Advanced Detection of Invasive Neophytes in Agricultural Landscapes: A Multisensory and Multiscale Remote Sensing Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research into Critical Neophytes for Agriculture in Germany
2.2. Setting up the Study Areas
2.3. Data Collection
2.4. Detection Algorithm and Field Application
3. Results
3.1. Heracleum mantegazzianum
3.2. Fallopia spec.
3.3. Bunias orientalis
3.4. Elaeagnus angustifolia
3.5. Acer negundo
3.6. Echinops sphaerocephalus
3.7. Datura stramonium
3.8. Abutilon theophrasti
3.9. Cyperus esculentus
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blackburn, T.M.; Bellard, C.; Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 2019, 17, 203–207. [Google Scholar] [CrossRef]
- Manchester, S.J.; Bullock, J.M. The impacts of non-native species on UK biodiversity and the effectiveness of control. J. Appl. Ecol. 2000, 37, 845–864. [Google Scholar] [CrossRef]
- Huang, C.y.; Asner, G. Applications of Remote Sensing to Alien Invasive Plant Studies. Sensors 2009, 9, 4869–4889. [Google Scholar] [CrossRef]
- Jones, B.A. Tree Shade, Temperature, and Human Health: Evidence from Invasive Species-induced Deforestation. Ecol. Econ. 2019, 156, 12–23. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Farooq, M.; Nawaz, A.; Yadav, L.; Chauhan, B.S.; Adkins, S. Impact of invasive plant species on the livelihoods of farming households: Evidence from Parthenium hysterophorus invasion in rural Punjab, Pakistan. Biol. Invasions 2019, 21, 3285–3304. [Google Scholar] [CrossRef]
- Cook, D.C.; Fraser, R.W.; Paini, D.R.; Warden, A.C.; Lonsdale, W.M.; De Barro, P.J. Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity. PLoS ONE 2011, 6, e26084. [Google Scholar] [CrossRef]
- Mullin, B.; Anderson, L.; DiTomaso, J.; Eplee, R.; Getsinger, K. Invasive Plant Species; Council for Agricultural Science and Technology: Ames, IA, USA, 2000; Issue Paper 13 February 2000; pp. 1–18. [Google Scholar]
- Haubrock, P.J.; Cuthbert, R.N.; Sundermann, A.; Diagne, C.; Golivets, M.; Courchamp, F. Economic costs of invasive species in Germany. NeoBiota 2021, 67, 225–246. [Google Scholar] [CrossRef]
- Dark, S.J. The biogeography of invasive alien plants in California: An application of GIS and spatial regression analysis: Invasive alien plants in California. Divers. Distrib. 2004, 10, 1–9. [Google Scholar] [CrossRef]
- Hill, D.J.; Tarasoff, C.; Whitworth, G.E.; Baron, J.; Bradshaw, J.L.; Church, J.S. Utility of unmanned aerial vehicles for mapping invasive plant species: A case study on yellow flag iris (Iris pseudacorus L.). Int. J. Remote Sens. 2017, 38, 2083–2105. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; O’Neill, M. Spectral discrimination of Phytophthora infestans infection on tomatoes based on principal component and cluster analyses. Int. J. Remote Sens. 2002, 23, 1095–1107. [Google Scholar] [CrossRef]
- Joshi, C.; De Leeuw, J.; Van Duren, I. Remote sensing and GIS applications for mapping and spatial modeling of invasive species. ISPRS 2004, 35, 4. [Google Scholar]
- Gaskin, J.F.; Espeland, E.; Johnson, C.D.; Larson, D.L.; Mangold, J.M.; McGee, R.A.; Milner, C.; Paudel, S.; Pearson, D.E.; Perkins, L.B.; et al. Managing invasive plants on Great Plains grasslands: A discussion of current challenges. Rangel. Ecol. Manag. 2021, 78, 235–249. [Google Scholar] [CrossRef]
- Walsh, S. Multi-scale Remote Sensing of Introduced and Invasive Species: An Overview of Approaches and Perspectives. In Understanding Invasive Species in the Galapagos Islands; Springer: Cham, Switzerland, 2018; pp. 143–154. [Google Scholar] [CrossRef]
- Khare, S.; Latifi, H.; Ghosh, S. Multi-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data. Geocarto Int. 2017, 33, 681–698. [Google Scholar] [CrossRef]
- Müllerová, J.; Pyšek, P.; Jarošík, V.; Pergl, J. Aerial photographs as a tool for assessing the regional dynamics of the invasive plant species Heracleum mantegazzianum: Regional dynamics of H. mantegazzianum invasion. J. Appl. Ecol. 2005, 42, 1042–1053. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Andrew, M.; Ustin, S. The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens. Environ. 2008, 112, 4301–4317. [Google Scholar] [CrossRef]
- Ghulam, A.; Porton, I.; Freeman, K. Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm. ISPRS J. Photogramm. Remote Sens. 2014, 88, 174–192. [Google Scholar] [CrossRef]
- Martin, F.M.; Müllerová, J.; Borgniet, L.; Dommanget, F.; Breton, V.; Evette, A. Using Single- and Multi-Date UAV and Satellite Imagery to Accurately Monitor Invasive Knotweed Species. Remote Sens. 2018, 10, 1662. [Google Scholar] [CrossRef]
- Bolch, E.A.; Santos, M.J.; Ade, C.; Khanna, S.; Basinger, N.T.; Reader, M.O.; Hestir, E.L. Remote Detection of Invasive Alien Species. In Remote Sensing of Plant Biodiversity; Cavender-Bares, J., Gamon, J.A., Townsend, P.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 267–307. [Google Scholar] [CrossRef]
- Bhatt, P. Mapping Coastal Wetland and Phragmites on the Hiawatha National Forest Using Unmanned Aerial System (UAS) Imagery: Proof of Concepts. Master’s Thesis, Michigan Technological University, Hoighton, MI, USA, 2018. [Google Scholar]
- Samiappan, S.; Turnage, G.; Hathcock, L.A.; Casagrande, L.C.; Stinson, P.; Moorhead, R.J. Using unmanned aerial vehicles for high-resolution remote sensing to map invasive Phragmites australis in coastal wetlands. Int. J. Remote Sens. 2017, 38, 2199–2217. [Google Scholar] [CrossRef]
- Müllerová, J.; Brůna, J.; Bartaloš, T.; Dvořák, P.; Vítková, M.; Pyšek, P. Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring. Front. Plant Sci. 2017, 8, 887. [Google Scholar] [CrossRef]
- Caffrey, J.M. The Management of Giant Hogweed in an Irish River Catchment. J. Aquat. Plant Manag. 2001, 39, 28–33. [Google Scholar]
- Weidlich, E.W.A.; Flórido, F.G.; Sorrini, T.B.; Brancalion, P.H.S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 2020, 57, 1806–1817. [Google Scholar] [CrossRef]
- Payne, T. How Does Japanese Knotweed Spread? Available online: https://tpknotweed.com/guidance/how-does-japanese-knotweed-spread/#:~:text=Japanese%20knotweed%20typically%20spreads%20through,as%20small%20as%202mm%20wide (accessed on 6 November 2023).
- Kattenborn, T.; Lopatin, J.; Förster, M.; Braun, A.C.; Fassnacht, F.E. UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2019, 227, 61–73. [Google Scholar] [CrossRef]
- European Commission. Invasive Alien Species—Preventing and Minimising the Effects on Invasive Alien Species on Europe’s Biodiversity. Available online: https://environment.ec.europa.eu/topics/nature-and-biodiversity/invasive-alien-species_en (accessed on 2 November 2023).
- European Commission. Document 32014R1143. Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the Prevention and Management of the Introduction and Spread of Invasive Alien Species. Available online: http://data.europa.eu/eli/reg/2014/1143/oj (accessed on 2 November 2023).
- Bundesamt für Naturschutz. Neobiota.de-Handbuch: Art. 4: Die Unionsliste. Available online: https://neobiota.bfn.de/unionsliste/art-4-die-unionsliste.html (accessed on 25 October 2023).
- NABU. Die EU-Liste Invasiver Gebietsfremder Tier- und Pflanzenarten. Available online: https://www.nabu.de/tiere-und-pflanzen/artenschutz/invasive-arten/unionsliste.html (accessed on 25 October 2023).
- Korina. Info. Available online: https://www.korina.info/info/korina/ (accessed on 21 October 2023).
- Korina. Atlas. Available online: https://www.korina.info/funde/atlas/ (accessed on 22 October 2023).
- Bundesamt für Naturschutz. Informationen zu Pflanzen. Available online: https://www.floraweb.de/pflanzenarten.html (accessed on 23 October 2023).
- Trimble Geospatial. Trimble eCognition: Transform Data into Information. Available online: https://geospatial.trimble.com/en/products/software/trimble-ecognition (accessed on 23 October 2023).
- Gao, Y.; Kerle, N.; Mas, J.; Pacheco, J.; Niemeyer, I. Optimized image segmentation and its effect on classification accuracy. In Proceedings of the 5th International Symposium on Spatial Data Quality (ISSDQ 2007) “Modeling Qualities in Space and Time”, Enschede, The Netherlands, 13–15 June 2012. [Google Scholar]
- Clark Labs. Segmentation and Segment-Based Classification. Available online: https://clarklabs.org/segmentation-and-segment-based-classification/#:~:text=Unlike%20traditional%20pixel%2Dbased%20classification,these%20spectrally%20similar%20image%20segments (accessed on 6 November 2023).
- Gao, Y.; Mas, J.F. A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions. Online J. Earth Sci. 2008, 2, 27–35. [Google Scholar]
- Kumar Rai, P.; Singh, J. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Müllerová, J.; Pergl, J.; Pyšek, P. Remote sensing as a tool for monitoring plant invasions: Testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 55–65. [Google Scholar] [CrossRef]
- Ge, S.; Everitt, J.; Carruthers, R.; Gong, P.; Anderson, G. Hyperspectral Characteristics of Canopy Components and Structure for Phenological Assessment of an Invasive Weed. Environ. Monit. Assess. 2006, 120, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Andrew, M.E.; Ustin, S.L. Spectral and physiological uniqueness of perennial pepperweed (Lepidium latifolium). Weed Sci. 2017, 54, 1051–1062. [Google Scholar] [CrossRef]
- Starfinger, U.; Kowarik, I. Heracleum mantegazzianum. Neobiota.de-Handbuch Gebietsfremde und Invasive Arten in Deutschland. Available online: https://neobiota.bfn.de/handbuch/gefaesspflanzen/heracleum-mantegazzianum.html (accessed on 23 October 2023).
- Meinlschmidt, E. Bekämpfung von Riesen-Bärenklau: Untersuchungen zu Bekämpfungsmaßnahmen von Riesen-Bärenklau (Heracleum mantegazzianum) Sowie Ihre ökonomische Bewertung—Ergebnisse der Freilandversuche der Ehem. LfL und Eines Praxisvorhabens in Sachsen—2001–2007; Schriftenreihe des Landesamtes für Umwelt, Landwirtschaft und Geologie, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek: Dresden, Germany, 2009. [Google Scholar]
- Nielsen, C.; Ravn, H.P.; Nentwig, W.; Wade, M. Praxisleitfaden Riesenbärenklau: Richtlinien für das Management und die Kontrolle einer Invasiven Pflanzenart in Europa; Forest & Landskape: Hoersholm, Denmark, 2005. [Google Scholar]
- Bartha, D.; Csiszár, Á. Russian olive (Elaeagnus angustifolia L.). In The Most Important Invasive Plants in Hungary; Institute of Ecology and Botany: Budapest, Hungary, 2008; pp. 85–93. [Google Scholar]
- Weyl, P.; Pasiecznik, N. Elaeagnus angustifolia (Russian Olive). Available online: http://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.2071 (accessed on 2 November 2023). [CrossRef]
- Fiala, J. Information über die Kugeldistel. Available online: https://www.gmn-ev.de/fileadmin/website/downloads/Kugeldistel-Faltblatt_2005.pdf (accessed on 2 November 2023).
- Witt, A.; Luke, Q. Guide to the Naturalized and Invasive Plants of Eastern Africa; CABI: Wallingford, UK, 2017; p. 608. [Google Scholar]
- Welch, B.A.; Geissler, P.H.; Latham, P. Early Detection of Invasive Plants: Principles and Practices; U.S. Geological Survey Scientific Investigations Report 2012-5162; USGS: Reston, VA, USA, 2012; p. 193. [CrossRef]
- Kaiser, B.A.; Burnett, K.M. Spatial economic analysis of early detection and rapid response strategies for an invasive species. Resour. Energy Econ. 2010, 32, 566–585. [Google Scholar] [CrossRef]
- Lake, T.A.; Briscoe Runquist, R.D.; Moeller, D.A. Deep learning detects invasive plant species across complex landscapes using Worldview-2 and Planetscope satellite imagery. Remote Sens. Ecol. Conserv. 2022, 8, 875–889. [Google Scholar] [CrossRef]
- Satish, S. Satellite VS Drone Imagery: Knowing the Difference and Effectiveness of SuperVision Earth’s Complementary Synergy. Available online: https://medium.com/supervisionearth/satellite-vs-drone-imagery-knowing-the-difference-and-effectiveness-of-supervision-earths-90e98b78777c (accessed on 6 November 2023).
- James, K.; Bradshaw, K. Detecting plant species in the field with deep learning and drone technology. Methods Ecol. Evol. 2020, 11, 1509–1519. [Google Scholar] [CrossRef]
Common Name | Scientific Name | German Name | EPPO-Code |
---|---|---|---|
Giant Hogweed | Heracleum mantegazzianum | Riesenbärenklau | HERMZ |
Japanese Knotweed | Fallopia spec. | Staudenknöterich-Arten | FOPSS |
Turkish Warty-Cabbage | Bunias orientalis | Orientalisches Zackenschötchen | BUNOR |
Russian Olive | Elaeagnus angustifolia | Schmallblättrige Ölweide | ELGAN |
Boxelder Maple | Acer negundo | Eschen-Ahorn | ACRNE |
Glandular Globe-Thistle | Echinops sphaerocephalus | Drüsenblättrige Kugeldistel | ECPSP |
Jimsonweed | Datura stramonium | Weißer Stechapfel | DATST |
Velvetleaf | Abutilon theophrasti | Samtpappel | ABUTH |
Yellow Nutsedge | Cyperus esculentus | Erdmantel | CYPES |
Sensor | Technical Parameters | Detected Species |
---|---|---|
Airborne Digital Orthophotos (DOP) | Spatial resolution: 0.2–0.4 m Spectral Resolution: 400–1000 nm | Bunias orientalis, Elaeagnus angustifolia |
Satellite WorldView02 (WV02) and WorldView03 (WV03) | Spatial resolution: WV02: 0.46 m and 1.84 m WV03: 0.31 m and 1.24 m Spectral resolution: WV02: 400–900 nm WV03: 400–1040 nm | Bunias orientalis Elaeagnus angustifolia |
Gyrocopter RGB camera and hyperspectral camera (HySpex) | Spatial resolution: 0.24 m (0.05 m) Spectral resolution: 400–1000 nm | Acer negundo, Echinops sphaerocephalus, Fallopia spec., Heracleum mantegazzianum |
UAV (drone) RGB camera Yuneec Typhoon H | 1/2.3″ CMOS Sensor Lens: 14 mm f/2.8 Spectral resolution: 400–700 nm | Bunias orientalis, Datura stramonium, Echinops sphaerocephalus |
Nikon D3100 RGB camera | Camera cut out: 1 × 1.2 m Focal length: 50 mm Spectral resolution: 400–700 nm | Abutilon theophrasti, Cyperus esculentus, Datura stramonium |
Scientific Name | Plant Feature Suitable for RS Classification | Optimal and Sub-Optimal 1 Detection Time Frame |
---|---|---|
Heracleum mantegazzianum | Blossoms | Optimal: June–July |
Fallopia spec. | Unfolded leaf surface, Concentric growth | Optimal: June–August Sub-optimal: May–August |
Bunias orientalis | Blossoms, Compact structure of the inflorescence | Optimal: May–June |
Elaeagnus angustifolia | Unfolded leaves under sunny circumstances | Optimal: May–July Sub-optimal: May–September |
Acer negundo | Unfolded leaves | Optimal: May–August |
Echinops sphaerocephalus | Blossoms | Optimal: June–August |
Datura stramonium | Blossoms | Optimal: June–July |
Abutilon theophrasti | Leaves | Optimal: June–July Sub-optimal: June–August |
Cyperus esculentus | Leaves | Optimal: June|September–October Sub-optimal: June–October |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thürkow, F.; Lorenz, C.G.; Pause, M.; Birger, J. Advanced Detection of Invasive Neophytes in Agricultural Landscapes: A Multisensory and Multiscale Remote Sensing Approach. Remote Sens. 2024, 16, 500. https://doi.org/10.3390/rs16030500
Thürkow F, Lorenz CG, Pause M, Birger J. Advanced Detection of Invasive Neophytes in Agricultural Landscapes: A Multisensory and Multiscale Remote Sensing Approach. Remote Sensing. 2024; 16(3):500. https://doi.org/10.3390/rs16030500
Chicago/Turabian StyleThürkow, Florian, Christopher Günter Lorenz, Marion Pause, and Jens Birger. 2024. "Advanced Detection of Invasive Neophytes in Agricultural Landscapes: A Multisensory and Multiscale Remote Sensing Approach" Remote Sensing 16, no. 3: 500. https://doi.org/10.3390/rs16030500
APA StyleThürkow, F., Lorenz, C. G., Pause, M., & Birger, J. (2024). Advanced Detection of Invasive Neophytes in Agricultural Landscapes: A Multisensory and Multiscale Remote Sensing Approach. Remote Sensing, 16(3), 500. https://doi.org/10.3390/rs16030500