluation of Geographical and Annual Changes in Rice Planting Patterns Using Satellite Images in the Flood-Prone Area of the Pampanga River Basin, the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LAI Data
2.3. Analysis of LAI Dynamics
2.4. Software
3. Results
3.1. Area Classification in Candaba
3.2. Annual LAI Dynamics for Each Region
3.2.1. Area 1 (Southern Area)
3.2.2. Area 2 (Northern Area)
3.2.3. Area 3 (Lower Terrain Area)
3.2.4. Area 4 (Eastern and Western Area)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security: 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Marcaida, M.; Farhat, Y.; Muth, E.N.; Cheythyrith, C.; Hok, L.; Holtgrieve, G.; Hossain, F.; Neumann, R.; Kim, S.H. A spatio-temporal analysis of rice production in Tonle Sap floodplains in response to changing hydrology and climate. Agric. Water Manag. 2021, 258, 107183. [Google Scholar] [CrossRef]
- Molle, F.; Chompadist, C.; Bremard, T. Intensification of rice cultivation in the floodplain of the Chao Phraya delta. Southeast Asian Stud. 2021, 10, 141–168. [Google Scholar] [CrossRef]
- Win, S.; Zin, W.W.; Kawasaki, A.; San, Z.M.L.T. Establishment of flood damage function models: A case study in the Bago River Basin, Myanmar. Int. J. Disaster Risk Reduct. 2018, 28, 688–700. [Google Scholar] [CrossRef]
- National Disaster Risk Reduction and Management Center. Sitrep No. 28 re Preparedness Measures and Effects for Typhoon “ULYSSES” (I.N. VAMCO). 2020. Available online: https://reliefweb.int/report/philippines/ndrrmc-update-sitrep-no-28-re-preparedness-measures-and-effects-typhoon-ulysses (accessed on 30 October 2023).
- Juarez-Lucas, A.M.; Kibler, K.M.; Ohara, M.; Sayama, T. Benefits of flood-prone land use and the role of coping capacity, Candaba floodplains, Philippines. Nat. Hazards 2016, 84, 2243–2264. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of remote sensing on crop models: A review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef]
- Araya, S.; Ostendorf, B.; Lyle, G.; Lewis, M. CropPhenology: An R package for extracting crop phenology from time series remotely sensed vegetation index imagery. Ecol. Inform. 2018, 46, 45–56. [Google Scholar] [CrossRef]
- Hassan, D.F.; Abdalkadhum, A.J.; Mohammed, R.J.; Shaban, A. Integration Remote Sensing and Meteorological Data to Monitoring Plant Phenology and Estimation Crop Coefficient and Evapotranspiration. J. Ecol. Eng. 2022, 23, 325–335. [Google Scholar] [CrossRef]
- Bascietto, M.; Santangelo, E.; Beni, C. Spatial variations of vegetation index from remote sensing linked to soil colloidal status. Land 2021, 10, 80. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Geethalakshmi, V.; Tamilmounika, R.; Sudarmanian, N.S.; Kaliaperumal, R.; Ramalingam, K.; Sivamurugan, A.P.; Mrunalini, K.; Yadav, M.K.; Quicho, E.D. Spatial Rice Yield Estimation Using Multiple Linear Regression Analysis, Semi-Physical Approach and Assimilating SAR Satellite Derived Products with DSSAT Crop Simulation Model. Agronomy 2022, 12, 2008. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Duane Nellis, M.; Price, K.P.; Rundquist, D. Remote Sensing of Cropland Agriculture. In The SAGE Handbook of Remote Sensing; SAGE: New York, NY, USA, 2009. [Google Scholar]
- Iwahashi, Y.; Ye, R.; Kobayashi, S.; Yagura, K.; Hor, S.; Soben, K.; Homma, K. Quantification of changes in rice production for 2003–2019 with modis lai data in pursat province, cambodia. Remote Sens. 2021, 13, 1971. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Guo, Y.; Hou, X.; Dong, L. Winter Wheat Phenology Variation and Its Response to Climate Change in Shandong Province, China. Remote Sens. 2022, 14, 4482. [Google Scholar] [CrossRef]
- Areas, P.; Bureau, W. Protected Areas and Wildlife Bureau. In The National Wetlands Action Plan for the Philippines 2011–2016; Department of Environment and Natural Resources: Quezon City, Philippines, 2013. [Google Scholar]
- Mamiit, R.J.; Yanagida, J.; Miura, T. Productivity Hot Spots and Cold Spots: Setting Geographic Priorities for Achieving Food Production Targets. Front. Sustain. Food Syst. 2021, 5, 727484. [Google Scholar] [CrossRef]
- MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide. 2020. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (accessed on 30 December 2023).
- Kobayashi, T.; Tateishi, R.; Alsaaideh, B.; Sharma, R.C.; Wakaizumi, T.; Miyamoto, D.; Bai, X.; Long, B.D.; Gegentana, G.; Maitiniyazi, A.; et al. Production of Global Land Cover Data—GLCNMO2013. J. Geogr. Geol. 2017, 9, 1. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- National Disaster Risk Reduction and Management Center. Sitrep No. 19 re Preparedness Measures and Effects for Typhoon “NONA” (I.N. MELOR). 2015. Available online: https://reliefweb.int/report/philippines/ndrrmc-update-sitrep-no-19-re-preparedness-measures-and-effects-typhoon-nona (accessed on 18 January 2024).
- Kim, S.-H.; Park, J.-H.; Woo, C.-S.; Lee, K.-S. Analysis of Temporal Variability of MODIS Leaf Area Index (LAI) Product over Temperate Forest in Korea. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Republic of Korea, 29 July 2005. [Google Scholar]
- Madsen, J.D.; Wersal, R.M. A review of aquatic plant monitoring and assessment methods. J. Aquat. Plant Manag. 2017, 55, 1–12. [Google Scholar]
- Melendres, R.G. The Utilization of Candaba Swamp from Prehistoric to Present Time: Evidences from Archaeology, History and Ethnography. Bhatter Coll. J. Multidiscip. Stud. 2014, 4, 81–93. [Google Scholar]
- Rerkasem, B. Transforming Subsistence Cropping in Asia. Plant Prod. Sci 2005, 8, 275–287. [Google Scholar] [CrossRef]
- Kotera, A.; Nagano, T.; Hanittinan, P.; Koontanakulvong, S. Assessing the degree of flood damage to rice crops in the Chao Phraya delta, Thailand, using MODIS satellite imaging. Paddy Water Environ. 2016, 14, 271–280. [Google Scholar] [CrossRef]
- Ding, X.W.; Li, X.F. Monitoring of the water-area variations of Lake Dongting in China with ENVISAT ASAR images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 894–901. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Hirooka, Y.; Homma, K.; Maki, M.; Sekiguchi, K. Applicability of synthetic aperture radar (SAR) to evaluate leaf area index (LAI) and its growth rate of rice in farmers’ fields in Lao PDR. Field Crops Res. 2015, 176, 119–122. [Google Scholar] [CrossRef]
- Grimaldi, S.; Xu, J.; Li, Y.; Pauwels, V.R.N.; Walker, J.P. Flood mapping under vegetation using single SAR acquisitions. Remote Sens. Environ. 2020, 237, 111582. [Google Scholar] [CrossRef]
- Jeong, S.; Kang, S.; Jang, K.; Lee, H.; Hong, S.; Ko, D. Development of Variable Threshold Models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover. Agric. Water Manag. 2012, 115, 83–91. [Google Scholar] [CrossRef]
- Wibowo, A.; Shidiq, I.P.A.; Pratama, G.P.; Gandharum, L. Spatio-temporal analysis of rice field phenology using Sentinel-1 image in Karawang Regency West Java, Indonesia. Int. J. Geomate 2019, 17, 101–106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosonuma, K.; Aida, K.; Ballaran, V., Jr.; Nagumo, N.; Sanchez, P.A.J.; Sumita, T.; Homma, K. Evaluation of Geographical and Annual Changes in Rice Planting Patterns Using Satellite Images in the Flood-Prone Area of the Pampanga River Basin, the Philippines. Remote Sens. 2024, 16, 499. https://doi.org/10.3390/rs16030499
Hosonuma K, Aida K, Ballaran V Jr., Nagumo N, Sanchez PAJ, Sumita T, Homma K. Evaluation of Geographical and Annual Changes in Rice Planting Patterns Using Satellite Images in the Flood-Prone Area of the Pampanga River Basin, the Philippines. Remote Sensing. 2024; 16(3):499. https://doi.org/10.3390/rs16030499
Chicago/Turabian StyleHosonuma, Kohei, Kentaro Aida, Vicente Ballaran, Jr., Naoko Nagumo, Patricia Ann J. Sanchez, Tsuyoshi Sumita, and Koki Homma. 2024. "Evaluation of Geographical and Annual Changes in Rice Planting Patterns Using Satellite Images in the Flood-Prone Area of the Pampanga River Basin, the Philippines" Remote Sensing 16, no. 3: 499. https://doi.org/10.3390/rs16030499
APA StyleHosonuma, K., Aida, K., Ballaran, V., Jr., Nagumo, N., Sanchez, P. A. J., Sumita, T., & Homma, K. (2024). Evaluation of Geographical and Annual Changes in Rice Planting Patterns Using Satellite Images in the Flood-Prone Area of the Pampanga River Basin, the Philippines. Remote Sensing, 16(3), 499. https://doi.org/10.3390/rs16030499