Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods
Abstract
:1. Introduction
2. Materials
2.1. Ground-Level PM2.5
2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) AOD Product
2.3. Auxiliary Data
2.3.1. Auxiliary Meteorological Variables
2.3.2. Auxiliary Land Use-Related Variables
3. Methods
3.1. Research Framework
3.2. GeoDetector Analysis
3.3. RF Regression Model
3.4. LSTM
3.5. Model Validation
4. Results
4.1. Descriptive Statistics
4.2. Variable Selection
4.3. Model Fitting and Validation
4.4. Spatial Distribution of PM2.5 Concentrations
5. Discussion
5.1. Comparison with Recent Studies
5.2. Heavy PM2.5 Pollution Area Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | Longitude (°E) | Latitude (°N) | Source |
---|---|---|---|
AOE_Baotou | 109.629 | 40.852 | https://aeronet.gsfc.nasa.gov/, accessed on 23 September 2023. |
Beijing | 116.381 | 39.977 | |
Beijing_PKU | 116.31 | 39.992 | |
Beijing-CAMS | 116.317 | 39.933 | |
Beijing_RADI | 116.379 | 40.005 | |
Hong_Kong_PolyU | 114.180 | 22.303 | |
Hong_Kong_Sheung | 114.117 | 22.483 | |
Kashi | 75.930 | 39.504 | |
Lingshan_Mountain | 115.496 | 40.054 | |
NAM_CO | 90.962 | 30.773 | |
QOMS_CAS | 86.948 | 28.365 | |
SONET_Harbin | 126.614 | 45.705 | |
SONET_Hefei | 117.162 | 31.905 | |
SONET_Nanjing | 118.957 | 32.115 | |
SONET_Xingtai | 114.360 | 37.182 | |
SONET_Zhoushan | 122.188 | 29.994 | |
Taihu | 120.215 | 31.421 | |
XiangHe | 119.962 | 39.754 | |
XingLong | 117.578 | 40.396 | |
XuZhou-CUMT | 117.142 | 34.217 | |
Yanqihu | 116.674 | 40.408 |
References
- Gu, C.L.; Hu, L.Q.; Cook, I.G. China’s urbanization in 1949–2015: Processes and driving forces. Chin. Geogr. Sci. 2017, 27, 847–859. [Google Scholar] [CrossRef]
- Barzeghar, V.; Sarbakhsh, P.; Hassanvand, M.S.; Faridi, S.; Gholampour, A. Long-term trend of ambient air PM10, PM2.5, and O3 and their health effects in Tabriz city, Iran, during 2006–2017. Sustain. Cities Soc. 2020, 54, 101988. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Young-Chul, L. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public. Health 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- IQAir. 2021 World Air Quality Report; IQAir: Goldach, Switzerland, 2022. [Google Scholar]
- Liu, J.; Weng, F.; Li, Z. Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm. Atmos. Environ. 2019, 208, 113–122. [Google Scholar] [CrossRef]
- Bai, K.; Li, K.; Sun, Y.; Wu, L.; Zhang, Y.; Chang, N.-B.; Li, Z. Global synthesis of two decades of research on improving PM2.5 estimation models from remote sensing and data science perspectives. Earth-Sci. Rev. 2023, 241, 104461. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- He, Q.; Gao, K.; Zhang, L.; Song, Y.; Zhang, M. Satellite-derived 1-km estimates and long-term trends of PM2.5 concentrations in China from 2000 to 2018. Environ. Int. 2021, 156, 106726. [Google Scholar] [CrossRef]
- Shao, P.; Xin, J.; An, J.; Kong, L.; Wang, B.; Wang, J.; Wang, Y.; Wu, D. The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta. Atmos. Pollut. Res. 2017, 8, 233–243. [Google Scholar] [CrossRef]
- Xin, J.; Zhang, Q.; Wang, L.; Gong, C.; Wang, Y.; Liu, Z.; Gao, W. The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmos. Res. 2014, 138, 179–188. [Google Scholar] [CrossRef]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, B.; Wei, Q.; Guo, Y.; Yin, X.; Li, F.; Wang, L.; Wang, W. Estimating ground-level PM2.5 concentrations using two-stage model in Beijing-Tianjin-Hebei, China. Atmos. Pollut. Res. 2021, 12, 101154. [Google Scholar] [CrossRef]
- Zeng, Q.L.; Li, Y.M.; Tao, J.H.; Fan, M.; Chen, L.F.; Wang, L.H.; Wang, Y.C. Full-coverage estimation of PM2.5 in the Beijing-Tianjin-Hebei region by using a two-stage model. Atmos. Environ. 2023, 309, 119956. [Google Scholar] [CrossRef]
- Ma, Z.W.; Hu, X.F.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef]
- Tang, Y.B.; Xie, S.F.; Huang, L.K.; Liu, L.L.; Wei, P.Z.; Zhang, Y.B.; Meng, C.Y. Spatial Estimation of Regional PM2.5 Concentrations with GWR Models Using PCA and RBF Interpolation Optimization. Remote Sens. 2022, 14, 5626. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, L.X.; Qin, K.; Zhang, Y.F.; Shen, Y.Y.; Zhou, Y. A Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD. Remote Sens. 2016, 8, 262. [Google Scholar] [CrossRef]
- Wu, L.; Bai, Y.; Zhang, Y.; Li, J.; Han, Y.; Qin, K. Estimate PM2.5 Concentration in 500 m Resolution from Satellite Data and Ground Observation. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5716–5719. [Google Scholar]
- Zhao, H.B.; Liu, Y.X.; Gu, T.S.; Zheng, H.; Wang, Z.Y.; Yang, D.Y. Identifying Spatiotemporal Heterogeneity of PM2.5 Concentrations and the Key Influencing Factors in the Middle and Lower Reaches of the Yellow River. Remote Sens. 2022, 14, 2643. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Qin, Z.D.; Zhang, G.S. A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting. Atmos. Pollut. Res. 2017, 8, 850–860. [Google Scholar] [CrossRef]
- Huang, K.; Xiao, Q.; Meng, X.; Geng, G.; Wang, Y.; Lyapustin, A.; Gu, D.; Liu, Y. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. Environ. Pollut. 2018, 242, 675–683. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, L.; Chen, L.G.; Zhang, T.; Xiao, J.Y.; Chen, L.Q. Random Forest Estimation and Trend Analysis of PM2.5 Concentration over the Huaihai Economic Zone, China (2000–2020). Sustainability 2022, 14, 8520. [Google Scholar] [CrossRef]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; de Hoogh, K.; de’ Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M.; et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.H.; Chen, M.X.; Wang, L.; Zhao, S.H.; Pu, X.; Chen, X.G. Estimation of monthly 1 km resolution PM2.5 concentrations using a random forest model over “2 + 26” cities, China. Urban. Clim. 2021, 35, 100734. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, D.M.; Pei, L.; Su, Y.; Wang, X.X.; Bian, Y.; Zhang, D.H.; Yao, W.Q.; Zhou, Z.X.; Guo, L.Y. Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Sci. Total Env. 2021, 778, 146288. [Google Scholar] [CrossRef]
- Bagheri, H. A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data. Adv. Space Res. 2022, 69, 3333–3349. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Dai, X.; Liu, J.; Li, Y. A recurrent neural network using historical data to predict time series indoor PM2.5 concentrations for residential buildings. Indoor Air 2021, 31, 1228–1237. [Google Scholar] [CrossRef]
- Li, J.; Xu, G.; Cheng, X. Combining spatial pyramid pooling and long short-term memory network to predict PM2.5 concentration. Atmos. Pollut. Res. 2022, 13, 101309. [Google Scholar] [CrossRef]
- Wen, C.C.; Liu, S.; Yao, X.J.; Peng, L.; Li, X.; Hu, Y.; Chi, T.H. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.; Ul Islam, R.; Hossain, M.S.; Andersson, K. An integrated approach of Belief Rule Base and Convolutional Neural Network to monitor air quality in Shanghai. Expert. Syst. Appl. 2022, 206, 117905. [Google Scholar] [CrossRef]
- Casallas, A.; Ferro, C.; Celis, N.; Guevara-Luna, M.A.; Mogollón-Sotelo, C.; Guevara-Luna, F.A.; Merchán, M. Long short-term memory artificial neural network approach to forecast meteorology and PM2.5 local variables in Bogotá, Colombia. Model. Earth Syst. Environ. 2021, 8, 2951–2964. [Google Scholar] [CrossRef]
- Sun, D.; Shi, S.; Wen, H.; Xu, J.; Zhou, X.; Wu, J. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology 2021, 379, 107623. [Google Scholar] [CrossRef]
- Lee, S.; Talib, J.A. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 2005, 47, 982–990. [Google Scholar] [CrossRef]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, X.; Han, Z.; Tian, M.; Wang, Q.; Wu, H.; Liu, F. Geodetector based identification of influencing factors on spatial distribution patterns of heavy metals in soil: A case in the upper reaches of the Yangtze River, China. Appl. Geochem. 2022, 146, 105459. [Google Scholar] [CrossRef]
- Shi, H.; Wang, P.; Zheng, J.; Deng, Y.; Zhuang, C.; Huang, F.; Xiao, R. A comprehensive framework for identifying contributing factors of soil trace metal pollution using Geodetector and spatial bivariate analysis. Sci. Total Environ. 2023, 857, 159636. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Gong, Y.; You, G.; Chen, T.; Wang, L.; Hu, Y. Rural Landscape Change: The Driving Forces of Land Use Transformation from 1980 to 2020 in Southern Henan, China. Sustainability 2023, 15, 2565. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, M.; Tao, M.; Zhou, W.; Lu, X.; Xiong, Y.; Li, F.; Wang, Q. The role of satellite remote sensing in mitigating and adapting to global climate change. Sci. Total Environ. 2023, 904, 166820. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Fang, H.; Wang, L.; Wei, J.; Zhang, M.; Su, X.; Bilal, M.; Liang, X. MODIS high-resolution MAIAC aerosol product: Global validation and analysis. Atmos. Environ. 2021, 264, 118684. [Google Scholar] [CrossRef]
- Tao, M.; Wang, J.; Li, R.; Wang, L.; Wang, L.; Wang, Z.; Tao, J.; Che, H.; Chen, L. Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation. Atmos. Environ. 2019, 213, 159–169. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res.-Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.J.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Chishtie, F.; Bibi, S.; Shahid, I.; Blaschke, T. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos. Environ. 2015, 111, 113–126. [Google Scholar] [CrossRef]
- Soni, K.; Parmar, K.S.; Kapoor, S.; Kumar, N. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling. Sci. Total Environ. 2016, 553, 258–265. [Google Scholar] [CrossRef]
- Li, B.G.; Yuan, H.S.; Feng, N.; Tao, S. Comparing MODIS and AERONET aerosol optical depth over China. Int. J. Remote Sens. 2009, 30, 6519–6529. [Google Scholar] [CrossRef]
- Chen, C.C.; Wang, Y.R.; Yeh, H.Y.; Lin, T.H.; Huang, C.S.; Wu, C.F. Estimating monthly PM2.5 concentrations from satellite remote sensing data, meteorological variables, and land use data using ensemble statistical modeling and a random forest approach. Environ. Pollut. 2021, 291, 118159. [Google Scholar] [CrossRef]
- Jiang, M.; Sun, W.W.; Yang, G.; Zhang, D.A.F. Modelling Seasonal GWR of Daily PM2.5 with Proper Auxiliary Variables for the Yangtze River Delta. Remote Sens. 2017, 9, 346. [Google Scholar] [CrossRef]
- Jiang, T.T.; Chen, B.; Nie, Z.; Ren, Z.H.; Xu, B.; Tang, S.H. Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model. Atmos. Res. 2021, 248, 105146. [Google Scholar] [CrossRef]
- Lu, D.B.; Mao, W.L.; Xiao, W.; Zhang, L. Non-Linear Response of PM2.5 Pollution to Land Use Change in China. Remote Sens. 2021, 13, 1612. [Google Scholar] [CrossRef]
- Lu, D.B.; Xu, J.H.; Yue, W.Z.; Mao, W.L.; Yang, D.Y.; Wang, J.Z. Response of PM2.5 pollution to land use in China. J. Clean. Prod. 2020, 244, 118741. [Google Scholar] [CrossRef]
- Zheng, C.W.; Zhao, C.F.; Zhu, Y.N.; Wang, Y.; Shi, X.Q.; Wu, X.L.; Chen, T.M.; Wu, F.; Qiu, Y.M. Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmos. Chem. Phys. 2017, 17, 13473–13489. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.-P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Shakya, D.; Deshpande, V.; Goyal, M.K.; Agarwal, M. PM2.5 air pollution prediction through deep learning using meteorological, vehicular, and emission data: A case study of New Delhi, India. J. Clean. Prod. 2023, 427, 139278. [Google Scholar] [CrossRef]
- Zavorueva, E.N.; Zavoruev, V.V. The influence of climatic factors on the concentration of particulate matter in the atmosphere of Drokino and Minino villages (Krasnoyarsk krai) during the heating season. In Proceedings of the 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 30 June–5 July 2019. [Google Scholar]
- Gleixner, S.; Demissie, T.; Diro, G.T. Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa? Atmosphere 2020, 11, 996. [Google Scholar] [CrossRef]
- Hamm, A.; Arndt, A.; Kolbe, C.; Wang, X.; Thies, B.; Boyko, O.; Reggiani, P.; Scherer, D.; Bendix, J.; Schneider, C. Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau. Water 2020, 12, 3271. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Jeanjean, A.P.R.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef]
- Lim, C.-H.; Ryu, J.; Choi, Y.; Jeon, S.W.; Lee, W.-K. Understanding global PM2.5 concentrations and their drivers in recent decades (1998–2016). Environ. Int. 2020, 144, 106011. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, J.; Wen, J.; Tian, H.; Liu, X. Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures. Atmos. Environ. 2016, 124, 378–386. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Yue, L.; Li, T. Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression. Environ. Pollut. 2020, 262, 114257. [Google Scholar] [CrossRef]
- Superczynski, S.D.; Christopher, S.A. Exploring Land Use and Land Cover Effects on Air Quality in Central Alabama Using GIS and Remote Sensing. Remote Sens. 2011, 3, 2552–2567. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Zeng, L.; Hang, J.; Wang, X.; Shao, M. Influence of urban spatial and socioeconomic parameters on PM2.5 at subdistrict level: A land use regression study in Shenzhen, China. J. Environ. Sci. 2022, 114, 485–502. [Google Scholar] [CrossRef]
- Kock, N.; Lynn, G. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J. Assoc. Inf. Syst. 2012, 13. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees. In The Wadsworth & Brooks/Cole; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Misha, D.; David, M.; Nando De, F. Narrowing the Gap: Random Forests in Theory and in Practice. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 665–673. [Google Scholar]
- Ziegler, A.; König, I.R. Mining data with random forests: Current options for real-world applications. WIREs Data Min. Knowl. Discov. 2014, 4, 55–63. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- DiPietro, R.; Hager, G.D. Chapter 21—Deep learning: RNNs and LSTM. In Handbook of Medical Image Computing and Computer Assisted Intervention; Zhou, S.K., Rueckert, D., Fichtinger, G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 503–519. [Google Scholar]
- Zhao, C.; Wang, Q.; Ban, J.; Liu, Z.; Zhang, Y.; Ma, R.; Li, S.; Li, T. Estimating the daily PM2.5 concentration in the Beijing-Tianjin-Hebei region using a random forest model with a 0.01° × 0.01° spatial resolution. Environ. Int. 2020, 134, 105297. [Google Scholar] [CrossRef]
- Gao, X.; Li, W.D. A graph-based LSTM model for PM2.5 forecasting. Atmos. Pollut. Res. 2021, 12, 101150. [Google Scholar] [CrossRef]
- Song, F.; Tie, Z.; Huang, Z.; Ding, C. PM2.5 Concentration Prediction Model Based on KNN-LSTM. Comput. Syst. Appl. 2020, 29, 193–198. [Google Scholar]
- Kang, J.; Tan, J.; Fang, L.; Xiao, Y. Short-term PM2.5 concentration prediction based on XGBoost and LSTM variable weight combination model: A case study of Shanghai. China Environ. Sci. 2021, 41, 4016–4025. [Google Scholar]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Falah, S.; Kizel, F.; Banerjee, T.; Broday, D.M. Accounting for the aerosol type and additional satellite-borne aerosol products improves the prediction of PM2.5 concentrations. Environ. Pollut. 2023, 320, 121119. [Google Scholar] [CrossRef]
- Guan, S.; Zhang, X.; Zhao, W.; Duan, Y.; Yang, S.; Yao, Y.; Jia, K. A similarity distance-based space-time random forest model for estimating PM2.5 concentrations over China. Atmos. Environ. 2023, 313, 120043. [Google Scholar] [CrossRef]
- Pacca, L.; Antonarakis, A.; Schröder, P.; Antoniades, A. The effect of financial crises on air pollutant emissions: An assessment of the short vs. medium-term effects. Sci. Total Environ. 2020, 698, 133614. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Yue, L.; Li, T.; Shen, H.; Zhang, L. Mapping PM2.5 concentration at a sub-km level resolution: A dual-scale retrieval approach. ISPRS J. Photogramm. Remote Sens. 2020, 165, 140–151. [Google Scholar] [CrossRef]
- Guo, B.; Wang, X.; Pei, L.; Su, Y.; Zhang, D.; Wang, Y. Identifying the spatiotemporal dynamic of PM2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Env. 2021, 751, 141765. [Google Scholar] [CrossRef]
- Liu, Y.X.; Teng, Y.; Liang, S.; Li, X.L.; Zhao, J.W.; Shan, M.; Chen, L.; Yu, H.; Mao, J.; Zhang, H.; et al. Establishment of PM10 and PM2.5 emission inventories from wind erosion source and simulation of its environmental impact based on WEPS-Models3 in southern Xinjiang, China. Atmos. Environ. 2021, 248, 118122. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, L.; Ma, W.; Wang, N.; Wen, F.; Liu, Q. Spatiotemporal estimation of the PM2.5 concentration and human health risks combining the three-dimensional landscape pattern index and machine learning methods to optimize land use regression modeling in Shaanxi, China. Environ. Res. 2022, 208, 112759. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.; Wang, S.; Li, S. Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2. 5 concentrations in countries globally. Appl. Energy 2018, 230, 94–105. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Han, L. Study on the change in energy production structure under the energy coordinated development strategy of Beijing-Tianjin-Hebei urban agglomeration, China. Acta Ecol. Sin. 2019, 39, 1203–1211. [Google Scholar]
- Dai, Q.; Chen, J.; Wang, X.; Dai, T.; Tian, Y.; Bi, X.; Shi, G.; Wu, J.; Liu, B.; Zhang, Y.; et al. Trends of source apportioned PM2.5 in Tianjin over 2013–2019: Impacts of Clean Air Actions. Environ. Pollut. 2023, 325, 121344. [Google Scholar] [CrossRef]
- Wu, Q.L.; Guo, R.X.; Luo, J.H.; Chen, C. Spatiotemporal evolution and the driving factors of PM2.5 in Chinese urban agglomerations between 2000 and 2017. Ecol. Indic. 2021, 125, 107491. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Zhou, C.; Li, M. Does the path of technological progress matter in mitigating China’s PM2.5 concentrations? Evidence from three urban agglomerations in China. Environ. Pollut. 2019, 254, 113012. [Google Scholar] [CrossRef]
Data | Unit | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|---|
PM2.5 | μg m−3 | – | Hourly | CNEMC |
Aerosol Optical Depth (AOD) | – | 1 km × 1 km | Daily | NASA LAADS |
Normalized Difference Vegetation Index (NDVI) | – | 1 km × 1 km | Monthly | |
Surface Pressure (P) | Pa | 0.5° × 0.5° | Monthly | ERA5 |
Boundary Layer Height (BLH) | m | Monthly | ||
10 m Wind Speed (WS) | m/s | Monthly | ||
Surface Air Relative Humidity (RHU) | % | 0.25° × 0.25° | Monthly | ECV |
Precipitation (PRE) | m | Monthly | ||
Surface Air Temperature (TEMP) | K | Monthly | ||
Digital Elevation Model (DEM) | m | 250 m | Annual | RESDC |
Land Use and Land Cover Change (LUCC) | – | 30 m | 2015, 2018, 2020 |
Year | Number | Mean (μg m−3) | Min (μg m−3) | Max (μg m−3) | SD (μg m−3) |
---|---|---|---|---|---|
2014 | 666 | 62.627 | 6.91 | 143.49 | 21.58 |
2015 | 1470 | 57.720 | 51.83 | 85.04 | 6.41 |
2016 | 1456 | 48.125 | 7.78 | 191.54 | 17.67 |
2017 | 1524 | 46.307 | 8.00 | 173.20 | 16.89 |
2018 | 1497 | 39.160 | 1.41 | 127.17 | 13.44 |
2019 | 1506 | 37.024 | 1.73 | 111.62 | 13.36 |
2020 | 1528 | 35.498 | 5.53 | 179.25 | 14.70 |
2021 | 1759 | 32.644 | 5.79 | 94.04 | 10.14 |
Total | 11,406 | 43.244 | 1.41 | 191.54 | 16.98 |
Variable | VIF |
---|---|
AOD | 1.434 |
P | 16.91 |
PRE | 3.527 |
RHU | 3.813 |
TEMP | 3.637 |
WS | 1.247 |
BLH | 1.022 |
DEM | 13.43 |
NDVI | 1.368 |
Variable | AOD | P | PRE | RHU | TEMP | WS | BLH | DEM | NDVI | LUCC |
---|---|---|---|---|---|---|---|---|---|---|
q-statistic | 0.17 | 0.11 | 0.23 | 0.20 | 0.34 | 0.10 | 0.043 | 0.10 | 0.069 | 0.076 |
p-value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, Z.; Cao, C.; Xu, M.; Yang, X.; Wang, K.; Guo, H.; Gao, X.; Li, J.; Shi, Z. Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods. Remote Sens. 2024, 16, 467. https://doi.org/10.3390/rs16030467
Yang Y, Wang Z, Cao C, Xu M, Yang X, Wang K, Guo H, Gao X, Li J, Shi Z. Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods. Remote Sensing. 2024; 16(3):467. https://doi.org/10.3390/rs16030467
Chicago/Turabian StyleYang, Yujie, Zhige Wang, Chunxiang Cao, Min Xu, Xinwei Yang, Kaimin Wang, Heyi Guo, Xiaotong Gao, Jingbo Li, and Zhou Shi. 2024. "Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods" Remote Sensing 16, no. 3: 467. https://doi.org/10.3390/rs16030467
APA StyleYang, Y., Wang, Z., Cao, C., Xu, M., Yang, X., Wang, K., Guo, H., Gao, X., Li, J., & Shi, Z. (2024). Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods. Remote Sensing, 16(3), 467. https://doi.org/10.3390/rs16030467